Freshwater Use by US Power Plants, a Report of the Energy and Water in a Warming World Initiative, by Kristen Averyt, Jeremy

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Use by US Power Plants, a Report of the Energy and Water in a Warming World Initiative, by Kristen Averyt, Jeremy AR-1501 Freshwater Use by U.S. Power Plants El Ectricity’s thirst for a PrEcious rEsourcE A Report of the Energy and Water in a Warming World Initiative Freshwater Use by U.S. Power Plants ElEctricity’s thirst for a PrEcious ResourcE Kristen Averyt Jeremy Fisher Annette Huber-Lee Aurana Lewis Jordan Macknick Nadia Madden John Rogers Stacy Tellinghuisen EW3 scientific advisory committee Peter Frumhoff George Hornberger Robert Jackson Robin Newmark Jonathan Overpeck Brad Udall Michael Webber A Report of the Energy and Water in a Warming World initiative NOvembeR 2011 ii Energy and Water in a Warming World initiative Citation: Averyt, K., J. Fisher, A. Huber-Lee, A. Lewis, J. Macknick, N. Madden, J. Rogers, and S. Tellinghuisen. 2011. Freshwater use by U.S. power plants: Electricity’s thirst for a precious resource. A report of the energy and Water in a Warming World initiative. Cambridge, MA: Union of Concerned Scientists. November. © 2011 Union of Concerned Scientists All rights reserved The Union of Concerned Scientists (UCS) is the leading science-based nonprofit working for a healthy environment and a safer world. For more information about UCS, visit our website at www.ucsusa.org. This report is available on the UCS website (www.ucsusa.org/publications) or may be obtained from: UCS Publications 2 Brattle Square Cambridge, MA 02238-9105 Or, email [email protected] or call (617) 547-5552. coveR photos Top: iStockphoto.com /AvTG; bottom, left to right: Longview News-Journal/Kevin Green, ecologypress.com, BrightSource energy, Flickr/Andy Shapiro Title page photo: Flickr/David Joyce freshwater use by u.s. Power Plants: Electricity’s thirst for a Precious resource iii About EW3 Energy and Water in a Warming World (EW3) is a collaborative effort between the Union of Concerned Scientists (UCS) and a team of independent experts to build and synthesize policy-relevant research on the water demands of energy production in the context of climate variability and change. The initiative includes core research collaborations intended to raise the national profile of the water demands of energy, along with policy-relevant energy development scenarios and regional perspectives. The material presented in this report is based on the research of the EW3 Baseline Assessment Team, listed below. The work discussed here is also presented in more technical detail in forthcoming scientific papers. For supporting materials (glossary, methodology appendix, and graphical appendix), go to www.ucsusa.org/electricity-water-use. EW3 BasElinE assEssmEnt Team Kristen Averyt (research lead), University of Colorado–Boulder, NOAA Western Water Assessment, Boulder, CO Jeremy Fisher, Synapse Energy Economics, Cambridge, MA Annette Huber-Lee, Tufts University, Medford, MA Aurana Lewis, Duke University, Durham, NC Jordan Macknick, National Renewable Energy Laboratory, Golden, CO Nadia Madden, Union of Concerned Scientists, Cambridge, MA John Rogers, Union of Concerned Scientists, Cambridge, MA Stacy Tellinghuisen, Western Resource Advocates, Boulder, CO EW3 oversight and guidance is provided by a multidisciplinary scientific advisory committee composed of senior scientists and subject matter experts: EW3 sciEntific advisory commit tee Peter Frumhoff (chair), Union of Concerned Scientists, Cambridge, MA George Hornberger, Vanderbilt University, Nashville, TN Robert Jackson, Duke University, Durham, NC Robin Newmark, National Renewable Energy Laboratory, Golden, CO Jonathan Overpeck, University of Arizona, Tucson, AZ Brad Udall, University of Colorado–Boulder, NOAA Western Water Assessment, Boulder, CO Michael Webber, University of Texas, Austin, TX EW3 ProjEct managErs Erika Spanger-Siegfried, Union of Concerned Scientists, Cambridge, MA John Rogers, Union of Concerned Scientists, Cambridge, MA iv Energy and Water in a Warming World initiative Contents iii About EW3 ChAptEr 4 25 under pressure: stress on Water systems iv ContEnts 25 Stress: Water Supply and Demand 29 