Protein Aggregate Myopathies

Total Page:16

File Type:pdf, Size:1020Kb

Protein Aggregate Myopathies Review Article Protein aggregate myopathies M. C. Sharma, H. H. Goebel1 All India Institute of Medical Sciences, New Delhi, India and 1Department of Neuropathology, Johannes Gutenberg University Medical Center, Mainz, Germany Protein aggregate myopathies (PAM) are an emerging group Aggegation of proteins within muscle cells may be of lyso- of muscle diseases characterized by structural abnormali- somal or nonlysosomal nature. The former occurs, for instance, ties. Protein aggregate myopathies are marked by the ag- in the neuronal ceroid-lipofuscinoses (NCL) as components gregation of intrinsic proteins within muscle fibers and fall of lipopigments, their accretion being a morphological hall- into four major groups or conditions: (1) desmin-related mark in the NCL.[1] This lysosomal accumulation of myopathies (DRM) that include desminopathies, a-B lipopigments renders the NCL a member of the lysosomal dis- crystallinopathies, selenoproteinopathies caused by muta- orders among which type-II glycogenosis, Niemann-Pick dis- tions in the, a-B crystallin and selenoprotein N1 genes, (2) ease, mucolipidosis IV and others may affect the skeletal hereditary inclusion body myopathies, several of which have muscle. been linked to different chromosomal gene loci, but with as Nonlysosomal accumulation of proteins within muscle fibers yet unidentified protein product, (3) actinopathies marked is a hallmark of a recently emerging subgroup of myopathies, by mutations in the sarcomeric ACTA1 gene, and (4) called protein aggregate myopathies (PAM). The cause of pro- myosinopathy marked by a mutation in the MYH-7 gene. tein accretion within muscle fibers – and other cell types of While PAM forms 1 and 2 are probably based on impaired other organs in the protein aggregate disorders – may be (a) extralysosomal protein degradation, resulting in the accu- impaired extralysosomal degradation of proteins, or (b) ab- mulation of numerous and diverse proteins (in familial types normal synthesis, (c) integration of proteins in the intracellu- in addition to respective mutant proteins), PAM forms 3 and lar structured constituents, e.g. sarcomeres. Proteins may 4 may represent anabolic or developmental defects because aggregate in soluble, granular and filamentous fashions. At of preservation of sarcomeres outside of the actin and myosin light microscopic level such protein aggregates can hardly be aggregates and dearth or absence of other proteins in these distinguished among the three different states of protein ag- actin or myosin aggregates, respectively. The pathogenetic gregation only the granular and filamentous aggregates may principles governing protein aggregation within muscle fibers be recognized by electron microscopy while aggregation of and subsequent structural sarcomeres are still largely un- known in both the putative catabolic and anabolic forms of soluble proteins may remain invisible and electron microscopic PAM. Presence of inclusions and their protein composition immunohistochemical labeling may not necessarily distinguish in other congenital myopathies such as reducing bodies, between a labeled soluble protein and an artificially misplaced cylindrical spirals, tubular aggregates and others await clari- label, (largely gold grains with or without silver enhancement) fication. The hitherto described PAMs were first identified The mutated proteins probably undergo faulty folding or by immunohistochemistry of proteins and subsequently by misfolding[2,3] and inappropriately expose their hydrophobic molecular analysis of their genes. surfaces for protein-protein interactions. In contrast to cor- rectly folded proteins, which are either soluble or associated Key words: actin; aggregation of proteins; congenital my- with cell membrane, these misfolded proteins are more insolu- opathies; desmin; inclusion body myopathies; myosin ble and result in aggregation. These aggregated proteins are less amenable to removal by molecular chaperones and the ubiquitin proteasome degradation pathway, which are the two main protective scavenging pathways of eurkaryotic cells against misfolded proteins. Protein aggregate myopathies may, therefore, belong to the emerging group of protein conforma- tional disorders. HH Goebel Department of Neuropathology, Johannes Gutenberg University