107Th ENMC International Workshop: the Management of Cardiac Involvement in Muscular Dystrophy and Myotonic Dystrophy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry
Journal of Personalized Medicine Article Genotype–Phenotype Correlations in Duchenne and Becker Muscular Dystrophy Patients from the Canadian Neuromuscular Disease Registry 1, 1, 1,2, Kenji Rowel Q. Lim y , Quynh Nguyen y and Toshifumi Yokota * 1 Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2H7, Canada; [email protected] (K.R.Q.L.); [email protected] (Q.N.) 2 The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G2H7, Canada * Correspondence: [email protected]; Tel.: +1-780-492-1102 These authors contributed equally to this work. y Received: 29 October 2020; Accepted: 21 November 2020; Published: 23 November 2020 Abstract: Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder generally caused by out-of-frame mutations in the DMD gene. In contrast, in-frame mutations usually give rise to the milder Becker muscular dystrophy (BMD). However, this reading frame rule does not always hold true. Therefore, an understanding of the relationships between genotype and phenotype is important for informing diagnosis and disease management, as well as the development of genetic therapies. Here, we evaluated genotype–phenotype correlations in DMD and BMD patients enrolled in the Canadian Neuromuscular Disease Registry from 2012 to 2019. Data from 342 DMD and 60 BMD patients with genetic test results were analyzed. The majority of patients had deletions (71%), followed by small mutations (17%) and duplications (10%); 2% had negative results. Two deletion hotspots were identified, exons 3–20 and exons 45–55, harboring 86% of deletions. Exceptions to the reading frame rule were found in 13% of patients with deletions. -
Muscular Dystrophies and the Heart: the Emerging Role of Cardiovascular Magnetic Resonance Imaging
REVIEW Muscular dystrophies and the heart: The emerging role of cardiovascular magnetic resonance imaging Sophie Mavrogeni MD1, George Markousis-Mavrogenis MD1, Antigoni Papavasiliou MD2, Elias Gialafos MD3, Stylianos Gatzonis MD4, George Papadopoulos MD5, Genovefa Kolovou MD1 S Mavrogeni, G Markousis-Mavrogenis, A Papavasiliou, et al. hypertrophy and, potentially, evidence of myocardial necrosis, depend- Muscular dystrophies and the heart: The emerging role of ing on the type of MD. Echocardiography is a routine technique used to cardiovascular magnetic resonance imaging. Curr Res Cardiol assess left ventricular dysfunction, independent of age of onset or muta- 2015;2(2):53-62. tion. In some cases, it can also identify early, silent cardiac dysfunction. CMR is the best technique for accurate and reproducible quantification of ventricular volumes, mass and ejection fraction. CMR has docu- Muscular dystrophies (MD) constitute a group of inherited disorders, mented a pattern of epicardial fibrosis in both dystrophinopathy patients characterized by progressive skeletal muscle weakness and heart involve- and mutation carriers that can be observed even if overt muscular disease ment. Cardiac disease is common and not necessarily related to the is absent. Recently, CMR techniques, such as postcontrast myocardial T1 degree of skeletal myopathy; it may be the predominant manifestation mapping, have been used in Duchenne muscular dystrophy to detect dif- with or without any other evidence of muscular disease. Death is usually fuse myocardial fibrosis. A combined approach using clinical assessment due to ventricular dysfunction, heart block or malignant arrhythmias. and CMR evaluation may motivate early cardioprotective treatment in In addition to MD patients, female carriers may present with cardiac both patients and asymptomatic carriers, and prevent the development of involvement. -
Current and Emerging Therapies in Becker Muscular Dystrophy (BMD)
