Outcropping Permian Shelf Formations of Eastern New Mexico Vincent C

Total Page:16

File Type:pdf, Size:1020Kb

Outcropping Permian Shelf Formations of Eastern New Mexico Vincent C New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/23 Outcropping Permian shelf formations of eastern New Mexico Vincent C. Kelley, 1972, pp. 72-78 in: East-Central New Mexico, Kelley, V. C.; Trauger, F. D.; [eds.], New Mexico Geological Society 23rd Annual Fall Field Conference Guidebook, 236 p. This is one of many related papers that were included in the 1972 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications. One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission. This page is intentionally left blank to maintain order of facing pages. OUTCROPPING PERMIAN SHELF FORMATIONS OF EASTERN NEW MEXICO by VINCENT C. KELLEY Department of Geology University of New Mexico INTRODUCTION units under Chupadera, Darton may have suffered from having known much more than others on a regional basis. However, Permian beds of Leonardian and Guadalupian ages com- he had neither the means nor the time to work out the facies prising the Yeso, San Andres, and Artesia units are at or near problems. He very likely had seen the intcrtonguing of the surface in expansive areas west of the Pecos River. The Glorieta sandstones with the San Andres in the Lincoln area is one of low regional dip extending across eastern New County area. After leaving his work in New Mexico he re- Mexico from the Pedernal uplift on the west into Texas on the ported to friends that the Chupadera stratigraphy was the one east, a distance of some 200 miles. East of the Pecos, however, problem he would have most liked to restudy. the Permian rocks lie mostly in the subsurface. In the area The Chupadera formation included all beds between the west of the Pecos only Permian Abo and Pennsylvanian underlying Abo Formation and the overlying Triassic Dockum Magdalena beds intervene between Yeso, the oldest formation Group. By 1928 Darton (State Geologic Map) had traced his treated here, and the basement Precambrian. The Abo and Chupadera throughout the Pecos country where it embraced in Magdalena Formations wedge out westward by thinning and its higher part all the beds now designated as Artesia Group, overlap onto the buried late Pennsylvanian to Leonardian land- including the Capitan Limestone and the Bernal Formation. mass. The Yeso likewise wedges by overlap across the Abo and Only slightly later, Fiedler and Nye (1933, p. 44) proposed the onto the landmass, and very locally around Pedernal Peak ap- term, Pecos Formation (now abandoned) for all the beds in pears to be overlapped by the overlying Gloricta. Except for the Pecos Valley between the San Andres and the Triassic. the Yeso and Gloricta the best exposures of the Permian units Needham and Bates (1943), in company with Geological discussed here lie far to the south along the Pecos Valley, the Survey geologists of that time, found the triparte subdivision southern Pecos slope, and in particular the Guadalupe Moun- of the Chupadera beds into Yeso, Glorieta, and San Andres tains. quite acceptable for central and western New Mexico. In fact one of the best and most consistent formation boundaries in GENERAL STRATIGRAPHY New Mexico is that between the Yeso and the San Andres. The The Permian units consist mostly of medium- to very fine- same cannot be said for the Gloricta and San Andres, and grained clastics, gypsum, and carbonates whose proportions recent work has shown (Kelley, 1971, p. 9-12) that the vary in the several mappable facies and formations. Except in Glorieta is a facies of the lower part of the San Andres (Fig. the Yeso and Gloricta, medium-grained clastics are absent or 1). rare, and no coarse-grained sandstone is present, thus causing In 1962 Tait and others introduced the term Artesia Group the rocks to stand in distinct contrast with the