Medical Center, Langenbeckstrasse 1, D-55101 Mainz, Germany E-mail: [email protected] Neurology India | September 2005 | Vol 53 | Issue 3 273 CMYK273 Sharma et al: Protein aggregate myopathies Protein aggregation in neuroectodermal cells has been known PAM. One of the trinucleotide repeat disorders, for a long time and is associated with certain diseases, largely oculopharyngeal muscular dystrophy, is also marked by in- of a neurodegenerative nature Like Alzheimer and prion dis- tranuclear accumulation of filaments representing the poly eases, Parkinson disease, multiple system atrophy, motor neu- (A)-binding protein 2. ron and Pick diseases, Alexander disease and a particular form Thus, the current group of PAM encompasses DRM, actin- of myoclonus epilepsy, called neuroserpinosis. Recent biochemi- related myopathies, myosin-related myopathies and a few oth- cal and molecular studies have not only further illustrated ers [Table 1]. protein aggregation, the biochemical components of the pro- tein aggregates and the molecular background of many though PAM suggesting faulty protein degradation not all of them, but also have placed ‘protein aggregation’ as a The largest subgroup of myopathies falling into this cat- central pathogenetic issue in the forefront of research in egory are those marked by the accumulation of desmin and, neurodegenerative disorders. Intracellular protein aggrega- as a heterogeneous subgroup by itself, collectively also termed tion occurs in Alexander disease as Rosenthal fibers, second- ‘myofibrillar myopathy’.[4] This latter term refers to the ary due to mutations in the glial fibrillary acidic protein gene, myofibrillar lesions occurring when desmin accumulates within in neuroserpinosis as granular neuroserpin following muta- muscle fibers and, thus, emphasizes the sequelae to protein tions in the neuroserpin gene, and as Lewy bodies containing aggregation and disruption of sarcomeres. Clinically, DRM α-synuclein and neurofilaments, based on mutant α-synuclein are often of adult onset and, thereby, deviating from the expe- in one of the familial types of Parkinson disease. Alzheimer rience in other CM, which usually commence in childhood. disease, however, shows intracellular accumulation of proteins Further distinctive features are the distribution of muscle as paired helical filaments rich in tau and extracellular accu- weakness, with generalized or proximal weakness prevailing mulation of aggregates of fibrils called amyloid. Extracellular in childhood CM but often distal in DRM, and cardiac symp- fibrillar protein aggregation of amyloid also occurs in prion toms, occasionally even resulting in sudden death in DRM. diseases owing to the extracellular deposition of abnormal prion This latter feature of cardiac involvement is not surprising as proteins. Whether intracellular aggregation of proteins, which abnormalities of desmin, the muscle cell-specific intermediate are often hyperphosphorylated, follow pathogenetic principles filament protein affects skeletal muscle fibers, cardiac similar or identical to those of extracellular protein aggrega- myocytes and smooth muscle cells, i.e. in man by aggregation tion has not completely been clarified. Extracellular protein of desmin, in the desmin knock-out mouse by severe necrotiz- aggregation, apart from formation of AL-amyloid as a fea- ing lesions in the cells and respective organs such as skeletal ture of generalized amyloidosis owing to formation of abnor- muscle, heart and major arteries. Desmin forms an intricate mal immunoglobulins in plasma cell dyscrasias and plasma- intracellular network or cytoskeleton, linking nuclei via sar- cytoma, has not been seen in any of the myopathies marked comeric Z-bands to the plasma-sarcolemma. In PAM not only by intracellular protein aggregation. Pathogenesis and mor- protein aggegation occurs as a conspicuous morphological phogenesis in protein aggregation within muscle fibers are hallmark but, most likely, also causes disruption of this inter- still incompletely understood. The frequent occurrence of pro- mediate filament network and, thereby, its function. tein aggregation in genetic myopathies, which is responsible Morphologically, DRM may be grouped into two types, those for the formation of mutant poteins, suggests that respective marked by inclusion bodies and those marked by accumula- mutant proteins play a crucial role in protein