Acta Myologica • 2019; XXXVIII: p. 172-179 OPEN ACCESS © Gaetano Conte Academy - Mediterranean Society of Myology Current and emerging therapies in Becker muscular dystrophy (BMD) Corrado Angelini, Roberta Marozzo and Valentina Pegoraro Neuromuscular Center, IRCCS San Camillo Hospital, Venice, Italy Becker muscular dystrophy (BMD) has onset usually in child- tients with a deletion in the dystrophin gene that have nor- hood, frequently by 11 years. BMD can present in several ways mal muscle strength and endurance, but present high CK, such as waddling gait, exercise related cramps with or with- and so far their follow-up and treatment recommenda- out myoglobinuria. Rarely cardiomyopathy might be the pre- senting feature. The evolution is variable. BMD is caused by tions are still a matter of debate. Patients with early cardi- dystrophin deficiency due to inframe deletions, mutations or omyopathy are also a possible variant of BMD (4, 5) and duplications in dystrophin gene (Xp21.2) We review here the may be susceptible either to specific drug therapy and/or evolution and current therapy presenting a personal series of to cardiac transplantation (6-8). Here we cover emerging cases followed for over two decades, with multifactorial treat- therapies considering follow-up, and exemplifying some ment regimen. Early treatment includes steroid treatment that phenotypes and treatments by a few study cases. has been analized and personalized for each case. Early treat- ment of cardiomyopathy with ACE inhibitors is recommended and referral for cardiac transplantation is appropriate in severe cases. Management includes multidisciplinary care with physi- Pathophysiology and rationale of otherapy to reduce joint contractures and prolong walking. -
226Th ENMC International Workshop: Towards Validated and Qualified Biomarkers for Therapy Development for Duchenne Muscular Dyst
Available online at www.sciencedirect.com ScienceDirect Neuromuscular Disorders 28 (2018) 77–86 www.elsevier.com/locate/nmd Workshop report 226th ENMC International Workshop: Towards validated and qualified biomarkers for therapy development for Duchenne muscular dystrophy 20–22 January 2017, Heemskerk, The Netherlands Annemieke Aartsma-Rus a,*, Alessandra Ferlini b,c, Elizabeth M. McNally d, Pietro Spitali a, H. Lee Sweeney e, on behalf of the workshop participants a Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands b Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy c Dubowitz Neuromuscular Unit, UCL, London d Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA e Myology Institute, Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA Received 25 July 2017 Keywords: Duchenne muscular dystrophy; Biomarker; Dystrophin; MRI; Biobank 1. Introduction therapeutic biomarkers are designed to predict or measure response to treatment [1]. Therapeutic biomarkers can indicate Twenty-three participants from 6 countries (England; whether a therapy is having an effect. This type of biomarker is Germany; Italy; Sweden, The Netherlands; USA) attended the called a pharmacodynamics biomarker and can be used to e.g. 226th ENMC workshop on Duchenne biomarkers “Towards show that a missing protein is restored after a therapy. Safety validated and qualified biomarkers for therapy development for biomarkers assess likelihood, presence, or extent of toxicity as Duchenne Muscular Dystrophy.” The meeting was a follow-up an adverse effect, e.g. through monitoring blood markers of the 204th ENMC workshop on Duchenne muscular indicative of liver or kidney damage. -
The Limb-Girdle Muscular Dystrophies and the Dystrophinopathies Review Article
Review Article 04/25/2018 on mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== by https://journals.lww.com/continuum from Downloaded Downloaded from Address correspondence to https://journals.lww.com/continuum Dr Stanley Jones P. Iyadurai, Ohio State University, Wexner The Limb-Girdle Medical Center, Department of Neurology, 395 W 12th Ave, Columbus, OH 43210, Muscular Dystrophies and [email protected]. Relationship Disclosure: by mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== Dr Iyadurai has received the Dystrophinopathies personal compensation for serving on the advisory boards of Allergan; Alnylam Stanley Jones P. Iyadurai, MSc, PhD, MD; John T. Kissel, MD, FAAN Pharmaceuticals, Inc; CSL Behring; and Pfizer, Inc. Dr Kissel has received personal ABSTRACT compensation for serving on a consulting board of AveXis, Purpose of Review: The classic approach to identifying and accurately diagnosing limb- Inc; as journal editor of Muscle girdle muscular dystrophies (LGMDs) relied heavily on phenotypic characterization and & Nerve; and as a consultant ancillary studies including muscle biopsy. Because of rapid advances in genetic sequencing for Novartis AG. Dr Kissel has received research/grant methodologies, -