Stress on Ecosystems v FigurEs, TablEs, and Text BoxEs 30 Water Stress and Power Plant Reliability 31 What Climate Change Brings vi ACknoWlEdgmEnts 32 How Power Plant Water Use Might Change 1 Executive SummAry 33 The Texas Case: Are We Prepared for the Future? ChAptEr 1 ChAptEr 5 6 the Water and power standoff: An introduction 35 toward a Water-smart Energy Future 8 How Power Plants Use Water 39 ReferEnces ChAptEr 2 47 AppEndices 12 Electricity’s Water profile 13 Water Intensity EnErgy and WAtEr in a WArming World 14 Cooling Technologies across the Country BasEline Team 15 Where Does All This Water Come From? 48 EW3 Baseline Assessment Team 17 Considering Freshwater Use by Fuel 49 EW3 Scientific Advisory Committee ChAptEr 3 52 About UCs 19 gaps and Errors in information on power plant Water use 19 What’s Going on Here? 22 Other Reporting Problems 23 Why Accurate Information Matters 24 Changes Coming freshwater use by u.s. Power Plants: Electricity’s thirst for a Precious resource v Figures, Tables, and Text Boxes Figures 9 Figure 1. How Power Plants Use Water 13 Figure 2. Water Use by Fuel and Cooling Technology 14 Figure 3. Power Plant Water Withdrawals: East versus West 15 Figure 4. Freshwater Use for Electricity Generation 16 Figure 5. Sources of Water Used by Power Plants 17 Figure 6. Variations in Water-Use Intensity across the Fleet 20 Figure 7. Reported versus Calculated Power Plant Water Use: Discrepancies across the Country 21 Figure 8. Water Withdrawals by Power Plants That Reported No Water Use 26 Figure 9. Water-Supply Stress across the United States 27 Figure 10. Where Power Plants Drive Water-Supply Stress 29 Figure 11. Fish in Hot Water 32 Figure 12. A Dry Future 33 Figure 13. Power Companies, Freshwater, and Carbon tables 20 Table 1. Reported versus Calculated Power Plant Water Use, by Fuel text boxes 10 BOx 1. The Energy and Water in a Warming World Approach 18 BOx 2. Alternative Water Sources: No Perfect Solutions 26 BOx 3. Stress on the Chattahoochee 28 BOx 4. Water Stress, Availability, and Legal Rights 34 BOx 5. Climate Change: Challenging the Carbon-Water Balancing Act vi Energy and Water in a Warming World initiative Acknowledgments This report is the product of active collaboration and contributions from people with diverse expertise related to energy, water, and climate change. For technical contributions to the EW3 analysis, we thank Ge Sun, Peter Caldwell, Steve McNulty, and Erika Cohen (U.S. Forest Service–Southern Research Station); Shazia Davis and KC Hallett (National Renewable Energy Laboratory); and Emily Briley and Seth Sheldon (Civil Society Institute). For thoughtful comments on review drafts of this report, we thank Heather Cooley (Pacific Institute), Vlad Dorjets (U.S. Energy Information Administration), Kirstin Dow (University of South Carolina), Guido Franco (California Energy Commission), Mike Hightower (Sandia National Laboratories), Tom Iseman (Western Governors’ Association), Carly Jerla (U.S. Interior Department’s Bureau of Reclamation), Joe O’Hagan (California Energy Commission), Todd Rasmussen (University of Georgia), Benjamin Sovacool (University of Vermont), Vince Tidwell (Sandia National Laboratories), and Tom Wilbanks (Oak Ridge National Laboratory). For extraordinary compositional, editorial, and graphical support, we are deeply indebted to Jim Downing, Tyler Kemp-Benedict, and Sandra Hackman. We also appreciate the assistance and input of Angela Anderson, David Brown, Alberta Carpenter, Steve Clemmer, Nancy Cole, Ethan Davis, Scott Gossett, Garvin Heath, Shane Jordan, Doug Kenney, Simcha Levental, Dave Lochbaum, Jeffrey Logan, Jeff Lukas, Lisa Nurnberger, Megan Rising, Suzanne Shaw, Linda Stitzer, and Ellen Vancko. And we are indebted to the trailblazers who have promoted an understanding of the energy-water-climate connections—colleagues who have broken important scientific ground and helped define problems and potential solutions. We are also grateful to those working to address these challenges from national and state perspectives, and at the level of individual rivers and watersheds. The production of this report was made possible through the generous support of The Kresge Foundation, Roger and Vicki Sant, the Wallace Research Foundation, and the Emily Hall