aggregation, tion of granulofilamentous material, although both features perhaps acting as seeds for the assembly of other nonmutant proteins as well. Table 1: Protein aggregate myopathies Among sarcomeric and sarcomere-related proteins, numer- DRM Desminopathies ous proteins are associated with certain myopathies, which α-B Crystallinopathy largely belong to the group of congenital myopathies (CM). Selenoproteinopathies Nemaline myopathies are found genetically heterogeneous, 2q21 Myopathy and others involving mutations in genes for nebulin, actin, troponin-T 10q23 Myopathy 15q22 CRD myopathy and tropomyosins 2 and 3, of which, however, only actin may accumulate in respective patients with the mutational ACTA Actinopathies 1 type of nemaline myopathy. Although α-actinin is a major ARM Myosin-storage
Recommended publications
  • Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry
    Journal of Personalized Medicine Article Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry 1, 1, 1,2, Kenji Rowel Q. Lim y , Quynh Nguyen y and Toshifumi Yokota * 1 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; [email protected] (K.R.Q.L.); [email protected] (Q.N.) 2 The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada * Correspondence: [email protected]; Tel.: +1-780-492-1102 These authors contributed equally to this work. y Received: 29 October 2020; Accepted: 21 November 2020; Published: 23 November 2020 Abstract: Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder generally caused by out-of-frame mutations in the DMD gene. In contrast, in-frame mutations usually give rise to the milder Becker muscular dystrophy (BMD). However, this reading frame rule does not always hold true. Therefore, an understanding of the relationships between genotype and phenotype is important for informing diagnosis and disease management, as well as the development of genetic therapies. Here, we evaluated genotype–phenotype correlations in DMD and BMD patients enrolled in the Canadian Neuromuscular Disease Registry from 2012 to 2019. Data from 342 DMD and 60 BMD patients with genetic test results were analyzed. The majority of patients had deletions (71%), followed by small mutations (17%) and duplications (10%); 2% had negative results. Two deletion hotspots were identified, exons 3–20 and exons 45–55, harboring 86% of deletions. Exceptions to the reading frame rule were found in 13% of patients with deletions.
    [Show full text]
  • The National Economic Burden of Rare Disease Study February 2021
    Acknowledgements This study was sponsored by the EveryLife Foundation for Rare Diseases and made possible through the collaborative efforts of the national rare disease community and key stakeholders. The EveryLife Foundation thanks all those who shared their expertise and insights to provide invaluable input to the study including: the Lewin Group, the EveryLife Community Congress membership, the Technical Advisory Group for this study, leadership from the National Center for Advancing Translational Sciences (NCATS) at the National Institutes of Health (NIH), the Undiagnosed Diseases Network (UDN), the Little Hercules Foundation, the Rare Disease Legislative Advocates (RDLA) Advisory Committee, SmithSolve, and our study funders. Most especially, we thank the members of our rare disease patient and caregiver community who participated in this effort and have helped to transform their lived experience into quantifiable data. LEWIN GROUP PROJECT STAFF Grace Yang, MPA, MA, Vice President Inna Cintina, PhD, Senior Consultant Matt Zhou, BS, Research Consultant Daniel Emont, MPH, Research Consultant Janice Lin, BS, Consultant Samuel Kallman, BA, BS, Research Consultant EVERYLIFE FOUNDATION PROJECT STAFF Annie Kennedy, BS, Chief of Policy and Advocacy Julia Jenkins, BA, Executive Director Jamie Sullivan, MPH, Director of Policy TECHNICAL ADVISORY GROUP Annie Kennedy, BS, Chief of Policy & Advocacy, EveryLife Foundation for Rare Diseases Anne Pariser, MD, Director, Office of Rare Diseases Research, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health Elisabeth M. Oehrlein, PhD, MS, Senior Director, Research and Programs, National Health Council Christina Hartman, Senior Director of Advocacy, The Assistance Fund Kathleen Stratton, National Academies of Science, Engineering and Medicine (NASEM) Steve Silvestri, Director, Government Affairs, Neurocrine Biosciences Inc.