Dystrophin Gene Abnormalities in Two Patients with Idiopathic Dilated Cardiomyopathy
608 Heart 1997;78:608–612 CASE STUDY Heart: first published as 10.1136/hrt.78.6.608 on 1 December 1997. Downloaded from Dystrophin gene abnormalities in two patients with idiopathic dilated cardiomyopathy Francesco Muntoni, Andrea Di Lenarda, Maurizio Porcu, Gianfranco Sinagra, Anna Mateddu, Gianni Marrosu, Alessandra Ferlini, Milena Cau, Jelena Milasin, Maria Antonietta Melis, Maria Giovanna Marrosu, Carlo Cianchetti, Antonio Sanna, Arturo Falaschi, Fulvio Camerini, Mauro Giacca, Luisa Mestroni Abstract Cardiac involvement is an integral part of Neuromuscular Unit, Two new cases of dilated cardiomyopathy DMD and BMD.4–7 In rare instances, however, Department of Paediatrics and (DC) caused by dystrophinopathy are patients can suVer from dilated cardiomyo- Neonatal Medicine, reported. One patient, a 24 year old man, pathy (DC) as the only manifestation of a dys- Hammersmith had a family history of X linked DC, while trophinopathy. This has been now recognised Hospital, London, UK the other, a 52 year old man, had sporadic in families with typical X linked DC8–11 and in F Muntoni patients with sporadic disease.12–14 Unlike A Ferlini disease. Each had abnormal dystrophin immunostaining in muscle or cardiac patients with DMD or BMD, these patients did International Centre biopsy specimens, but neither had muscle not have symptoms of muscle weakness and the for Genetic weakness. Serum creatine kinase activity only sign of neuromuscular involvement was Engineering and was raised only in the patient with familial raised serum creatine kinase (CK) activity. Biotechnology e disease. Analysis of dystrophin gene mu- Several patients had mutations clustered in the Divisione di 91112 tations showed a deletion of exons 48–49 in 5' end of the gene ; a region not aVected by Cardiologia, Ospedale mutations usually found in DMD and BMD. -
Clinical Variability in Calpainopathy: What Makes the Difference?
European Journal of Human Genetics (2002) 10, 825 – 832 ª 2002 Nature Publishing Group All rights reserved 1018 – 4813/02 $25.00 www.nature.com/ejhg ARTICLE Clinical variability in calpainopathy: What makes the difference? Fla´via de Paula1, Mariz Vainzof1, Maria Rita Passos-Bueno1, Rita de Ca´ssia M Pavanello1, Sergio Russo Matioli1, Louise VB Anderson3, Vincenzo Nigro2 and Mayana Zatz*,1 1Human Genome Research Center-Departamento de Biologia, IB Universidade de Sa˜o Paulo, Brazil; 2TIGEM and Dipartimento di Patologia Generale, Seconda Universita’degli studi di Napoli, Italy; 3Neurobiology Department, University Medical School, Framlington Place, Newcastle upon Tyne, UK Limb girdle muscular dystrophies (LGMD) are a heterogeneous group of genetic disorders characterised by progressive weakness of the pelvic and shoulder girdle muscles and a great variability in clinical course. LGMD2A, the most prevalent form of LGMD, is caused by mutations in the calpain-3 gene (CAPN- 3). More than 100 pathogenic mutations have been identified to date, however few genotype : phenotype correlation studies, including both DNA and protein analysis, have been reported. In this study we screened 26 unrelated LGMD2A Brazilian families (75 patients) through Single-Stranded Conformation Polymorphism (SSCP), Denaturing high-performance liquid chromatography (DHPLC) and sequencing of abnormal fragments which allowed the identification of 47 mutated alleles (approximately 90%). We identified two recurrent mutations (R110X and 2362-2363AG4TCATCT) and seven novel pathogenic mutations. Interestingly, 41 of the identified mutations (approximately 80%) were concentrated in only 6 exons (1, 2, 4, 5, 11 and 22), which has important implications for diagnostic purposes. Protein analysis, performed in 28 patients from 25 unrelated families showed that with exception of one patient (with normal/slight borderline reduction of calpain) all others had total or partial calpain deficiency. -
Anti-Inflammatory and General Glucocorticoid Physiology in Skeletal Muscles Affected by Duchenne Muscular Dystrophy