Tremaine Foundation. NOTe: An employee of the Alliance for Sustainable energy, LLC (Alliance), the operator of the National Renewable energy Laboratory (NReL) for the U.S. Department of energy (DOe), has contributed to this report. The views and opinions expressed herein do not necessarily state or reflect those of Alliance, NReL, the DOe, or the U.S. government. Furthermore, Alliance, NReL, the DOe, and the U.S. government make no warranty, express or implied, and assume no liability or responsibility for the accuracy, completeness, or usefulness of any information disclosed herein. Reference herein to any product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement, recommenda- tion, or favoring by Alliance, NReL, the DOe, or the U.S. government. freshwater use by u.s. Power Plants: Electricity’s thirst for a Precious resource 1 Executive Summary ake the average amount of water flowing over Niagara Falls in a minute. Now triple it. That’s T almost how much water power plants in the United States take in for cooling each minute, on average. In 2005, the nation’s thermoelectric power plants— which boil water to create steam, which in turn drives turbines to produce electricity—withdrew as much wa- ter as farms did, and more
Recommended publications
  • Freshwater Resources and Their Management
    3 Freshwater resources and their management Coordinating Lead Authors: Zbigniew W. Kundzewicz (Poland), Luis José Mata (Venezuela) Lead Authors: Nigel Arnell (UK), Petra Döll (Germany), Pavel Kabat (The Netherlands), Blanca Jiménez (Mexico), Kathleen Miller (USA), Taikan Oki (Japan), Zekai Senç (Turkey), Igor Shiklomanov (Russia) Contributing Authors: Jun Asanuma (Japan), Richard Betts (UK), Stewart Cohen (Canada), Christopher Milly (USA), Mark Nearing (USA), Christel Prudhomme (UK), Roger Pulwarty (Trinidad and Tobago), Roland Schulze (South Africa), Renoj Thayyen (India), Nick van de Giesen (The Netherlands), Henk van Schaik (The Netherlands), Tom Wilbanks (USA), Robert Wilby (UK) Review Editors: Alfred Becker (Germany), James Bruce (Canada) This chapter should be cited as: Kundzewicz, Z.W., L.J. Mata, N.W. Arnell, P. Döll, P. Kabat, B. Jiménez, K.A. Miller, T. Oki, Z. Senç and I.A. Shiklomanov, 2007: Freshwater resources and their management. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, 173-210. Freshwater resources and their management Chapter 3 Table of Contents .....................................................175 3.5.2 How will climate change affect flood Executive summary damages?...............................................................196 .......................................................175
    [Show full text]
  • Water Wars: the Brahmaputra River and Sino-Indian Relations
    U.S. Naval War College U.S. Naval War College Digital Commons CIWAG Case Studies 10-2013 Water Wars: The Brahmaputra River and Sino-Indian Relations Mark Christopher Follow this and additional works at: https://digital-commons.usnwc.edu/ciwag-case-studies Recommended Citation Christopher, Mark, "MIWS_07 - Water Wars: The Brahmaputra River and Sino-Indian Relations" (2013). CIWAG Case Studies. 7. https://digital-commons.usnwc.edu/ciwag-case-studies/7 This Book is brought to you for free and open access by U.S. Naval War College Digital Commons. It has been accepted for inclusion in CIWAG Case Studies by an authorized administrator of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. Draft as of 121916 ARF R W ARE LA a U nd G A E R R M R I E D n o G R R E O T U N P E S C U N E IT EG ED L S OL TA R C TES NAVAL WA Water Wars: The Brahmaputra River and Sino-Indian Relations Mark Christopher United States Naval War College Newport, Rhode Island Water Wars: The Brahmaputra River and Sino-Indian Relations Mark Christopher Center on Irregular Warfare & Armed Groups (CIWAG) US Naval War College, Newport, RI [email protected] CHRISTOPHER: WATER WARS CIWAG Case Studies Bureaucracy Does Its Thing (in Afghanistan) – Todd Greentree Operationalizing Intelligence Dominance – Roy Godson An Operator’s Guide to Human Terrain Teams – Norman Nigh Organizational Learning and the Marine Corps: The Counterinsurgency Campaign in Iraq – Richard Shultz Piracy – Martin Murphy Reading the Tea Leaves: Proto-Insurgency in Honduras – John D.