    [Show full text]
  • Muscular Dystrophies and the Heart: the Emerging Role of Cardiovascular Magnetic Resonance Imaging
    REVIEW Muscular dystrophies and the heart: The emerging role of cardiovascular magnetic resonance imaging Sophie Mavrogeni MD1, George Markousis-Mavrogenis MD1, Antigoni Papavasiliou MD2, Elias Gialafos MD3, Stylianos Gatzonis MD4, George Papadopoulos MD5, Genovefa Kolovou MD1 S Mavrogeni, G Markousis-Mavrogenis, A Papavasiliou, et al. hypertrophy and, potentially, evidence of myocardial necrosis, depend- Muscular dystrophies and the heart: The emerging role of ing on the type of MD. Echocardiography is a routine technique used to cardiovascular magnetic resonance imaging. Curr Res Cardiol assess left ventricular dysfunction, independent of age of onset or muta- 2015;2(2):53-62. tion. In some cases, it can also identify early, silent cardiac dysfunction. CMR is the best technique for accurate and reproducible quantification of ventricular volumes, mass and ejection fraction. CMR has docu- Muscular dystrophies (MD) constitute a group of inherited disorders, mented a pattern of epicardial fibrosis in both dystrophinopathy patients characterized by progressive skeletal muscle weakness and heart involve- and mutation carriers that can be observed even if overt muscular disease ment. Cardiac disease is common and not necessarily related to the is absent. Recently, CMR techniques, such as postcontrast myocardial T1 degree of skeletal myopathy; it may be the predominant manifestation mapping, have been used in Duchenne muscular dystrophy to detect dif- with or without any other evidence of muscular disease. Death is usually fuse myocardial fibrosis. A combined approach using clinical assessment due to ventricular dysfunction, heart block or malignant arrhythmias. and CMR evaluation may motivate early cardioprotective treatment in In addition to MD patients, female carriers may present with cardiac both patients and asymptomatic carriers, and prevent the development of involvement.
    [Show full text]
  • Current and Emerging Therapies in Becker Muscular Dystrophy (BMD)
    Acta Myologica • 2019; XXXVIII: p. 172-179 OPEN ACCESS © Gaetano Conte Academy - Mediterranean Society of Myology Current and emerging therapies in Becker muscular dystrophy (BMD) Corrado Angelini, Roberta Marozzo and Valentina Pegoraro Neuromuscular Center, IRCCS San Camillo Hospital, Venice, Italy Becker muscular dystrophy (BMD) has onset usually in child- tients with a deletion in the dystrophin gene that have nor- hood, frequently by 11 years. BMD can present in several ways mal muscle strength and endurance, but present high CK, such as waddling gait, exercise related cramps with or with- and so far their follow-up and treatment recommenda- out myoglobinuria. Rarely cardiomyopathy might be the pre- senting feature. The evolution is variable. BMD is caused by tions are still a matter of debate. Patients with early cardi- dystrophin deficiency due to inframe deletions, mutations or omyopathy are also a possible variant of BMD (4, 5) and duplications in dystrophin gene (Xp21.2) We review here the may be susceptible either to specific drug therapy and/or evolution and current therapy presenting a personal series of to cardiac transplantation (6-8). Here we cover emerging cases followed for over two decades, with multifactorial treat- therapies considering follow-up, and exemplifying some ment regimen. Early treatment includes steroid treatment that phenotypes and treatments by a few study cases. has been analized and personalized for each case. Early treat- ment of cardiomyopathy with ACE inhibitors is recommended and referral for cardiac transplantation is appropriate in severe cases. Management includes multidisciplinary care with physi- Pathophysiology and rationale of otherapy to reduce joint contractures and prolong walking.
