Animal Abstracts 44
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11. -
Cubazoo2014-No25.Pdf
No 25-2014 Página: 1 Comité Editorial CubaZoo Editor Dr.C. Santos Orlando Cubillas Hernández Comité Editorial: Kattia Talavera Maza Dana Valdés Ruiz Diseño: Ernesto Zaldivar Damiani María Elena Gonzáles López (Foto-portada) Consultores: Dr.C. Vicente Berovides Álvarez MC. Rosalía Margarita Planas González Parque Zoológico Nacional de Cuba Carretera Varona Km 3 ½, Capdevila. Boyeros. La Habana. Cuba. CP. 10800 AP 8010 http://revista.cubazoo.cu Tel. (+53 7) 643 8063, 644 7637, 643 0490,644 2991 http://www.cubazoo.cu [email protected] / [email protected] https://www.facebook.com/cubazoo.cu La revista CubaZOO en formato electrónico tiene sus antecedentes en la revista del mismo nombre que se editaba en formato impreso desde el año 1991. Esta surge en el marco del 6to aniversario de la fundación del Parque Zoológico Nacional de Cuba cuando a pesar de no haberse terminado su construcción ya se contaba con gran experiencia en la atención a los animales exóticos en cautiverio, de forma interdisciplinaria en las ramas de Biología, Veterinaria, y Nutrición, por sólo citar algunas. Todo este conocimiento alcanzado hasta el momento era imprescindible comenzarlo a divulgar, por lo cual se inicia la edición de la revista impresa; muy simple y modesta al inicio pero con los deseos y la perspectiva de ampliar su formato y llegar a otros niveles de consumo como se planteó en la Carta Editorial del primer número. El nombre de la publicación se explica por si solo y es representativo de los destinatarios de la revista, que eran en un inicio las personas vinculadas a la actividad zoológica en nuestra nación. -
Dr. Rodi Omondi Ojoo
Dr. Rodi Omondi Ojoo Contacts: Department of Veterinary Anatomy and Physiology University of Nairobi P.O.Box 30197- 00100 Nairobi, Kenya Telephone: +2542 4442014/5/6 ext 2300 Cell No: 0722679680 Fax: + 2542 4451770 Email: [email protected] Education: Ph.D. Veterinary Anatomy (Reproductive Biology ), University of Nairobi, Kenya, 2006. M.Sc. Veterinary Anatomy (Reproductive Biology), University of Nairobi, 1996. B.V.M. University of Nairobi, 1990. Positions held: 1996- 2014: Lecturer in Department of Veterinary Anatomy and Physiology, University of Nairobi 1990-1996: Assistant lecturer in Department of Veterinary Anatomy of University of Nairobi. 1985-1986: Research assistant for 7 months at the Biomedical Research Centre of the Kenya Medical Research Institute. Professional affiliations: Member of the Kenya Veterinary Association Veterinary Surgeon registered by the Kenya Veterinary Board as No. 1289 Duties: Lectures and examination (Veterinary Anatomy) of Bachelor of Veterinary Medicine and BSc. Wildlife Management, undergraduate students. Lectures and examination of Reproductive biology to postgraduate students Have been member of boards for examination of a number of MSc. Students. Have been internal examiner of MSc. Thesis Other responsibilities: - Chairman, Faculty of Veterinary Medicine, Biosafety, Animal use and Ethics Committee - Reviewer for the Kenya Veterinarian, a Journal of the Kenya Veterinary Association Publications: Theses: 1. Ojoo, R.O. (2006) Comparison and characterisation of specific fertilisation proteins in human (Homo sapiens) and baboon (Papio anubis) spermatozoa. Ph.D thesis , University of Nairobi. 2. Ojoo, R.O. (1995) A morphological and endocrinological study of the male reproductive system of the male reproductive system of the thick-tailed bush baby (Galago garnetti). -
Alcolapia Grahami ERSS
Lake Magadi Tilapia (Alcolapia grahami) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, March 2015 Revised, August 2017, October 2017 Web Version, 8/21/2018 1 Native Range and Status in the United States Native Range From Bayona and Akinyi (2006): “The natural range of this species is restricted to a single location: Lake Magadi [Kenya].” Status in the United States No records of Alcolapia grahami in the wild or in trade in the United States were found. The Florida Fish and Wildlife Conservation Commission has listed the tilapia Alcolapia grahami as a prohibited species. Prohibited nonnative species (FFWCC 2018), “are considered to be dangerous to the ecology and/or the health and welfare of the people of Florida. These species are not allowed to be personally possessed or used for commercial activities.” Means of Introductions in the United States No records of Alcolapia grahami in the United States were found. 1 Remarks From Bayona and Akinyi (2006): “Vulnerable D2 ver 3.1” Various sources use Alcolapia grahami (Eschmeyer et al. 2017) or Oreochromis grahami (ITIS 2017) as the accepted name for this species. Information searches were conducted under both names to ensure completeness of the data gathered. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2017), Alcolapia grahami (Boulenger 1912) is the current valid name for this species. It was originally described as Tilapia grahami; it has also been known as Oreoghromis grahami, and as a synonym, but valid subspecies, of -