    [Show full text]
  • Water Conflicts in Historical Time (Ca 750 BC–330 AD) 3.1
    sustainability Review Water Conflicts: From Ancient to Modern Times and in the Future Andreas N. Angelakis 1,2 , Mohammad Valipour 3,*, Abdelkader T. Ahmed 4,5 , Vasileios Tzanakakis 6, Nikolaos V. Paranychianakis 7, Jens Krasilnikoff 8, Renato Drusiani 9, Larry Mays 10 , Fatma El Gohary 11, Demetris Koutsoyiannis 12 , Saifullah Khan 13 and Luigi Joseph Del Giacco 14 1 HAO-Demeter, Agricultural Research Institution of Crete, 71300 Iraklion, Greece; [email protected] 2 Union of Water Supply and Sewerage Enterprises, 41222 Larissa, Greece 3 Department of Civil and Environmental Engineering and Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA 4 Civil Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt; [email protected] 5 Civil Engineering Department, Faculty of Engineering, Islamic University, Madinah 42351, Saudi Arabia 6 Department of Agriculture, School of Agricultural Science, Hellenic Mediterranean University, 71410 Iraklion, Greece; [email protected] 7 School of Environmental Engineering, Technical University of Crete, 73100 Chania, Greece; [email protected] 8 Department of History and Classical Studies, School of Culture and Society, Aarhus University, 8000 Aarhus C, Denmark; [email protected] 9 Utilitalia, Piazza Cola di Rienzo, 00192 Roma, Italy; [email protected] 10 School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA; [email protected] 11 National Research Centre, Water Pollution
    [Show full text]
  • Global Experience on Irrigation Management Under Different Scenarios
    DOI: 10.1515/jwld-2017-0011 © Polish Academy of Sciences (PAN), Committee on Agronomic Sciences JOURNAL OF WATER AND LAND DEVELOPMENT Section of Land Reclamation and Environmental Engineering in Agriculture, 2017 2017, No. 32 (I–III): 95–102 © Institute of Technology and Life Sciences (ITP), 2017 PL ISSN 1429–7426 Available (PDF): http://www.itp.edu.pl/wydawnictwo/journal; http://www.degruyter.com/view/j/jwld Received 30.10.2016 Reviewed 01.12.2016 Accepted 06.12.2016 A – study design Global experience on irrigation management B – data collection C – statistical analysis D – data interpretation under different scenarios E – manuscript preparation F – literature search Mohammad VALIPOUR ABCDEF Islamic Azad University, Kermanshah Branch, Young Researchers and Elite Club, Imam Khomeini Campus, Farhikhtegan Bld. Shahid Jafari St., Kermanshah, Iran; e-mail: [email protected] For citation: Valipour M. 2017. Global experience on irrigation management under different scenarios. Journal of Water and Land Development. No. 32 p. 95–102. DOI: 10.1515/jwld-2017-0011. Abstract This study aims to assess global experience on agricultural water management under different scenarios. The results showed that trend of permanent crops to cultivated area, human development index (HDI), irrigation wa- ter requirement, and percent of total cultivated area drained is increasing and trend of rural population to total population, total economically active population in agriculture to total economically active population, value added to gross domestic production (GDP) by agriculture, and the difference between national rainfall index (NRI) and irrigation water requirement is decreasing. The estimating of area equipped for irrigation in 2035 and 2060 were studied acc.