    [Show full text]
  • RESEARCH ARTICLE Body Weight-Dependent Troponin T Alternative Splicing Is Evolutionarily Conserved from Insects to Mammals and I
    1523 The Journal of Experimental Biology 214, 1523-1532 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jeb.051763 RESEARCH ARTICLE Body weight-dependent troponin T alternative splicing is evolutionarily conserved from insects to mammals and is partially impaired in skeletal muscle of obese rats Rudolf J. Schilder1,*, Scot R. Kimball1, James H. Marden2 and Leonard S. Jefferson1 1Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA and 2Department of Biology, The Pennsylvania State University, 208 Mueller Lab, University Park, PA 16802, USA *Author for correspondence ([email protected]) Accepted 19 January 2011 SUMMARY Do animals know at a physiological level how much they weigh, and, if so, do they make homeostatic adjustments in response to changes in body weight? Skeletal muscle is a likely tissue for such plasticity, as weight-bearing muscles receive mechanical feedback regarding body weight and consume ATP in order to generate forces sufficient to counteract gravity. Using rats, we examined how variation in body weight affected alternative splicing of fast skeletal muscle troponin T (Tnnt3), a component of the thin filament that regulates the actin–myosin interaction during contraction and modulates force output. In response to normal growth and experimental body weight increases, alternative splicing of Tnnt3 in rat gastrocnemius muscle was adjusted in a quantitative fashion. The response depended on weight per se, as externally attached loads had the same effect as an equal change in actual body weight. Examining the association between Tnnt3 alternative splicing and ATP consumption rate, we found that the Tnnt3 splice form profile had a significant association with nocturnal energy expenditure, independently of effects of weight.
    [Show full text]
  • 226Th ENMC International Workshop: Towards Validated and Qualified Biomarkers for Therapy Development for Duchenne Muscular Dyst
    Available online at www.sciencedirect.com ScienceDirect Neuromuscular Disorders 28 (2018) 77–86 www.elsevier.com/locate/nmd Workshop report 226th ENMC International Workshop: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20–22 January 2017, Heemskerk, The Netherlands Annemieke Aartsma-Rus a,*, Alessandra Ferlini b,c, Elizabeth M. McNally d, Pietro Spitali a, H. Lee Sweeney e, on behalf of the workshop participants a Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands b Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy c Dubowitz Neuromuscular Unit, UCL, London d Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA e Myology Institute, Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA Received 25 July 2017 Keywords: Duchenne muscular dystrophy; Biomarker; Dystrophin; MRI; Biobank 1. Introduction therapeutic biomarkers are designed to predict or measure response to treatment [1]. Therapeutic biomarkers can indicate Twenty-three participants from 6 countries (England; whether a therapy is having an effect. This type of biomarker is Germany; Italy; Sweden, The Netherlands; USA) attended the called a pharmacodynamics biomarker and can be used to e.g. 226th ENMC workshop on Duchenne biomarkers “Towards show that a missing protein is restored after a therapy. Safety validated and qualified biomarkers for therapy development for biomarkers assess likelihood, presence, or extent of toxicity as Duchenne Muscular Dystrophy.” The meeting was a follow-up an adverse effect, e.g. through monitoring blood markers of the 204th ENMC workshop on Duchenne muscular indicative of liver or kidney damage.
    [Show full text]
  • Bit.Bio Ioskeletal Myocytes Faqs
    ioSkeletal Myocytes Early Access Product Catalogue no: EA1200 Frequently Asked Questions Doc no: NPI-0002-FAQ V-01 For research use only bit.bio The Dorothy Hodgkin Building Babraham Research Campus Cambridge CB22 3FH United Kingdom www.bit.bio Customer support: [email protected] [email protected] ioSkeletal Myocytes Questions adressed Early Access Product Catalogue no: EA1200 Shipping, ordering and delivery Frequently Asked Questions 1. What format will the cells be delivered to clients: Doc no: NPI-0002-FAQ V-01 frozen vials or pre-plated cells? 2. How can I contact you if I have a question? For research use only bit.bio Cell revival and experiments The Dorothy Hodgkin Building Babraham Research Campus 1. Are ioSkeletal Myocytes cells fully differentiated? Cambridge CB22 3FH 2. Can you propagate ioSkeletal Myocytes cells once received? United Kingdom 3. What seeding density do you recommend for the ioSkeletal Myocytes? www.bit.bio 4. How are cells cultivated? 5. How soon after delivery can ioSkeletal Myocytes be used for Customer support: [email protected] experiments? [email protected] Product information & quality control 1. Why is opti-ox better than other methods of cellular reprogramming? 2. What were the cells of origin for ioSkeletal Myocytes? 3. Do you have donor consent for the parental hiPSCs? 4. Do you use viral vectors to manufacture ioSkeletal Myocytes? 5. What is the host and transgene used to generate cells? 6. What substances other than KnockOut serum may be present in the freezing medium? 7. What quality control is performed on the ioSkeletal Myocytes? 8. How does bit.bio confirm its cell lines are free from contamination? 9.
