Reduction and Mechanism

Total Page:16

File Type:pdf, Size:1020Kb

Reduction and Mechanism C:/ITOOLS/WMS/CUP-NEW/21715866/WORKINGFOLDER/ROSENBERG-ELE/9781108742313PRE.3D i [1–4] 27.3.2020 8:04PM Elements in the Philosophy of Biology edited by Grant Ramsey KU Leuven Michael Ruse Florida State University REDUCTION AND MECHANISM Alex Rosenberg Duke University C:/ITOOLS/WMS/CUP-NEW/21715866/WORKINGFOLDER/ROSENBERG-ELE/9781108742313PRE.3D ii [1–4] 27.3.2020 8:04PM University Printing House, Cambridge CB2 8BS, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia 314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 79 Anson Road, #06–04/06, Singapore 079906 Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781108742313 DOI: 10.1017/9781108592949 © Alex Rosenberg 2020 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2020 A catalogue record for this publication is available from the British Library. ISBN 978-1-108-74231-3 Paperback ISSN 2515-1118 (print) ISSN 2515-1126 (online) Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. C:/ITOOLS/WMS/CUP-NEW/21715866/WORKINGFOLDER/ROSENBERG-ELE/9781108742313PRE.3D iii [1–4] 27.3.2020 8:04PM Reduction and Mechanism Elements in the Philosophy of Biology DOI: 10.1017/9781108592949 First published online: tbc Alex Rosenberg Duke University Abstract: Reductionism is a widely endorsed methodology among biologists, a metaphysical theory advanced to vindicate the biologist’s methodology, and an epistemic thesis those opposed to reductionism have been eager to refute. While the methodology has gone from strength to strength in its history of achievements, the metaphysical thesis grounding it remained controversial despite its significant changes over the last seventy-five years of the philosophy of science. Meanwhile, antireductionism about biology, and especially Darwinian natural selection, became orthodoxy in philosophy of mind, philosophy of science, and philosophy of biology. This Element expounds the debate about reductionism in biology, from the work of the post-positivists to the end-of-the-century debates about supervenience, multiple realizability, and explanatory exclusion. It shows how the more widely accepted twenty-first-century doctrine of “mechanism”–reductionism with a human face – inherits both the strengths and the challenges of the view it has largely supplanted. Keywords: reductionism, mechanism, special sciences © Alex Rosenberg 2020 ISBNs: 9781108742313 (PB), 9781108592949 (OC) ISSNs: 2515-1126 (online), 2515-1118 (print) C:/ITOOLS/WMS/CUP-NEW/21715866/WORKINGFOLDER/ROSENBERG-ELE/9781108742313PRE.3D iv [1–4] 27.3.2020 8:04PM Contents Introduction 1 1 What Was Reductionism? 8 2 Biology as Natural History 27 3 Reductionism and Natural Selection 39 4 Reduction Makes Way for Mechanism 55 Conclusion: Mechanism, Causation, Physicalism, and the Laws of Nature 66 Bibliography 71 C:/ITOOLS/WMS/CUP-NEW/21715866/WORKINGFOLDER/ROSENBERG-ELE/9781108742313C01.3D 1 [1–70] 27.3.2020 7:53PM Reduction and Mechanism 1 Introduction Reductionism is a metaphysical thesis, a claim about explanations, and a research program. The research program is pursued by scientists, who point to great achieve- ments that encourage its pursuit while recognizing the important challenges it still faces. What this program demands is that biology and the life sciences generally employ an opportunistic, top-down research strategy, always seeking more fundamental explanations that will complete, correct, or otherwise improve on previous explanatory achievements. Reductionism is often treated as also requiring an equivalent research program in the behavioral and social sciences, which, following Fodor (1974), have come to be called the “special sciences.” This extension is not unwarranted, since the special sciences are devoted to the study of one or a small number of biological kinds: hominins and higher primates. Reductionism as a research program among biologists doesn’t impose a bottom-up strategy that requires all biological research to begin at the molecular level. It only requires it to end there. The actual reductions these biologists have provided are illustrations to them and to reductionist philosophers of how biological explanation at its best proceeds. The successes motivate biologists far more than any philosophical arguments. Among these successes are at least the following: the molecular account of respiration all the way down to the oxygen affinity of the iron molecule in the four-unit adult and fetal hemoglobin protein molecules, their allosteric properties, and the roles of coenzymes such as 2,3-diphosphoglycerate (DPG) in their positive cooperativity (Perutz, 1962); the central dogma of molecular genetics (Watson, 1965) and its associated achievements in the explanation of heredity and somatic gene regulation; the specific role of somatic gene regulation in embryological development (Lawrence, 1992); sensory transduction in the visual system (Montell, 2003); and the less spectacular successes of the physical understanding of photosynth- esis as a chemical process – the Calvin cycle – and the even earlier detailing of the mechanism of cellular metabolism in the tricarboxylic acid (TCA) or Krebs citric acid cycle. By