coarse-grained to embrace five formations (Grayburg, Queen, Seven Rivers, sandstones and conglomerates of the underlying Abo and over- Yates, and Tansill). This was done mostly to erase confusion lying Triassic Santa Rosa Formations. Likewise arkosic and that had resulted from the simultaneous conflicting usage of clayey sandstone is uncommon to rare in Permian units, Langs (1937) Chalk Bluffs formation, the Oklahoma term, although some sandstone is sparsely muscovitic. Claystone Whitehorse Group (DeFord and Lloyd, 1940), and the Bernal probably is also uncommon as is shaliness. The most common Formation (Bachman, 1953) for beds of this group in central fine clastic is probably best termed mudstone at least until and northeastern New Mexico. Definition of the Artesia term more information on these rocks is available. by Tait and others required, and in fact accomplished, better The Yeso and San Andres Formations were named by Lee description and correlation of the Artesia formations between in 1909 and the Glorieta by Keyes in 1915. Despite this, Dar- the subsurface and the surface. The term was further deemed ton (1922, p. 181) introduced the term Chupadera Formation important and useful for surface outcrops where poor ex- and relegated the earlier terms to members. In doing this Dar- posures and indistinctive lithologies made mapping of the for- ton noted "that while Lees terms were discernible in places, it mation either impossible or too uncertain. Although the term, was impracticable to separate them generally." In the Artesia Group, is a useful term, the constituent formations Chupadera Mesa country there is much mixing of the lithol- have been mapped separately in the Pecos Valley northward as ogies which arc elsewhere more clearly separated into forma- far as Santa Rosa (Kelley, 1971, pls. 2, 4, fig. 7; Kelley, 1972b tions. In the southern Chupadera Mesa and adjoining areas maps 1, 2). Tait and his coworkers recommended discarding there is much gypsum, some redbeds, and sandstone in the San the term, Bernal Formation, in favor of Artesia Group, but I Andres. The Gloricta type sandstone is not very thick in the have recommended retention of Bernal as a well entrenched, basal position and such sandstone occurs higher and even at or useful, and prior term for areas of central and northeastern near the top. The Yeso, however, is reasonably characteristic New Mexico which lack continuity with the more widespread of many other areas. In lumping the now widely accepted outcrops along much of the Pecos Valley of New Mexico. 72 (no 5) (r) C o 0 -o cc cn o o = c 0 a) _o a) _c c° Cr) o o I--o 3 a, ,_C > 1- w D 2 0 o 0 o o 8 o 0 o .,t- cr > C, u_ u) J 1 6 1 5 1 4 11 3 1 2 1 North 1 Townships 1 9SoSouthl Townships 1 1 1 10 1 9 1 1 21 1 20 1 19 I 18 1 17 1 16 1 15 1 14 1 13 1 12 1 1 1 1 1 11 1 1 2 1 3 1 4 1 5 i 6 1 7 1 8 1 9 i 10 1 1111213114115116117118 26 1 25 24 1 23 I 22 SANTA ROSA SANDSTONE Rustler Formation On \it3Cs(PleS OA 40d— So\oclo For {ries —400 _\\\ tv E.0906es San Andres -----,f.( 2,‘1" • kesSe\lec‘-,__. , _,_... \.0c\e Formatio 800— —800 lC,c ,,,o ‘°"S 7 , Colw°e' \cPe" 7 . \sba ° —1200 1200 L " n 0 / 0 ,,i9 / ---.1 0 "):3 —1600 1600— 11 (>CAC) Formation Cn ' Iti c•P\e", o \e"ii_ 1' CP 00 ,o —2000 2000 L- III, e. cNr6.\ x:P C\ GO Qc.2" 0 cpc) ce —2400 2400 ,oP (I) C.,P- / 2800 e —2800 ,x(2,0". \Ic)C\ 3200 3200 Figure 1. South to north stratigraphic section showing Grayburg and Queen Formations overstepping San Andres Members and Triassic Santa Rosa overstepping Permian Formations. YESO FORMATION ledge of the Glorieta, tonguing is really unknown. Later the Glorieta and the Upper member (Bernal) were separated from The Yeso Formation consists of gypsum, fine- to medium- the San Andres by most workers until regional mapping in grained sandstone, carbonates, and some green or reddish- Lincoln County demonstrated clearly that the Glorieta is a brown siltstone.