    [Show full text]
  • Weaponization of Water in a Changing Climate Marcus D
    EPICENTERS OF CLIMATE AND SECURITY: THE NEW GEOSTRATEGIC LANDSCAPE OF THE ANTHROPOCENE June 2017 Edited by: Caitlin E. Werrell and Francesco Femia Sponsored by: In partnership with: WATER WEAPONIZATION THE WEAPONIZATION OF WATER IN A CHANGING CLIMATE Marcus D. King1 and Julia Burnell 2,3 Water stress across the Middle East and Africa is providing an opportunity for subnational extremist organizations waging internal conflict to wield water as a weapon. The weaponization of water also drives conflict that transcends national borders, creating international ripple effects that contribute to a changing geostrategic landscape. Climate change-driven water stress in arid and semi-arid countries is a growing trend. This stress includes inadequacies in water supply, quality, and accessibility.4 These countries are consistently experiencing chronically dry climates and unpredictable, yet prevalent, droughts. Predicted future climate impacts include higher temperatures, longer dry seasons, and increased variability in precipitation. In the coming decades, these factors will continue to stress water resources in most arid regions.5 It is accepted wisdom that parties generally cooperate over scarce water resources at both the international and subnational levels, with a very few notable exceptions that have resulted in internal, low-intensity conflict.6 However, tensions have always existed: the word rivalry comes from the Latin word rivalus, meaning he who shares a river.7 Rivalry is growing at the sub-state level, leading to intractable conflicts. Social scientists have long observed a correlation between environmental scarcity and subnational conflict that is persistent and diffuse.8 Disputes over limited natural resources have played at least some role in 40 percent of all intrastate conflicts in the last 60 years.9 The Center for Climate and Security www.climateandsecurity.org EPICENTERS OF CLIMATE AND SECURITY 67 Recent scholarly literature and intelligence forecasts have also raised doubts that water stress will continue to engender more cooperation than conflict.
    [Show full text]
  • Division of Water Resources K.S.A
    Division of Water Resources K.S.A. 74-506a through 74-506d K.S.A. 74-510 and 74-510a K.S.A. 74-506a. Division of water resources; creation. For the purpose of consolidating the Kansas water commission and the division of irrigation there is hereby created a division of water resources within the Kansas department of agriculture. History: L. 1927, ch. 293, § 1; L. 2004, ch. 101, § 115; July 1. K.S.A. 74-506b. Authority, powers and duties conferred upon division of water resources. All of the authority, powers and duties now conferred and imposed by law upon the Kansas water commission and the state irrigation commissioner are hereby conferred upon the division of water resources created by this act, under the control, administration and supervision of the secretary of agriculture. History: L. 1927, ch. 293, § 2; L. 2004, ch. 101, § 116; July 1. K.S.A. 74-506c. Certain commissions abolished. The Kansas water commission and the division of irrigation are hereby abolished. History: L. 1927, ch. 293, § 3; Feb. 11. K.S.A. 74-506d. Chief engineer, assistants and employees; compensation. The secretary of agriculture is hereby authorized to employ a chief engineer of the division of water resources and such expert assistants, clerical and other help as may be necessary to properly carry out the provisions of this act, and to fix their compensation. The chief engineer shall be under the classified service of the Kansas civil service act, but any vacant position of such expert assistants, clerical and other help necessary to carry out the provisions of this act may be converted by the secretary of agriculture to an unclassified position.