Stable Structural Color Patterns Displayed on Transparent Insect Wings
Stable structural color patterns displayed on transparent insect wings Ekaterina Shevtsovaa,1, Christer Hanssona,b,1, Daniel H. Janzenc,1, and Jostein Kjærandsend,1 aDepartment of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden; bScientific Associate of the Entomology Department, Natural History Museum, London SW7 5BD, United Kingdom; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018; and dDepartment of Biology, Museum of Zoology, Lund University, Helgonavägen 3, SE-22362 Lund, Sweden Contributed by Daniel H. Janzen, November 24, 2010 (sent for review October 5, 2010) Color patterns play central roles in the behavior of insects, and are and F). In laboratory conditions most wings are studied against a important traits for taxonomic studies. Here we report striking and white background (Fig. 1 G, H, and J), or the wings are embedded stable structural color patterns—wing interference patterns (WIPs) in a medium with a refractive index close to that of chitin (e.g., —in the transparent wings of small Hymenoptera and Diptera, ref. 19). In both cases the color reflections will be faint or in- patterns that have been largely overlooked by biologists. These ex- visible. tremely thin wings reflect vivid color patterns caused by thin film Insects are an exceedingly diverse and ancient group and interference. The visibility of these patterns is affected by the way their signal-receiver architecture of thin membranous wings the insects display their wings against various backgrounds with and color vision was apparently in place before their huge radia- different light properties. The specific color sequence displayed tion (20–22). The evolution of functional wings (Pterygota) that lacks pure red and matches the color vision of most insects, strongly can be freely operated in multidirections (Neoptera), coupled suggesting that the biological significance of WIPs lies in visual with small body size, has long been viewed as associated with their signaling. -
Gyrodactylus Magadiensis N. Sp. (Monogenea
Parasite 26, 76 (2019) Ó Q.M. Dos Santos et al., published by EDP Sciences, 2019 https://doi.org/10.1051/parasite/2019077 urn:lsid:zoobank.org:pub:677E07BB-8A05-4722-8ECD-0A9A16656F4B Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Gyrodactylus magadiensis n. sp. (Monogenea, Gyrodactylidae) parasitising the gills of Alcolapia grahami (Perciformes, Cichlidae), a fish inhabiting the extreme environment of Lake Magadi, Kenya Quinton Marco Dos Santos, John Ndegwa Maina, and Annemariè Avenant-Oldewage* Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, 2006 Johannesburg, South Africa Received 31 July 2019, Accepted 6 December 2019, Published online 20 December 2019 Abstract – A new species of Gyrodactylus von Nordmann, 1832 is described from the gills of Alcolapia grahami,a tilapian fish endemic to Lake Magadi. This alkaline soda lake in the Rift Valley in Kenya is an extreme environment with pH as high as 11, temperatures up to 42 °C, and diurnal fluctuation between hyperoxia and virtual anoxia. Nevertheless, gyrodactylid monogeneans able to survive these hostile conditions were detected from the gills the Magadi tilapia. The worms were studied using light microscopy, isolated sclerites observed using scanning electron microscopy, and molecular techniques used to genetically characterize the specimens. The gyrodactylid was described as Gyrodactylus magadiensis n. sp. and could be distinguished from other Gyrodactylus species infecting African cichlid fish based on the comparatively long and narrow hamuli, a ventral bar with small rounded anterolateral processes and a tongue-shaped posterior membrane, and marginal hooks with slender sickles which are angled forward, a trapezoid to square toe, rounded heel, a long bridge prior to reaching marginal sickle shaft, and a long lateral edge of the toe. -
Consequences of Evolutionary Transitions in Changing Photic Environments
