The Development of a Miniature Mechanism for Producing Insect Wing Motion

Total Page:16

File Type:pdf, Size:1020Kb

The Development of a Miniature Mechanism for Producing Insect Wing Motion The development of a miniature mechanism for producing insect wing motion S. C. Burgess, K. Alemzadeh & L. Zhang Department of Mechanical Engineering, Bristol University, Bristol, UK Abstract Insects are capable of very agile flight on a small scale. If a man-made machine can be built that can fly like an insect, it would have important industrial, civil and military applications. Insects have complex wing motions including non- planar wing strokes and stroke reversal. This paper presents the design of a novel mechanism which can produce insect type wing motion. The mechanism is very light and compact and has potential for use in micro air vehicles. A prototype has been built and some preliminary tests have been carried out to characterize the mechanism performance. Keywords: insect flight, wing motion, novel mechanisms, wing reversal, lift. 1 Introduction The ability for controlled flight has existed in at least four classes of creature: (1) birds; (2) mammals (bats); (3) reptiles (pterosaurs); and (4) insects. Pterosaurs are believed to have been the largest fliers with wingspans up to 12m. It is thought that pterosaurs were capable of flapping flight because fossil records show a similar type of shoulder joint to that found in birds. Birds currently have a large range of size from the large albatross with a wingspan of up to 3.5m, to the tiny bumble hummingbird which has a span of only 8cm. Most birds can perform flapping flight but not true hovering flight. However, hummingbirds have a flexible shoulder joint which enables them to hover in windless conditions. Bats have a relatively small range of size. Bats can perform flapping flight and some are capable of hovering flight. Insects are the smallest flying creatures with current sizes ranging from a few millimetres to several centimetres. Insects can perform flapping flight and hovering flight and are the most agile fliers. There is currently much research Design and Nature II, M. W. Collins & C. A. Brebbia (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-721-3 238 Design and Nature II activity involved in producing a machine which can fly like an insect [1, 2, 3]. Cameras are now so small that insect sized air vehicles could carry sophisticated surveillance equipment. It is believed that small agile flying machines could have important applications such as search and rescue, remote observations (nuclear plant, volcanoes, etc) and surveillance (security and warfare). 2 Insect wing motion 2.1 Wing structure An insect body has three parts: head, thorax and abdomen. The wings are attached to the thorax as shown in Figure 1. Insects are different to birds, bats and pterosaurs in that there is no skeleton and no discrete shoulder joint. In the case of insects there is just an elastic hinge where the wings join the body [4]. Another key feature of insect flight is that wings flap at a resonant frequency. At Bristol University, a vision system is being developed which will be used to attempt to digitally capturing the insect wing and hinge shape. Elastic energy Elastic energy Notal hinge stored in muscle stored in hinge Wing Dorso ventral Dorso ventral muscle contracted muscle relaxed Figure 1: Cross section of the thorax of a fly. 2.2 Flight lift mechanisms Like hummingbirds, insects use the aerofoil effect in the down stroke and upstroke to generate lift. The leading edge of the wing is kept upwards because of wing reversal at the end of each stroke as shown in Figure 2. The aerofoil has an inclined angle as it cuts through the air. This profile and orientation of the wing are such that the air is travelling faster over the upper surface and therefore upwards lift is produced. Insects also gain lift from the rapid rotation of their wings at the end of each stroke whilst the wing still has linear motion. This latter mechanism is called the Magnus effect and is shown in Figure 2. Another lift producing mechanism is that of a leading edge vortex. A leading edge vortex also occurs when the insect sweeps its wings forwards at a very high angle of attack. In the case of an aircraft or bird, such a high angle of attack leads to stalling. However, in insects, the high angle of attack produces a leading edge Design and Nature II, M. W. Collins & C. A. Brebbia (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-721-3 Design and Nature II 239 vortex which sits on top of the leading edge of the wing as shown in Figure 3. The leading edge vortex is a region of rapidly circulating air with a low pressure core and a helical structure. Because of the forward motion of the