    [Show full text]
  • Avoiding Water Wars: Water Scarcity and Central Asia’S Growing Importance for Stability in Afghanistan and Pakistan
    1 112TH CONGRESS " ! S. PRT. 1st Session COMMITTEE PRINT 112–10 AVOIDING WATER WARS: WATER SCARCITY AND CENTRAL ASIA’S GROWING IMPORTANCE FOR STABILITY IN AFGHANISTAN AND PAKISTAN A MAJORITY STAFF REPORT PREPARED FOR THE USE OF THE COMMITTEE ON FOREIGN RELATIONS UNITED STATES SENATE ONE HUNDRED TWELFTH CONGRESS FIRST SESSION FEBRUARY 22, 2011 Printed for the use of the Committee on Foreign Relations Available via World Wide Web: http://www.fdsys.gpo.gov U.S. GOVERNMENT PRINTING OFFICE 64–141 PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 VerDate Nov 24 2008 17:49 Feb 17, 2011 Jkt 000000 PO 00000 Frm 00001 Fmt 5012 Sfmt 5012 S:\HEARING FILES\112TH CONGRESS, 1ST\STAFF TOPIC REPORTS\WATER, MELANIE seneagle COMMITTEE ON FOREIGN RELATIONS JOHN F. KERRY, Massachusetts, Chairman BARBARA BOXER, California RICHARD G. LUGAR, Indiana ROBERT MENENDEZ, New Jersey BOB CORKER, Tennessee BENJAMIN L. CARDIN, Maryland JAMES E. RISCH, Idaho ROBERT P. CASEY, JR., Pennsylvania MARCO RUBIO, Florida JIM WEBB, Virginia JAMES M. INHOFE, Oklahoma JEANNE SHAHEEN, New Hampshire JIM DEMINT, South Carolina CHRISTOPHER A. COONS, Delaware JOHNNY ISAKSON, Georgia RICHARD J. DURBIN, Illinois JOHN BARRASSO, Wyoming TOM UDALL, New Mexico MIKE LEE, Utah FRANK G. LOWENSTEIN, Staff Director KENNETH A. MYERS, JR., Republican Staff Director (II) VerDate Nov 24 2008 17:49 Feb 17, 2011 Jkt 000000 PO 00000 Frm 00002 Fmt 5904 Sfmt 5904 S:\HEARING FILES\112TH CONGRESS, 1ST\STAFF TOPIC REPORTS\WATER, MELANIE CONTENTS Page Letter of Transmittal ..............................................................................................
    [Show full text]
  • Water Conflict Pathways and Peacebuilding Strategies by David Michel
    PEACEWORKS Water Conflict Pathways and Peacebuilding Strategies By David Michel NO. 164 | AUGUST 2020 NO. 164 | AUGUST 2020 ABOUT THE REPORT This report explores water-related conflict pathways and articulates potential peace- building strategies to mitigate conflict risks. The report is grounded in a survey of the ECONOMICS & ENVIRONMENT academic literature on natural resources conflict, case studies of three major basins, and participant interviews and documentary analyses of water diplomacy processes. ABOUT THE AUTHOR David Michel is a senior researcher with the Stockholm International Peace Research Institute. He previously served as a senior manager at the Stockholm International Water Institute. He has over twenty years of experience working with governments, civil society, and the private sector to build cooperative solutions to policy challenges posed by global environmental change. Cover photo: A woman walks along a dry lake bed near the Rawal Dam in Pakistan on June 22, 2018. (Photo by B. K. Bangash/AP) The views expressed in this report are those of the author alone. They do not necessarily reflect the views of the United States Institute of Peace. An online edition of this and related reports can be found on our website (www.usip.org), together with additional information on the subject. © 2020 by the United States Institute of Peace United States Institute of Peace 2301 Constitution Avenue NW Washington, DC 20037 Phone: 202.457.1700 Fax: 202.429.6063 E-mail: [email protected] Web: www.usip.org Peaceworks No. 164. First published 2020. ISBN: 978-1-60127-810-4 Contents Water Insecurity and Conflict Risks 3 Water Conflict Pathways 7 Case Study: The Indus River Basin 10 Case Study: Mali 14 Case Study: Myanmar 18 Water Governance and Water Diplomacy 22 Peacebuilding Strategies for Water Resources Conflicts 26 USIP.ORG 1 Summary Growing populations and economies, unsustainable management practices, and mounting environmental pressures are exerting increasing strains on the world’s vital freshwater resources.
    [Show full text]
  • Water, Security, and Conflict
    ISSUE BRIEF WATER, SECURITY, AND CONFLICT PETER GLEICK AND CHARLES ICELAND HIGHLIGHTS ▪ A wide range of water-related risks undermine human well-being and can contribute to political instability, violent conflict, human displacement and migration, and acute food insecurity, which in turn can undermine national, regional, and even global security. ▪ Political instability and conflicts are rarely caused by any single factor, such as a water crisis. Instead, water crises should be seen as contributing factors to instability. ▪ While water risks have threatened human civilizations over millennia, today’s global population growth and economic expansion—together with threats from climate change—create a new urgency around an old problem. ▪ We classify water and security pathways under three broad categories: diminished water supply or quality, increased water demand, and extreme flood events. ▪ Water risk is not only a function of hazards, such as extreme droughts and floods, it is also a function of a community’s governance capacity and resilience in the face of natural hazards. ▪ No single strategy is sufficient to reduce water risk. Instead, multifaceted approaches will be needed. WRI.ORG EXECUTIVE SUMMARY migration, and food insecurity are much more likely if governance is CONTENTS Context weak, infrastructure is inadequate, 2 Executive Summary Water has played a key role and institutions are fragile. in human security through- Although water risks are grow- 3 Introduction out history, but attention to ing worldwide, there are many water-related threats has been 4 Water in a risk-reducing options avail- Dynamic World growing in recent years due to able to decision-makers. Some increasing water risks.