bs_bs_banner Austral Entomology (2017) 56,23–46 Review Consequences of evolutionary transitions in changing photic environments Simon M Tierney,1* Markus Friedrich,2,3 William F Humphreys,1,4,5 Therésa M Jones,6 Eric J Warrant7 and William T Wcislo8 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. 2Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA. 3Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. 4Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. 5School of Animal Biology, University of Western Australia, Nedlands, WA 6907, Australia. 6Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia. 7Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden. 8Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá. Abstract Light represents one of the most reliable environmental cues in the biological world. In this review we focus on the evolutionary consequences to changes in organismal photic environments, with a specific focus on the class Insecta. Particular emphasis is placed on transitional forms that can be used to track the evolution from (1) diurnal to nocturnal (dim-light) or (2) surface to subterranean (aphotic) environments, as well as (3) the ecological encroachment of anthropomorphic light on nocturnal habitats (artificial light at night). We explore the influence of the light environment in an integrated manner, highlighting the connections between phenotypic adaptations (behaviour, morphology, neurology and endocrinology), molecular genetics and their combined influence on organismal fitness. -
Physiological Adaptations of the Gut in the Lake Magadi Tilapia, Alcolapia Grahami, an Alkaline- and Saline-Adapted Teleost Fish
Comparative Biochemistry and Physiology Part A 136 (2003) 701–715 Physiological adaptations of the gut in the Lake Magadi tilapia, Alcolapia grahami, an alkaline- and saline-adapted teleost fish Annie Narahara Bergmanab , Pierre Laurent , George Otiang’a-Owiti c , Harold L. Bergman a , Patrick J. Walshde , Paul Wilson , Chris M. Wood f, * aDepartment of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA bCentre d’Ecologie et de Physiologie Energetiques,´ CNRS, 23 Rue Bequerel, BP 20 CR, Strasbourg 67087, France cDepartment of Veterinary Anatomy, University of Nairobi, Nairobi, Kenya dDivision of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, NIEHS Marine and Freshwater Biomedical Science Center, University of Miami, Miami, FL 33149, USA eDepartment of Chemistry, Wildlife Forensic DNA Laboratory, Trent University, Peterborough, Ontario, Canada K9J 7B8 fDepartment of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1 Received 17 April 2003; received in revised form 28 July 2003; accepted 29 July 2003 Abstract We describe the gut physiology of the Lake Magadi tilapia (Alcolapia grahami), specifically those aspects associated with feeding and drinking while living in water of unusually high carbonate alkalinity (titratable bases245 mequiv ly1) and pH (9.85). Drinking of this highly alkaline lake water occurs at rates comparable to or higher than those seen in marine teleosts. Eating and drinking take place throughout the day, although drinking predominates during hours of darkness. The intestine directly intersects the esophagus at the anterior end of the stomach forming a ‘T’, and the pyloric sphincter, which comprises both smooth and striated muscle, is open when the stomach is empty and closed when the stomach is full. -
A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users. -
Female Reproductive Mode Shapes Allometric Scaling of Male Traits in Live-Bearing Fishes (Family Poeciliidae)
Received: 24 February 2021 | Revised: 22 April 2021 | Accepted: 12 May 2021 DOI: 10.1111/jeb.13875 RESEARCH PAPER Female reproductive mode shapes allometric scaling of male traits in live- bearing fishes (family Poeciliidae) Andrew I. Furness1 | Andres Hagmayer2 | Bart J. A. Pollux2 1Department of Biological and Marine Sciences, University of Hull, Hull, UK Abstract 2Department of Animal Sciences, Reproductive mode is predicted to influence the form of sexual selection. The viviparity- Wageningen University, Wageningen, The driven conflict hypothesis posits that a shift from lecithotrophic (yolk- nourished) to Netherlands matrotrophic (mother- nourished or placental) viviparity drives a shift from precopula- Correspondence tory towards post- copulatory sexual selection. In lecithotrophic species, we predict Andrew I. Furness, Department of Biological and Marine Sciences, University of Hull, that precopulatory sexual selection will manifest as males exhibiting