wings, the circulating air in the vortex produces lift due to the Magnus effect. Down stroke Rotation Rotation Up stroke Figure 2: Schematic of wing motion in hovering flight. Figure 3: Schematic of leading edge vortex. There are two basic wing motions in typical insect flight: (1) Flapping (rowing) motion; and (2) Wing twisting (for wing reversal). The flapping motion is not normally in one plane but traces out either a figure-of-eight or other path that prevents the wing form continually moving in its own wake. There are several adjustments that insects can make during flight: (1) Angle of flapping plane; (2) Angle of attack of wings; (3) Frequency of wing beat; and (4) Phase shift between wings. The angle of the flapping plane is adjusted in order to change forward speed or to hover. The angle of attack of the wings is adjusted to change the amount of lift. The frequency of wing beat can also be adjusted to Design and Nature II, M. W. Collins & C. A. Brebbia (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-721-3 240 Design and Nature II change the lift. A phase shift between the two wings is produced to perform manoeuvres such as turns. 3 Comparison between man-made and natural flight mechanisms Insect mechanisms are very different to the mechanisms normally found in man- made machines. It may be that normal man-made type mechanisms are inappropriate for producing insect flapping flight. If this is the case, it is very important to understand how and why insect mechanisms are different. Table 1 compares the basic characteristics of mechanisms found in aircraft, birds and insects. In the case of aircraft wings, the mechanisms that move the ailerons and other flaps are considered in Table 1. In the case of birds and insects, the mechanisms that move the wings are considered in Table 1. One key difference between man-made mechanisms and natural mechanisms is that man-made mechanisms are generally constrained to have a fixed motion. This fixed motion requires relatively simple actuators and control algorithms. In contrast, birds and insects generally have complex 3-D under-constrained mechanisms that require very complex actuators and control algorithms. One advantage of putting complexity into the control algorithms is that complex information and processing dos not require much space or weight. Another weight-saving aspect of insects is that they have simple flexible hinges. Table 1: Comparison between man-made and natural flight mechanisms AIRCRAFT BIRD INSECT AILERONS WINGS WINGS Mechanism motion Rigid Rigid Flexible 2-D 3-D 3-D Constrained motion Yes No No Bearings Rolling Sliding Flexible Actuator Linear/rotary Linear Linear Control algorithms Simple Complex Very complex 4 Design of novel mechanism Figure 4 shows a novel flapping mechanism developed at Bristol University which is capable of insect type flapping motion. The design consists of an oar which can produce flapping motion as well as twisting motion. The oar is driven by a crank mechanism via a link which has a ball joint at each end. A key feature Design and Nature II, M. W. Collins & C. A. Brebbia (Editors) © 2004 WIT Press, www.witpress.com, ISBN 1-85312-721-3 Design and Nature II 241 of the mechanism is that it does not have constrained motion. The motion depends on the relative resistance to motion around bearings X and Y. The resistance to motion is less in bearing Y than in bearing X and therefore rowing motion occurs in preference to twisting motion. The resistance to motion is dependent on the location of the centre of pressure on the wing. Figure 5 shows how the centre of pressure is below the wing axis and this produces more resistance to motion around bearing X than bearing Y. When the rowing motion reaches an end-stop then twisting motion takes over. Figure 5 shows a schematic of how the mechanism works for hovering flight. Images 1-6 show the wing being dragged in pure rowing motion in the forward direction. Since the leading edge is pointing upwards, lift is generated by the normal aerofoil effect in the upwards direction. At the end of stroke there is wing reversal from 5-8. During these stages the wing is still moving in a linear direction but it is also twisting. Since airflow is from right to left and the wing is twisting anti-clockwise, lift again occurs in the upwards direction. Images 9-13 show upward lift being produced again by the aerofoil effect in the backwards direction. Images 13-16 show upward lift being produced by the Magnus effect. It should be noted that Figure 4 shows the wing in position 13. The mechanism is relatively simple because it does not have constrained motion. A limitation of the mechanism is that there is only a certain amount of adjustment that can be made to the timing of the twisting motion.