    [Show full text]
  • Autosomal Dominant Leukodystrophy with Autonomic Symptoms
    List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I MR imaging characteristics and neuropathology of the spin- al cord in adult-onset autosomal dominant leukodystrophy with autonomic symptoms. Sundblom J, Melberg A, Kalimo H, Smits A, Raininko R. AJNR Am J Neuroradiol. 2009 Feb;30(2):328-35. II Genomic duplications mediate overexpression of lamin B1 in adult-onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms. Schuster J, Sundblom J, Thuresson AC, Hassin-Baer S, Klopstock T, Dichgans M, Cohen OS, Raininko R, Melberg A, Dahl N. Neurogenetics. 2011 Feb;12(1):65-72. III Bedside diagnosis of rippling muscle disease in CAV3 p.A46T mutation carriers. Sundblom J, Stålberg E, Osterdahl M, Rücker F, Montelius M, Kalimo H, Nennesmo I, Islander G, Smits A, Dahl N, Melberg A. Muscle Nerve. 2010 Jun;41(6):751-7. IV A family with discordance between Malignant hyperthermia susceptibility and Rippling muscle disease. Sundblom J, Mel- berg A, Rücker F, Smits A, Islander G. Manuscript submitted to Journal of Anesthesia. Reprints were made with permission from the respective publishers. Contents Introduction..................................................................................................11 Background and history............................................................................... 13 Early studies of hereditary disease...........................................................13 Darwin and Mendel................................................................................
    [Show full text]
  • Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations
    Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations by Jelena Perovanovic M.S. in Molecular Biology and Physiology, September 2009, University of Belgrade M.Phil. in Molecular Medicine, August 2013, The George Washington University A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation directed by Eric P. Hoffman Professor of Integrative Systems Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Jelena Perovanovic has passed the Final Examination for the degree of Doctor of Philosophy as of May 5, 2015. This is the final and approved form of the dissertation. Nuclear Envelope Laminopathies: Evidence for Developmentally Inappropriate Nuclear Envelope-Chromatin Associations Jelena Perovanovic Dissertation Research Committee: Eric P. Hoffman, Professor of Integrative Systems Biology, Dissertation Director Anamaris Colberg-Poley, Professor of Integrative Systems Biology, Committee Member Robert J. Freishtat, Associate Professor of Pediatrics, Committee Member Vittorio Sartorelli, Senior Investigator, National Institutes of Health, Committee Member ii © Copyright 2015 by Jelena Perovanovic All rights reserved iii Acknowledgments I am deeply indebted to countless individuals for their support and encouragement during the past five years of graduate studies. First and foremost, I would like to express my gratitude to my mentor, Dr. Eric P. Hoffman, for his unwavering support and guidance, and keen attention to my professional development. This Dissertation would not have been possible without the critical input he provided and the engaging environment he created.
    [Show full text]
  • Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics
    International Journal of Molecular Sciences Review Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics Martijn van de Locht , Tamara C. Borsboom, Josine M. Winter and Coen A. C. Ottenheijm * Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Location VUmc, 1081 HZ Amsterdam, The Netherlands; [email protected] (M.v.d.L.); [email protected] (T.C.B.); [email protected] (J.M.W.) * Correspondence: [email protected]; Tel.: +31-(0)-20-444-8123 Abstract: The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of Citation: van de Locht, M.; treatment strategies.