a broad distribu- Hull, UK. tion of sizes, and small and large males exhibiting contrasting phenotypes (morphology Email: [email protected] and coloration); conversely, in matrotrophic species, an emphasis on post- copulatory Funding information sexual selection will preclude these patterns. We test these predictions by gathering Netherlands Organization for Scientific Research, Grant/Award Number: data on male size, morphology and coloration for five sympatric Costa Rican poeciliid 864.14.008; Academy Ecology Fund 2017; species that differ in reproductive mode (i.e. lecithotrophy vs. matrotrophy). We find U.S. National Science Foundation, Grant/ Award Number: 1523666 tentative support for these predictions of the viviparity- driven conflict hypothesis, with some interesting caveats and subtleties. In particular, we find that the three lec- ithotrophic species tend to show a broader distribution of male sizes than matrotrophic species. -
1 Peces 1 13 Low.Pdf
ISSN 2410-7492 Acces RNPS 2403 Abierto Revista Cubana de Zoología http://revistas.geotech.cu/index.php/poey COLECCIONES ZOOLÓGICAS 503 (julio-diciembre, 2016): 1 - 13 Catálogo ilustrado de los especímenes tipo de peces cubanos II (Osteichthyes, clase: Actinopterygii: Cyprinodontiformes, Gadiformes, Lampridiformes, Mugiliformes, Myctophiformes, Ophidiformes) Isabel FALOH-GANDARILLA1* , Luis S. ALVAREZ-LAJONCHERE2 , Erik GARCÍA- MACHADO3 , Elena GUTIÉRREZ DE LOS REYES1 , María.V.OROZCO1 , Rolando CORTÉS1 , Yusimí ALFONSO1 , Elida LEMUS1 , Raúl Igor CORRADA WONG1 , Pedro CHEVALIER- MONTEAGUDO1 , Alexis Ramón FERNÁNDEZ OSORIA1 , Roberto PÉREZ DE LOS REYES1 , Isis L. ÁLVAREZ1 1Acuario Nacional de Cuba (ANC), Ave. Primera y Calle 60, Miramar, Playa, La Habana, Cuba. 2Calle 41 No. 886, N. Vedado, Plaza, La Habana, C.P. 10600, Cuba 3Centro de Investigaciones Marinas, Universidad de la Habana, Calle 16, No. 114 entre 1ra y 3ra, Miramar, Playa, La Habana, C.P. 11300, Cuba *Autor para correspondencia: [email protected] Resumen. Se recopila información para representar los MYCTOPHIFORMES, OPHIDIFORMES). The especímenes tipo de 29 especies de peces cubanos information from different databases was collected to (Superclase Osteichthyes), desde el Orden present the type specimens of 29 Cuban fishes (Superclass Cyprinodontiformes hasta el Orden Ophidiiformes. La Osteichthyes) in alphabetical order of the order of the Class recopilación se ha hecho según el orden alfabético de los from Cyprinodontiformes to Ophidiiformes; with their Órdenes de la Clase; con ilustraciones y datos asociados. 11 original illustrations and associated data. 11 of them are de las especies fueron descritas por Don Felipe Poey y Aloy, Poey's specimens, the famous Cuban naturalist from 19th conocido naturalista cubano del siglo XIX. -
Aves 207 Introducción 209 Hojas De Datos
LIBRO ROJO DE LOS VERTEBRADOS DE CUBA EDITORES Hiram González Alonso Lourdes Rodríguez Schettino Ariel Rodríguez Carlos A. Mancina Ignacio Ramos García INSTITUTO DE ECOLOGÍA Y SISTEMÁTICA 2012 Editores Hiram González Alonso Lourdes Rodríguez Schettino Ariel Rodríguez Carlos A. Mancina Ignacio Ramos García Cartografía y análisis del Sistema de Información Geográfica Arturo Hernández Marrero Ángel Daniel Álvarez Ariel Rodríguez Gómez Diseño Pepe Nieto Selección de imágenes y © 2012, Instituto de Ecología y Sistemática, CITMA procesamiento digital © 2012, Hiram González Alonso Hiram González Alonso © 2012, Lourdes Rodríguez Schettino Ariel Rodríguez Gómez © 2012, Ariel Rodríguez Julio A. Larramendi Joa © 2012, Carlos A. Mancina © 2012, Ignacio Ramos García Ilustraciones Nils Navarro Pacheco Reservados todos los derechos. Raimundo López Silvero Prohibida® la reproducción parcial o total de esta obra, así como su transmisión por cualquier medio o mediante cualquier soporte, Dirección Editorial sin la autorización escrita del Instituto de Ecología y Sistemática Hiram González Alonso (CITMA, República de Cuba) y de sus editores. ISBN 978-959-270-234-9 Forma de cita recomendada: González Alonso, H., L. Rodríguez Schettino, A. Rodríguez, Impreso por C. A. Mancina e I. Ramos García. 2012. Libro Rojo de los ARG Impresores, S. L. Vertebrados de Cuba. Editorial Academia, La Habana, 304 pp. Madrid, España Forma de cita recomendada para Hoja de Datos del taxón: Autor(es) de la hoja de datos del taxón. 2012. “Nombre científico de la especie”. En González Alonso, H., L. Rodríguez Schettino, A. Rodríguez, C. A. Mancina e I. Ramos García (eds.). Libro Rojo de los Vertebrados de Cuba. Editorial Academia, La Habana, pp.