Recommended publications
  • Stable Structural Color Patterns Displayed on Transparent Insect Wings
    Stable structural color patterns displayed on transparent insect wings Ekaterina Shevtsovaa,1, Christer Hanssona,b,1, Daniel H. Janzenc,1, and Jostein Kjærandsend,1 aDepartment of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden; bScientific Associate of the Entomology Department, Natural History Museum, London SW7 5BD, United Kingdom; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018; and dDepartment of Biology, Museum of Zoology, Lund University, Helgonavägen 3, SE-22362 Lund, Sweden Contributed by Daniel H. Janzen, November 24, 2010 (sent for review October 5, 2010) Color patterns play central roles in the behavior of insects, and are and F). In laboratory conditions most wings are studied against a important traits for taxonomic studies. Here we report striking and white background (Fig. 1 G, H, and J), or the wings are embedded stable structural color patterns—wing interference patterns (WIPs) in a medium with a refractive index close to that of chitin (e.g., —in the transparent wings of small Hymenoptera and Diptera, ref. 19). In both cases the color reflections will be faint or in- patterns that have been largely overlooked by biologists. These ex- visible. tremely thin wings reflect vivid color patterns caused by thin film Insects are an exceedingly diverse and ancient group and interference. The visibility of these patterns is affected by the way their signal-receiver architecture of thin membranous wings the insects display their wings against various backgrounds with and color vision was apparently in place before their huge radia- different light properties. The specific color sequence displayed tion (20–22). The evolution of functional wings (Pterygota) that lacks pure red and matches the color vision of most insects, strongly can be freely operated in multidirections (Neoptera), coupled suggesting that the biological significance of WIPs lies in visual with small body size, has long been viewed as associated with their signaling.
    [Show full text]
  • Consequences of Evolutionary Transitions in Changing Photic Environments
    bs_bs_banner Austral Entomology (2017) 56,23–46 Review Consequences of evolutionary transitions in changing photic environments Simon M Tierney,1* Markus Friedrich,2,3 William F Humphreys,1,4,5 Therésa M Jones,6 Eric J Warrant7 and William T Wcislo8 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. 2Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA. 3Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. 4Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. 5School of Animal Biology, University of Western Australia, Nedlands, WA 6907, Australia. 6Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia. 7Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden. 8Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá. Abstract Light represents one of the most reliable environmental cues in the biological world. In this review we focus on the evolutionary consequences to changes in organismal photic environments, with a specific focus on the class Insecta. Particular emphasis is placed on transitional forms that can be used to track the evolution from (1) diurnal to nocturnal (dim-light) or (2) surface to subterranean (aphotic) environments, as well as (3) the ecological encroachment of anthropomorphic light on nocturnal habitats (artificial light at night). We explore the influence of the light environment in an integrated manner, highlighting the connections between phenotypic adaptations (behaviour, morphology, neurology and endocrinology), molecular genetics and their combined influence on organismal fitness.
    [Show full text]
  • Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production
    7. Exp. Biol. (1973). 59. 169-230 l6g With 23 text-figures Printed in Great Britain QUICK ESTIMATES OF FLIGHT FITNESS IN HOVERING ANIMALS, INCLUDING NOVEL MECHANISMS FOR LIFT PRODUCTION BY TORKEL WEIS-FOGH Department of Zoology, Cambridge CBz ^EJ, England (Received 11 January 1973) INTRODUCTION In a recent paper I have analysed the aerodynamics and energetics of hovering hummingbirds and DrosophUa and have found that, in spite of non-steady periods, the main flight performance of these types is consistent with steady-state aerodynamics (Weis-Fogh, 1972). The same may or may not apply to other flapping animals which practise hovering or slow forward flight at similar Reynolds numbers (Re), ioa to io*. As discussed in that paper, there are of course non-steady flow situations at the start and stop of each half-stroke of the wings. Moreover, it does not follow that all hovering animals make use mainly of steady-state principles. It is therefore desirable to obtain as simple and as easily analytical expressions as possible which should make it feasible to estimate the forces on the wings and the work and power produced. In this way one may make use of the large number of observations on freely flying animals to be found in the scattered literature. It may then be possible to identify the deviating groups and to approach the problems in a new way. This is the main purpose of the present studies, which both include new material and provide novel solutions. Major emphasis must be placed on simplicity. This involves approximations since the true flight system is so complicated as to be unmanageable.