Recommended publications
  • Salt Caverns Studies
    SALT CAVERN STUDIES - REGIONAL MAP OF SALT THICKNESS IN THE MIDLAND BASIN FINAL CONTRACT REPORT Prepared by Susan Hovorka for U.S. Department of Energy under contract number DE-AF22-96BC14978 Bureau of Economic Geology Noel Tyler, Director The University of Texas at Austin Austin, Texas 78713-8924 February 1997 CONTENTS Executive Summmy ....................... ..... ...................................................................... ...................... 1 Introduction ..................................................... .. .............................................................................. 1 Purpose .......................................................................................... ..................................... ............. 2 Methods ........................................................................................ .. ........... ...................................... 2 Structural Setting and Depositional Environments ......................................................................... 6 Salt Thickness ............................................................................................................................... 11 Depth to Top of Salt ...................................................................................................................... 14 Distribution of Salt in the Seven Rivers, Queen, and Grayburg Formations ................................ 16 Areas of Salt Thinning .................................................................................................................
    [Show full text]
  • Speleogenesis and Delineation of Megaporosity and Karst
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations 12-2016 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Jon T. Ehrhart Stephen F. Austin State University, [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Geology Commons, Hydrology Commons, and the Speleology Commons Tell us how this article helped you. Repository Citation Ehrhart, Jon T., "Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas" (2016). Electronic Theses and Dissertations. 66. https://scholarworks.sfasu.edu/etds/66 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/66 Speleogenesis and Delineation of Megaporosity and Karst Geohazards Through Geologic Cave Mapping and LiDAR Analyses Associated with Infrastructure in Culberson County, Texas By Jon Ehrhart, B.S. Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the requirements For the Degree of Master of Science STEPHEN F.
    [Show full text]
  • Salado Formation Followed
    GW -^SZ-i^ GENERAL CORRESPONDENCE YEAR(S): B. QUICK, Inc. 3340 Quail View Drive • Nashville, TN 37214 Phone: (615) 874-1077 • Fax: (615) 386-0110 Email: [email protected] November 12,2002 Mr Roger Anderson Environmental Bureau Chief New Mexico OCD 1220 S. ST. Francis Dr. 1 Santa Fe, NM 87507 Re: Class I Disposal Wells Dear Roger, I am still very interested in getting the disposal wells into salt caverns in Monument approved by OCD. It is my sincere belief that a Class I Disposal Well would be benefical to present and future industry in New Mexico. I suspect that one of my problems has been my distance from the property. I am hoping to find a local company or individuals who can be more on top of this project. In the past conditions have not justified the capital investment to permit, build and operate these wells and compete with surface disposal. Have there been any changes in OCD policy that might effect the permitting of these wells? If so, would you please send me any pretinent documents? Sincerely, Cc: Lori Wrotenbery i aoie or moments rage i uu Ctoraeferiz&MoiHi ©ff Bedded Satt fltoir Storage Caverns Case Stundy from the Midlamdl Basim Susan D. Hovorka Bureau of Economic Geology The University of Texas at Austin AUG1 0R9 9 Environmental Bureau Introduction to the Problem °" Conservation D/ws/on About solution-mined caverns l^Btg*** Geolojy_ofsalt Purpose, scope, and methods of our study Previous work: geologic setting of the bedded salt in the Permian Basin J^rV^W^' " Stratigraphic Units and Type Logs s Midland Basin stratigraphy
    [Show full text]
  • Ru Bidium-Strontium and Related Studies of the Salado Formation, Southeastern New Mexico
    CONTRACTOR REPORT SAND8 1-7072 PROPERTY OF GSA LIBRARY Unlimited.Release UC-70 Ru bidium-Strontium and Related Studies of the Salado Formation, Southeastern New Mexico Joseph K. Register University of New Mexico, Albuquerque Prepared by Sandia National Laboratones, Albuquerque. New Mexico 87185 and Livermore, Californ~a94550 for the United States Department of Energy under Contract DE-AC04-76DP00789 Printed October 198 1 Prepared for Sandia National Laboratories under Contract No. 13-9756 Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees nor any of theu contractors subcontractors or their employees makes any wanan'ty express or implied or assukes any legal lAbility or responsibdty for the accuracy cdmp~etenessorusefuiness of any information apparatus product or process disclosed or represent; that its use would not inhinie privatel; owned iights. Reference here& to any specific commercial product. process. or,service by trade name trademark manufacturer or otherwise does not necessarily constitute or imply its enddrsement re'commendation' or favoring by the United States Government any agency thereof or hyof their contr;ctors or subcontractors. The views and opinion; expressed herein do not necessarily state ,or reflect those of the United States Government, any agency thereof or any of theu contractors or subcontractors. Printed in the United States of America Available from National Technical Information Servlce U. S. Department of Commerce 5285 Port Royal Road Springfield.