International Journal of Molecular Sciences Review Anti-Inflammatory and General Glucocorticoid Physiology in Skeletal Muscles Affected by Duchenne Muscular Dystrophy: Exploration of Steroid-Sparing Agents Sandrine Herbelet 1,* , Arthur Rodenbach 1 , Boel De Paepe 1,2 and Jan L. De Bleecker 1,2 1 Department of Head and Skin, Division of Neurology, Ghent University and Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium; [email protected] (A.R.); [email protected] (B.D.P.); [email protected] (J.L.D.B.) 2 Neuromuscular Reference Center, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium * Correspondence: [email protected]; Tel.: +32-9332-89-84; Fax: +32-9332-49-71 Received: 26 May 2020; Accepted: 27 June 2020; Published: 28 June 2020 Abstract: In Duchenne muscular dystrophy (DMD), the activation of proinflammatory and metabolic cellular pathways in skeletal muscle cells is an inherent characteristic. Synthetic glucocorticoid intake counteracts the majority of these mechanisms. However, glucocorticoids induce burdensome secondary effects, including hypertension, arrhythmias, hyperglycemia, osteoporosis, weight gain, growth delay, skin thinning, cushingoid appearance, and tissue-specific glucocorticoid resistance. Hence, lowering the glucocorticoid dosage could be beneficial for DMD patients. A more profound insight into the major cellular pathways that are stabilized after synthetic glucocorticoid administration in DMD is needed when searching for the molecules able to achieve similar pathway stabilization. This review provides a concise overview of the major anti-inflammatory pathways, as well as the metabolic effects of glucocorticoids in the skeletal muscle affected in DMD. The known drugs able to stabilize these pathways, and which could potentially be combined with glucocorticoid therapy as steroid-sparing agents, are described. -
Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations
International Journal of Molecular Sciences Review Calcium Mechanisms in Limb-Girdle Muscular Dystrophy with CAPN3 Mutations Jaione Lasa-Elgarresta 1,2, Laura Mosqueira-Martín 1,2, Neia Naldaiz-Gastesi 1,2, Amets Sáenz 1,2, Adolfo López de Munain 1,2,3,4,* and Ainara Vallejo-Illarramendi 1,2,5,* 1 Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, 20014 San Sebastian, Spain; [email protected] (J.L.-E.); [email protected] (L.M.-M.); [email protected] (N.N.-G.); [email protected] (A.S.) 2 CIBERNED, Instituto de Salud Carlos III, Ministry of Science, Innovation and Universities, 28031 Madrid, Spain 3 Departmento de Neurosciencias, Universidad del País Vasco UPV/EHU, 20014 San Sebastian, Spain 4 Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Neurology Department, 20014 San Sebastian, Spain 5 Grupo Neurociencias, Departmento de Pediatría, Hospital Universitario Donostia, UPV/EHU, 20014 San Sebastian, Spain * Correspondence: [email protected] (A.L.d.M.); [email protected] (A.V.-I.); Tel.: +34-943-006294 (A.L.d.M.); +34-943-006128 (A.V.-I.) Received: 4 August 2019; Accepted: 11 September 2019; Published: 13 September 2019 Abstract: Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a rare disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness of shoulder, pelvic, and proximal limb muscles that usually appears in children and young adults and results in loss of ambulation within 20 years after disease onset in most patients. The pathophysiological mechanisms involved in LGMDR1 remain mostly unknown, and to date, there is no effective treatment for this disease. -
Protein Aggregate Myopathies
Review Article Protein aggregate myopathies M. C. Sharma, H. H. Goebel1 All India Institute of Medical Sciences, New Delhi, India and 1Department of Neuropathology, Johannes Gutenberg University Medical Center, Mainz, Germany Protein aggregate myopathies (PAM) are an emerging group Aggegation of proteins within muscle cells may be of lyso- of muscle diseases characterized by structural abnormali- somal or nonlysosomal nature. The former occurs, for instance, ties. Protein aggregate myopathies are marked by the ag- in the neuronal ceroid-lipofuscinoses (NCL) as components gregation of intrinsic proteins within muscle fibers and fall of lipopigments, their accretion being a morphological hall- into four major groups or conditions: (1) desmin-related mark in the NCL.