    [Show full text]
  • Exploring the Origin of Insect Wings from an Evo-Devo Perspective
    Available online at www.sciencedirect.com ScienceDirect Exploring the origin of insect wings from an evo-devo perspective Courtney M Clark-Hachtel and Yoshinori Tomoyasu Although insect wings are often used as an example of once (i.e. are monophyletic) sometime during the Upper morphological novelty, the origin of insect wings remains a Devonian or Lower Carboniferous (370-330 MYA) [3,5,9]. mystery and is regarded as a major conundrum in biology. Over By the early Permian (300 MYA), winged insects had a century of debates and observations have culminated in two diversified into at least 10 orders [4]. Therefore, there is prominent hypotheses on the origin of insect wings: the tergal quite a large gap in the fossil record between apterygote hypothesis and the pleural hypothesis. However, despite and diverged pterygote lineages, which has resulted in a accumulating efforts to unveil the origin of insect wings, neither long-running debate over where insect wings have come hypothesis has been able to surpass the other. Recent from and how they have evolved. investigations using the evolutionary developmental biology (evo-devo) approach have started shedding new light on this Two proposed wing origins century-long debate. Here, we review these evo-devo studies The insect wing origin debate can be broken into two and discuss how their findings may support a dual origin of main groups of thought; wings evolved from the tergum of insect wings, which could unify the two major hypotheses. ancestral insects or wings evolved from pleuron-associat- Address ed structures (Figure 1. See Box 1 for insect anatomy) Miami University, Pearson Hall, 700E High Street, Oxford, OH 45056, [10 ].
    [Show full text]
  • The Role of Vortices in Animal Locomotion in Fluids
    Applied and Computational Mechanics 8 (2014) 147–156 The role of vortices in animal locomotion in fluids R. Dvorˇak´ a,∗ a Institute of Thermomechanics v.v.i., Academy of Sciences of the Czech Republic, Dolejˇskova 1402/5, 182 00 Prague, Czech Republic Received 26 March 2014; received in revised form 10 December 2014 Abstract The aim of this paper is to show the significance of vortices in animal locomotion in fluids on two deliberately chosen examples. The first example concerns lift generation by bird and insect wings, the second example briefly mentiones swimming and walking on water. In all the examples, the vortices generated by the moving animal impart the necessary momentum to the surrounding fluid, the reaction to which is the force moving or lifting the animal. c 2014 University of West Bohemia. All rights reserved. Keywords: animal locomotion, bird flight, flapping wings, insect flight, swimming, walking on water, vortices in animal propulsion 1. Introduction The topic is far too diverse to cover all aspects of animal locomotion both in (or on) water and air. All animals in water and air have inhabitated this planet for 300 million years (fishes and insects, twice as long as birds who are here about 150 million years), and they have had well enough time to develop their skill of swimming and flying. From the whole number of existing animal species almost 80 % have the capability of flying, out of which almost 99 % are insects (about 106 species). It is only less than half a century when people have begun to uncover the mechanism of their — often uncomprehensible — way of locomotion.
    [Show full text]
  • Structure & Materials of the Insect Wing
    Structure & Materials of the Insect Wing Article by Samantha Chalut Background To this day, Evolution the true origins of insect flight remains obscure, as the earliest he earliest insects had four winged insects show evidence of Twings, independently being fully adept at flight. functioning forewings and hindwings. The well-known insects, n insect’s wings are outgrowths damselflies and dragonflies, have Aof the exoskeleton that enable kept this design. Since then, insect it to fly; this includes two pairs of wing designs vary where either the wings known as the forewing and forewing or hindwing are hindwing (although a select few specialized for force production, insects lack hindwings). The while many other insects are current designs of an insect wings functionally 2 winged through have evolved over hundreds of attaching the smaller hindwings millions of years to produce many to the forewings. variations, each with it’s own design tradeoffs. These tradeoffs may include specializations in the flight performance aspects such as efficiency, versatility, maneuverability, or stability. Structure he structure and design of an insect Twing is essential, as it must endure functionally over the insect’s lifespan. They must be capable of enduring collisions or tearing without failure. To achieve this insect wings can deform readily, even reversibly, through its overall structure. In many cases aerodynamic efficiency is improved through the coupling of the forewing and hindwing. This is achieved in a few different ways. Most commonly, the wings are coupled through a row of small hooks on the forward margin of the hindwing, locking onto the forewing. Another form of coupling is seen where Grasshopper forewing vein celled intersections the jugal lobe of the forewing covers a portion of the hindwing, or even where they broadly overlap.