    [Show full text]
  • Mineral and Energy Resources of the BLM Roswell Resource Area, East-Central New Mexico
    U. S. DEPARTMENT OF THE INTERIOR U. S. GEOLOGICAL SURVEY Mineral and Energy Resources of the BLM Roswell Resource Area, East-central New Mexico by Susan Bartsch-Winkleri, editor Open-File Report 92-0261 1992 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1 Denver, Colorado iMail Stop 937 Federal Center P.O. Box 25046 Denver, Colorado 80225 MINERAL AND ENERGY RESOURCES OF THE BLM ROSWELL RESOURCE AREA, EAST-CENTRAL NEW MEXICO Summary.......................................................................................... 1 Introduction.................................................................................... 1 Location and geography of study area...................................... 1 Purpose and methodology........................................................ 3 Acknowledgements......................................................................... 4 Geology of east-central New Mexico, by Susan Bartsch-Winkler, with a section on Intrusive and extrusive alkaline rocks of the Lincoln County porphyry belt by Theodore J. Armbrustmacher 4 General..................................................................................... 4 Structure................................................................................. 5 Uplifts........................................................................
    [Show full text]
  • Characteristics of the Boundary Between the Castile and Salado
    Gharacteristicsofthe boundary between the Castile and SaladoFormations near the western edge of the Delaware Basin, southeasternNew Mexico by BethM. Madsenand 1mer B. Raup,U.S. Geological Survey, Box 25046, MS-939, Denver, C0 80225 Abstract 1050 posited in the DelawareBasin of southeast New Mexico and west Texasduring Late Per- Permian The contact between the Upper mian (Ochoan)time. In early investigations Castile and Salado Formations throughout and SaladoFormations were un- the Delaware Basin, southeastNew Mexico /-a(run,ouo the Castile differentiated, and the two formations were and west Texas,has been difficult to define EDDY / aou^r" because of facies chanqes from the basin called Castile by Richardson (1904).Cart- center to the western idge. Petrographic wright (1930)divided the sequenceinto the studies of core from a Phillips Petroleum i .,/ upper and lower parts of the Castileon the Company well, drilled in the westernDela- -r---| ,' . NEW MEXTCO basisof lithology and arealdistribution. Lang ware Basin, indicate that there are maior (1935) the name "Saladohalite" Perotf,um introduced mineralogical and textural differences be- ,/ rot company "n for the upper part of the sequence,and he and Salado Formations. / core hole'NM 3170'1 tween the Castile the term Castile for the lower part The Castile is primarilv laminated anhv- retained of the drite with calciteand dolomite.The Salado ( of the sequence.Lang placed the base DELAWARE BASIN Formation is also primarily anhydrite at the SaladoFormation at the base of potassium location of this corehole, but with abundant (polyhalite) mineralization. This proved to layers of magnesite.This magnesiteindi- be an unreliable marker becausethe zone of catesan increaseof magnesiumenrichment mineralization occupies different strati- in the basin brines, which later resulted in graphic positions in different areas.