    [Show full text]
  • Ryr1 Deficiency in Congenital Myopathies Disrupts Excitation-Contraction Coupling
    RyR1 Deficiency in Congenital Myopathies Disrupts Excitation-Contraction Coupling Haiyan Zhou1, Ori Rokach2, Lucy Feng1, Iulia Munteanu1, Kamel Mamchaoui3, Jo M. Wilmshurst4, Caroline Sewry1, Adnan Y. Manzur1, Komala Pillay5, Vincent Mouly2, Michael Duchen6, Heinz Jungbluth7,8,9, Susan Treves2,10* and Francesco Muntoni1* 1 Dubowitz Neuromuscular Centre, Institute of Child Health, University College London WC1N 1EH, UK. 2 Department of Anaesthesia and Biomedicine, Basel University and University Hospital Basel, 4031 Basel, Switzerland 3 UM76 Université Pierre et Marie Curie, UMRS974 INSERM, UMR 7215 CNRS, Institut de Myologie AIM, Groupe hospitalier Pitié-Salpétrière, 47 bd de I’Hôpital, 75013 Paris, France 4 Department of Paediatric Neurology, School of Child and Adolescent Health, University of Cape Town, Red Cross Children’s Hospital, Cape Town, South Africa 5 Department of Paediatric Pathology, School of Child and Adolescent Health, University of Cape Town, Red Cross Children’s Hospital, Cape Town, South Africa 6 Cell and Developmental Biology, University College London, London WC1E 6BT, UK 7 Department of Paediatric Neurology, Evelina Children’s Hospital, London SE1 7EH, UK 8 Clinical Neuroscience Division, IoP, King’s College, London, UK 9 Randall Division of Cell and Molecular Biophysics, Muscle Signalling Group, King's College London, UK 10 Department of Life Sciences, University of Ferrara, Ferrara, Italy 1 *To whom correspondence should be addressed. Emails: [email protected] (Tel: 0044- 2079052136; Fax: 0044-2079052832) and
    [Show full text]
  • 107Th ENMC International Workshop: the Management of Cardiac Involvement in Muscular Dystrophy and Myotonic Dystrophy
    Neuromuscular Disorders 13 (2003) 166–172 www.elsevier.com/locate/nmd Workshop report 107th ENMC International Workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. 7th–9th June 2002, Naarden, the Netherlands K. Bushby*, F. Muntoni, J.P. Bourke Department of Neuromuscular Genetics, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK Received 1 August 2002; accepted 16 August 2002 1. Introduction symptomatic presentation [13,14]. Although evidence in these rare conditions of the effect of treatment is lacking Sixteen participants from Austria, France, Germany, [15], extrapolation from other conditions causing heart fail- Italy, the Netherlands and the UK met to discuss the cardiac ure with dilated cardiomyopathy means that there is a strong implications of the diagnosis of muscular dystrophy and case for the use of ACE inhibitors and potentially also beta myotonic dystrophy. The group included both myologists blockers, certainly in the presence of detectable abnormal- and cardiologists from nine different European centers. The ities and possibly preventatively [16–25]. aims of the workshop were to agree and report minimum The recommendations of the group are as follows. recommendations for the investigation and treatment of cardiac involvement in muscular and myotonic dystrophies, 2.1. DMD and define areas where further research is needed. During the workshop, all participants contributed to a review and † Patients should have a cardiac investigation (echo and assessment of the published evidence in each area and electrocardiogram (ECG)) at diagnosis. current practice amongst the group. Consensus statements † DMD patients should have cardiac investigations before for the management of dystrophinopathy, myotonic dystro- any surgery, every 2 years to age 10 and annually after phy, limb-girdle muscular dystrophy, Emery Dreifuss age 10.
    [Show full text]