    [Show full text]
  • Phasmid Studies Volume 15 Issues 1&2
    Printed ISSN 0966-0011 Online ISSN 1750-3329 PHASMID STUDIES Volume 15, numbers 1 & 2. March 2007. Editor: Dr. P.E. Bragg. Produced by the Phasmid Study Group The Phasmid Study Group. The Phasmid Study Group (PSG) was formed in 1980 to foster the study of phasmids. The group currently has several hundred members worldwide. The membership ranges from young children to professional entomologists. The PSG holds regular meetings and presents displays at all the major entomological exhibitions in the U.K. The PSG places emphasis on study by rearing and captive breeding and has a panel of breeders who distribute livestock to other members. The PSG produces two publications which are issued free to members. The Phasmid Study Group Newsletter is issued quarterly and contains news items, livestock information, details of exhibitions and meetings, and a variety of short articles on all aspects of phasmids. Phasmid Studies is issued on-line and in print. Typically it is produced biannually, in March and September, but this is currently under review. It contains longer articles on all aspects of phasmids, with an emphasis on natural history, captive breeding, taxonomy, and behavioural studies. Each issue contains abstracts of papers from other recent publications. Details of membership may be obtained from the Treasurer and Membership Secretary, Paul Brock, "Papillon", 40 Thorndike Road, Slough, Berks, SL2 1SR, U.K. Annual subscription rates are currently: U.K. £12.00; Europe £14.00; Worldwide £15.00. Phasma. This is a Dutch-Belgian group with similar aims to the Phasmid Study Group. It produces a quarterly newsletter, Phasma, which is published in Dutch.
    [Show full text]
  • What Serial Homologs Can Tell Us About the Origin
    F1000Research 2017, 6(F1000 Faculty Rev):268 Last updated: 17 JUL 2019 REVIEW What serial homologs can tell us about the origin of insect wings [version 1; peer review: 2 approved] Yoshinori Tomoyasu 1*, Takahiro Ohde2,3*, Courtney Clark-Hachtel1* 1Department of Biology, Miami University, Pearson Hall, 700E High Street, Oxford, OH 45056, USA 2Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan 3Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka Myodaiji, Okazaki 444-8585, Japan * Equal contributors First published: 14 Mar 2017, 6(F1000 Faculty Rev):268 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.10285.1) Latest published: 14 Mar 2017, 6(F1000 Faculty Rev):268 ( https://doi.org/10.12688/f1000research.10285.1) Reviewer Status Abstract Invited Reviewers Although the insect wing is a textbook example of morphological novelty, 1 2 the origin of insect wings remains a mystery and is regarded as a chief conundrum in biology. Centuries of debates have culminated into two version 1 prominent hypotheses: the tergal origin hypothesis and the pleural origin published hypothesis. However, between these two hypotheses, there is little 14 Mar 2017 consensus in regard to the origin tissue of the wing as well as the evolutionary route from the origin tissue to the functional flight device. Recent evolutionary developmental (evo-devo) studies have shed new light F1000 Faculty Reviews are written by members of on the origin of insect wings. A key concept in these studies is “serial the prestigious F1000 Faculty.
    [Show full text]
  • Size, Shape and Structure of Insect Wings
    bioRxiv preprint doi: https://doi.org/10.1101/478768; this version posted November 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Size, shape and structure of insect wings Mary K. Salcedo,1, a) Jordan Hoffmann,2, a) Seth Donoughe,3 and L. Mahadevan1, 2, b) 1)Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 2)School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 3)Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL The size, shape and structure of insect wings are intimately linked to their ability to fly. However, there are few systematic studies of the variability of the natural patterns in wing morphology across insects. We assemble a comprehensive dataset of insect wings and analyze their morphology using topological and geometric notions in terms of i) wing size and contour shape, ii) vein geometry and topology, and iii) shape and distribution of wing membrane domains. These morphospaces are a first-step in defining the diversity of wing patterns across insect orders and set the stage for investigating their functional consequences. a)Equal contribution b)Electronic mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/478768; this version posted November 26, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. INTRODUCTION Of all the multicellular species on our planet, insects are the most speciose, with more than one million species1.