    [Show full text]
  • Dissolution of Permian Salado Salt During Salado Time in the Wink Area, Winkler County, Texas Kenneth S
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/44 Dissolution of Permian Salado salt during Salado time in the Wink area, Winkler County, Texas Kenneth S. Johnson, 1993, pp. 211-218 in: Carlsbad Region (New Mexico and West Texas), Love, D. W.; Hawley, J. W.; Kues, B. S.; Austin, G. S.; Lucas, S. G.; [eds.], New Mexico Geological Society 44th Annual Fall Field Conference Guidebook, 357 p. This is one of many related papers that were included in the 1993 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • San Andres Formation
    StephenStephen C.C. Ruppel,Ruppel, SUBREGIONALSUBREGIONAL DEVELOPMENTDEVELOPMENT OFOF RESERVOIRRESERVOIR POROSITYPOROSITY ATAT AA MAJORMAJOR PERMIANPERMIAN UNCONFORMITY:UNCONFORMITY: BureauBureau ofof EconomicEconomic Geology,Geology, SANSAN ANDRESANDRES FORMATION,FORMATION, WESTWEST TEXASTEXAS TheThe UniversityUniversity ofof Texas,Texas, Austin,Austin, TX,TX, 78713-892478713-8924 ABSTRACTABSTRACT Most porosity development in carbonate reservoirs can be attributed in part or in total to diagenesis. This is especially true in Permian reservoirs of the Permian Basin, nearly all of which are dolomitized. Linking this diagenesis and associated porosity to unconformities representing major falls in sea level, INTRODUCTIONINTRODUCTION STRATIGRAPHYSTRATIGRAPHY ANDAND FACIESFACIES however, is commonly problematic using typical reservoir data sets. New subsurface data from the San Andres Formation, a major oil-producing reservoir in Texas and New Mexico, coupled with relationships previously defined from SANSAN ANDRES-GRAYBURGANDRES-GRAYBURG STRATIGRAPHYSTRATIGRAPHY ANDAND FACIESFACIES CYCLECYCLE STRATIGRAPHYSTRATIGRAPHY ANDAND FACIESFACIES ARCHITECTUREARCHITECTURE equivalent outcrops, illustrate both the style and expression of such porosity SANSAN ANDRESANDRES STRUCTURESTRUCTURE FUHRMAN-MASCHOFUHRMAN-MASCHO FIELDFIELD Fuhrman-MaschoFuhrman-Mascho FieldField Fuhrman-MaschoFuhrman-Mascho SanSan AndresAndres Field,Field, AndrewsAndrews County,County, TexasTexas development. MIDDLE PERMIAN SEQUENCE STRATIGRAPHY ty Northwest Southeast MIDDLE PERMIAN SEQUENCE STRATIGRAPHY i -1100 PSL A-43 PermianPermian BasinBasin Gamma ray (API) Neutron porosity (%) PSL A-47 Depth Although the San Andres is characterized by an upward-shallowing succession Oil FMU 12A FMU 211 FMU 607 FMU 605 FMU 705 FMU 806 (ft) WFMU 110 WFMU 109 aturation WFMU 124 GR N GR N GR N GR N High Western Central Western 0 100 30 20 1010 0 -10 s GR N GR N of outer- to inner-ramp carbonate lithofacies in most platform settings, pervious Relative Algerita Western Permeabil GR N GR N ft GDP ft ft ft ft freq.
    [Show full text]
  • Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin
    Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities Final Report Reporting Period Start Date: January 14, 2002 Reporting Period End Date: May 13, 2004 Shirley P. Dutton, Eugene M. Kim, Ronald F. Broadhead, Caroline L. Breton, William D. Raatz, Stephen C. Ruppel, and Charles Kerans May 2004 Work Performed under DE-FC26-02NT15131 Prepared by Bureau of Economic Geology John A. and Katherine G. Jackson School of Geosciences The University of Texas at Austin University Station, P.O. Box X Austin, TX 78713-8924 and New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology Socorro, NM 87801-4681 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability for responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. iii ABSTRACT The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 × 109 m3) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 × 105 m3).