    [Show full text]
  • Freshwater Resources
    3 Freshwater Resources Coordinating Lead Authors: Blanca E. Jiménez Cisneros (Mexico), Taikan Oki (Japan) Lead Authors: Nigel W. Arnell (UK), Gerardo Benito (Spain), J. Graham Cogley (Canada), Petra Döll (Germany), Tong Jiang (China), Shadrack S. Mwakalila (Tanzania) Contributing Authors: Thomas Fischer (Germany), Dieter Gerten (Germany), Regine Hock (Canada), Shinjiro Kanae (Japan), Xixi Lu (Singapore), Luis José Mata (Venezuela), Claudia Pahl-Wostl (Germany), Kenneth M. Strzepek (USA), Buda Su (China), B. van den Hurk (Netherlands) Review Editor: Zbigniew Kundzewicz (Poland) Volunteer Chapter Scientist: Asako Nishijima (Japan) This chapter should be cited as: Jiménez Cisneros , B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang, and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 229-269. 229 Table of Contents Executive Summary ............................................................................................................................................................ 232 3.1. Introduction ...........................................................................................................................................................
    [Show full text]
  • Land Use, Climate, and Water Resources—Global Stages of Interaction
    water Editorial Land Use, Climate, and Water Resources—Global Stages of Interaction Sujay S. Kaushal 1,*, Arthur J. Gold 2 ID and Paul M. Mayer 3 1 Department of Geology & Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA 2 Department of Natural Resources Science, University of Rhode Island, Kingston, RI 02881, USA; [email protected] 3 National Health and Environmental Effects Research Lab, Western Ecology Division, US Environmental Protection Agency, 200 SW 35th Street, Corvallis, OR 97333, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-301-405-7048 Received: 13 September 2017; Accepted: 19 October 2017; Published: 24 October 2017 Abstract: Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization). During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs). During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability).
    [Show full text]
  • Duke Energy-Carolina's WFGD Retrofit Program: 12 Months Of
    Duke Energy Carolinas’ WFGD Retrofit Program: 12 Months of Operation at Marshall Ronald E. Laws, P.E. Senior Engineer, Program Engineering ([email protected] ph. 704-382-8411, fax 704-382-9769) Duke Energy Carolinas 526 S. Church Street Charlotte, NC 28202 Dave Styer FGD Area Coordinator ([email protected] ph. 828-478-7506, fax 828-478-7613) Duke Energy Carolinas Marshall Steam Station 8320 East NC Hwy. 150 Terrell, NC 28682 Kelly Barger Technology Manager ([email protected] ph. 865-560-1654, fax 865-694-5203) Jürgen Dopatka, P.E. Technology Manager ([email protected] ph. 865-694-5342, fax 865-694-5203) Alstom Power Environmental Control Systems 1409 Centerpoint Boulevard Knoxville, TN 37932 Jim McCarthy, P.E. Chief Engineer Mechanical/Piping, Power Division – Fossil Sector, Shaw Group ([email protected] ph.704-331-6043, fax 704-331-1310) 128 S. Tryon St., Suite 400 Charlotte, NC 28202 Presented at: POWER-GEN International 2007 New Orleans, LA December 11 - 13, 2007 Page 1 of 15 ABSTRACT Duke Energy Carolinas is committed to a multiphase fleetwide SO2 emissions reduction program where four of eight coal-fired stations are being retrofitted with high efficiency WFGD systems by 2012. Engineering started in 2003, one station has started up, one station is being commissioned, construction is under way at the third, and the fourth started engineering in 2007. A brief overview of the retrofit progress at each site will be presented. The state-of-the-art WFGD system at the Marshall Station has been operating for 12 months, and the performance testing on each of three absorbers and the overall system has been completed.
    [Show full text]