    [Show full text]
  • Environmental and Biotic Controls on the Evolutionary History of Insect
    Environmental and biotic controls on the evolutionary SEE COMMENTARY history of insect body size Matthew E. Clapham1 and Jered A. Karr Department of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064 Edited by James H. Brown, University of New Mexico, Albuquerque, NM, and approved April 27, 2012 (received for review March 7, 2012) Giant insects, with wingspans as large as 70 cm, ruled the Car- competitive or predatory interactions with flying vertebrates boniferous and Permian skies. Gigantism has been linked to (birds, bats, and pterosaurs), may have contributed to or even hyperoxic conditions because oxygen concentration is a key been the dominant control on evolutionary size trends (18, 19). physiological control on body size, particularly in groups like The rich fossil history of insects (21) contains the only record of flying insects that have high metabolic oxygen demands. Here evolutionary body-size trends in response to changing atmospheric we show, using a dataset of more than 10,500 fossil insect wing pO2 (22), temperature, and evolution of flying predators and lengths, that size tracked atmospheric oxygen concentrations only competitors (23). Our quantitative analysis of evolutionary size for the first 150 Myr of insect evolution. The data are best ex- trends from more than 10,500 measured fossil insect specimens plained by a model relating maximum size to atmospheric en- confirms the importance of atmospheric pO2 in enabling the evo- vironmental oxygen concentration (pO2) until the end of the lution of large body size, but suggests that the pO2-size relationship Jurassic, and then at constant sizes, independent of oxygen fluc- was superseded by biological factors following the evolution and tuations, during the Cretaceous and, at a smaller size, the Ceno- aerial specialization of flying vertebrates, particularly birds.
    [Show full text]
  • Animal Abstracts 44
    ABSTRACT BOOK SEB BRIGHTON 2016 4–7 July, 2016 BRIGHTON CENTRE,UK SEBIOLOGY.ORG #SEBAMM SUN, SEA & SCIENCE SOCIETY FOR EXPERIMENTAL BIOLOGY ABSTRACTS ANIMAL BIOLOGY 2 ANNUAL MAIN MEETING BRIGHTON 2016 ANIMAL ABSTRACTS 44 A1 DEVELOPMENTAL BIOMECHANICS OF MOTOR SKILLS ORGANISED BY:PROF JOHAN VAN LEEUWEN (WAGENINGEN UNIVERSITY, NETHERLANDS) & PROF PETER AERTS (UNIVERSITY OF ANTWERP, BELGIUM) i n loca l be nd i ng powe r a s t he fi sh g rows. We developed a combi ned A1.1 ACQUIRED VERSUS INNATE experimental and computational approach for reconstructing time- PREY CAPTURING SKILLS IN SUPER- resolved bending moment distributions from high-speed videos of f ree -sw i m m i ng la r vae (2-12 dpf ). Fi rst, we recon st r uc t t he t h ree - PRECOCIAL LIVE-BEARING FISH dimensional position, orientation and body curvature from these i mages. We feed t hese recon st r uc t ion s i nto a computat iona l flu id- TUESDAY 5 JULY, 2016 13:45 dynamics solver in order to calculate the flow field and the fluid forces a long t he fi sh’s body. Fi na l ly, we combi ne t he mot ion of t he long it ud i na l body a x i s a nd t he e x te r na l flu id forces a s i nput for a n MARTIN LANKHEET (WAGENINGEN UNIVERSITY, NETHERLANDS) opt i m i zat ion procedu re to ca lc u late t he best fit t i ng t i me - depe nde nt Live-bearing fish start hunting for mobile prey within hours after bending moment distribution.
    [Show full text]
  • SEAHORSES -MASTERS of ADAPTATION M Schmid, D Senn
    SEAHORSES -MASTERS OF ADAPTATION M Schmid, D Senn To cite this version: M Schmid, D Senn. SEAHORSES -MASTERS OF ADAPTATION. Vie et Milieu / Life & Environ- ment, Observatoire Océanologique - Laboratoire Arago, 2002, pp.201-207. hal-03198926 HAL Id: hal-03198926 https://hal.sorbonne-universite.fr/hal-03198926 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. VIE MILIEU, 2002, 52 (4) : 201-207 From Marine Ecology to Developmental Biology In Honour of Pierre Tardent (1927-1997) SEAHORSES - MASTERS OF ADAPTATION M.S. SCHMID* D.G. SENN* *Laboratory for Vertebrate Morphology, University of Basle, Claramattweg 8, 4057 Basle, Switzerland SEAHORSE ABSTRACT. - Seahorse habitats are hard substrates (rocks, gravel, corals, gorgo- HIPPOCAMPUS nians, sponges). Spécial adaptations are needed for survival in such an environ- ADAPTATION ment. Seahorses show adaptations in body shape, appearance, locomotion and EVOLUTION REPRODUCTION behaviour as well as (most outstanding) in reproductive biology. In contrast to the majority of marine teleosts, seahorses avoid a planktonic larval phase. Maies deve- lop a brood pouch in which, after mating, the eggs are fertilized and kept for clea- vage and embryonic development. Like this, a maximum degree of protection is provided for the clutch.
    [Show full text]