    [Show full text]
  • Geologic Map of the Kitchen Cove 7.5-Minute Quadrangle, Eddy County, New Mexico by Colin T
    Geologic Map of the Kitchen Cove 7.5-Minute Quadrangle, Eddy County, New Mexico By Colin T. Cikoski1 1New Mexico Bureau of Geology and Mineral Resources, 801 Leroy Place, Socorro, NM 87801 June 2019 New Mexico Bureau of Geology and Mineral Resources Open-file Digital Geologic Map OF-GM 276 Scale 1:24,000 This work was supported by the U.S. Geological Survey, National Cooperative Geologic Mapping Program (STATEMAP) under USGS Cooperative Agreement G18AC00201 and the New Mexico Bureau of Geology and Mineral Resources. New Mexico Bureau of Geology and Mineral Resources 801 Leroy Place, Socorro, New Mexico, 87801-4796 The views and conclusions contained in this document are those of the author and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government or the State of New Mexico. Executive Summary The Kitchen Cove quadrangle lies along the northwestern margin of the Guadalupian Delaware basin southwest of Carlsbad, New Mexico. The oldest rocks exposed are Guadalupian (upper Permian) carbonate rocks of the Seven Rivers Formation of the Artesia Group, which is sequentially overlain by similar strata of the Yates and Tansill Formations of the same Group. Each of these consists dominantly of dolomitic beds with lesser fine-grained siliciclastic intervals, which accumulated in a marine or marginal-marine backreef or shelf environment. These strata grade laterally basinward (here, eastward) either at the surface or in the subsurface into the Capitan Limestone, a massive fossiliferous “reef complex” that lay along the Guadalupian Delaware basin margin and is locally exposed on the quadrangle at the mouths of Dark Canyon and Kitchen Cove.
    [Show full text]
  • Play Analysis of Major Oil Reservoirs in the New Mexico Part of the Permian Basin: Enhanced Production Through Advanced Technologies by Ronald F
    Play Analysis of Major Oil Reservoirs in the New Mexico Part of the Permian Basin: Enhanced Production Through Advanced Technologies by 1 2 3 Ronald F. Broadhead , Zhou Jianhua and William D. Raatz 1New Mexico Bureau of Geology and Mineral Resources, a division of New Mexico Tech, Socorro NM 87801 2Department of Computer Sciences, New Mexico Tech, Socorro NM 87801 3New Mexico Bureau of Geology and Mineral Resources, present address OxyPermian, Houston, TX From R.L. Martin and K.F. Hickey West Texas Geological Society, 2002 Open File Report 479 New Mexico Bureau of Geology and Mineral Resources, A division of New Mexico Tech Socorro, NM 87801 Peter A. Scholle, Director July 2004 DISCLAIMER This open-file report was prepared with the support of the U.S. Department of Energy, under Award No. DE-FC26-02NT15131. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implicit, or assumes any legal liability for the responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof.
    [Show full text]
  • Overview of the Geologic History of Cave Development in the Guadalupe Mountains, New Mexico
    Carol A. Hill - Overview of the geologic history of cave development in the Guadalupe Mountains, New Mexico. Journal of Cave and Karst Studies 62(2): 60-71. OVERVIEW OF THE GEOLOGIC HISTORY OF CAVE DEVELOPMENT IN THE GUADALUPE MOUNTAINS, NEW MEXICO CAROL A. HILL 17 El Arco Drive, Albuquerque, NM 87123-9542 USA [email protected] The sequence of events relating to the geologic history of cave development in the Guadalupe Mountains, New Mexico, traces from the Permian to the present. In the Late Permian, the reef, forereef, and backreef units of the Capitan Reef Complex were deposited, and the arrangement, differential dolomitization, jointing, and folding of these stratigraphic units have influenced cave development since that time. Four episodes of karsification occurred in the Guadalupe Mountains: Stage 1 fissure caves (Late Permian) developed primarily along zones of weakness at the reef/backreef contact; Stage 2 spongework caves (Mesozoic) developed as small interconnected dissolution cavities during limestone mesogenesis; Stage 3 thermal caves (Miocene?) formed by dissolution of hydrothermal water; Stage 4 sulfuric acid caves (Miocene-Pleistocene) formed by H2S-sulfuric acid dissolution derived hypogenically from hydro- carbons. This last episode is reponsible for the large caves in the Guadalupe Mountains containing gyp- sum blocks/rinds, native sulfur, endellite, alunite, and other deposits related to a sulfuric acid speleoge- netic mechanism. This paper provides an overview of events affecting cave of the Delaware Basin. The Capitan Formation in the Delaware development in the Guadalupe Mountains of New Mexico. Basin is exposed in the northwestern Guadalupe Mountains Table 1 outlines the sequence of karst events, integrated with section, the southwestern Apache Mountains section, and the the regional geology.
    [Show full text]