[1] This lysosomal accumulation of myopathies (DRM) that include desminopathies, a-B lipopigments renders the NCL a member of the lysosomal dis- crystallinopathies, selenoproteinopathies caused by muta- orders among which type-II glycogenosis, Niemann-Pick dis- tions in the, a-B crystallin and selenoprotein N1 genes, (2) ease, mucolipidosis IV and others may affect the skeletal hereditary inclusion body myopathies, several of which have muscle. been linked to different chromosomal gene loci, but with as Nonlysosomal accumulation of proteins within muscle fibers yet unidentified protein product, (3) actinopathies marked is a hallmark of a recently emerging subgroup of myopathies, by mutations in the sarcomeric ACTA1 gene, and (4) called protein aggregate myopathies (PAM). The cause -
The Histopathological Features of Muscular Dystrophies
SMGr up The Histopathological Features of Muscular Dystrophies Gulden Diniz* Pathologist, Microbiologist and Basic Oncologist, Neuromuscular Diseases’ Centre of Izmir Tepecik Education and Research Hospital, Turkey *Corresponding author: Gulden Diniz, Pathologist, Microbiologist and Basic Oncologist, Neuromuscular Diseases’ Centre of Izmir Tepecik Education and Research Hospital, Turkey. Email: [email protected] Published Date: September 23, 2016 ABSTRACT Muscular dystrophies are degenerative muscle diseases due to mutations in proteins ranging in function such as sarcolemmal structure, nuclear envelope structure, or post-translational suggesting that biological differences exist between individual muscles that predispose them to glycosylation. Each of them affects a specific group of skeletal muscles within the human body, specificClinical pathological manifestation etiologies. of different muscular dystrophies is now well known and documented. Dystrophinopathies are X-linked recessive diseases and the most common form of muscular dystrophies with a relatively poor outcome. Other recognized varieties of muscular dystrophies limb girdle muscular dystrophy is an umbrella name for a group of diseases which exhibits are classified into different groups according to their clinical or genetic similarities. For example, congenital muscular dystrophies is presentation prior to 1 year of age. proximal weakness of the shoulder and pelvic girdles. Similarly, the defining characteristic of Muscular Dystrophy | www.smgebooks.com 1 Copyright Diniz -
The Congenital and Limb-Girdle Muscular Dystrophies Sharpening the Focus, Blurring the Boundaries
NEUROLOGICAL REVIEW SECTION EDITOR: DAVID E. PLEASURE, MD The Congenital and Limb-Girdle Muscular Dystrophies Sharpening the Focus, Blurring the Boundaries Janbernd Kirschner, MD; Carsten G. Bo¨nnemann, MD uring the past decade, outstanding progress in the areas of congenital and limb- girdle muscular dystrophies has led to staggering clinical and genetic complexity. With the identification of an increasing number of genetic defects, individual enti- ties have come into sharper focus and new pathogenic mechanisms for muscular dys- Dtrophies, like defects of posttranslational O-linked glycosylation, have been discovered. At the same time, this progress blurs the traditional boundaries between the categories of congenital and limb- girdle muscular dystrophies, as well as between limb-girdle muscular dystrophies and other clini- cal entities, as mutations in genes such as fukutin-related protein, dysferlin, caveolin-3 and lamin A/C can cause a striking variety of phenotypes. We reviewed the different groups of proteins cur- rently recognized as being involved in congenital and limb-girdle muscular dystrophies, associ- ated them with the clinical phenotypes, and determined some clinical and molecular clues that are helpful in the diagnostic approach to these patients. Arch Neurol. 2004;61:189-199 Muscular dystrophies were first recog- phy. The age at onset may range from early nized as a disease entity with the detailed childhood to late adulthood.5 description of the clinical presentation of During the past decade, exciting Duchenne muscular dystrophy in 1852 and progress has been made in the field of CMD thereafter.1,2 About 50 years later, Batten3 and LGMD, emphasizing differences as published the first case reports of a con- well as commonalities between them.