itself, a list of successes of this sort is at best a relatively weak inductive argument for reductionism as the methodology of a research program that will succeed everywhere in the life sciences. A few biologists have tried to provide more arguments for why such a program should face no limits and be expected to succeed everywhere in the life sciences. Of these, the most visibly explicit advocates of reductionism were the Nobel laureates J. Monod (1971) and F. Crick (1966). By and large, their arguments were metaphysical: the nature of reality as being wholly physical motivated their reductionism. But C:/ITOOLS/WMS/CUP-NEW/21715866/WORKINGFOLDER/ROSENBERG-ELE/9781108742313C01.3D 2 [1–70] 27.3.2020 7:53PM 2 Elements in the Philosophy of Biology metaphysics doesn’t much concern biologists, when they even notice it at all. Philosophers, however, are not indifferent to it. Philosophers who endorse the research program on which biologists such as Monod and Crick placed their bet ground their confidence in its eventual metaphysical vindication, which they identify as physicalism: All of the facts empirical science deals with are physical facts – facts about physical matter and physical fields. Reductionism’s biological and philosophical opponents reject the research program as misguided because they insist there are many excellent irreducible explanations in biology. In the words of one of the most prominent of anti- reductionists, reductionism’s “mistake consists in the loss of understanding through immersion in detail, with concomitant failure to represent generalities that are important to ‘growth and form’ [invoking D’Arcy Wentworth Thompson’s expression]” (Kitcher, 1999, p. 206). As we will see, they proffer examples of such fully adequate but irreducible explanations. Many (perhaps most) philosophers who reject reductionism as a research program or a thesis about explanation embrace a metaphysical commitment to physicalism. This is especially true among philosophers of mind and philoso- phers of psychology who do not wish to endorse dualism or the existence of mind or mental events, states, or processes distinct from physical events, states, or processes. Physicalist antireductionism is in fact the most widely held view in the philosophy of mind and philosophy of psychology, as well as a widely accepted view in biology, as we shall see. But it is important to bear in mind that there are some philosophers of science, including a number of philosophers of biology, who reject reductionism for other reasons. Many of them call themselves pluralists largely because they reject the suggestion that there is a single epistemic standard or methodology underlying science, especially one that requires strong consilience or even logical compatibility between disciplines and their claims. These pluralists emphasize the corrigibility and tentativeness of all scientific findings, and they urge that serious consideration of a large number of different, competing, and conflicting theoretical and experimental results is healthy. Thus, they reject physicalism as the reflection of unacceptable claims for the hegemony of results and methods characteristic of the physical sciences. Pluralism is committed to (tentatively) accepting the knowledge claims of the apparently irreducible findings, theories, and explanations they identify in biology. The train of their argument proceeds from their acceptance of one or another theory, model, regularity, or explanation in biology as well established, together with their claim that it is irreducible, to the intermediate conclusion that as philosophers we should endorse them as true or well warranted
Recommended publications
  • Descartes' Influence in Shaping the Modern World-View
    R ené Descartes (1596-1650) is generally regarded as the “father of modern philosophy.” He stands as one of the most important figures in Western intellectual history. His work in mathematics and his writings on science proved to be foundational for further development in these fields. Our understanding of “scientific method” can be traced back to the work of Francis Bacon and to Descartes’ Discourse on Method. His groundbreaking approach to philosophy in his Meditations on First Philosophy determine the course of subsequent philosophy. The very problems with which much of modern philosophy has been primarily concerned arise only as a consequence of Descartes’thought. Descartes’ philosophy must be understood in the context of his times. The Medieval world was in the process of disintegration. The authoritarianism that had dominated the Medieval period was called into question by the rise of the Protestant revolt and advances in the development of science. Martin Luther’s emphasis that salvation was a matter of “faith” and not “works” undermined papal authority in asserting that each individual has a channel to God. The Copernican revolution undermined the authority of the Catholic Church in directly contradicting the established church doctrine of a geocentric universe. The rise of the sciences directly challenged the Church and seemed to put science and religion in opposition. A mathematician and scientist as well as a devout Catholic, Descartes was concerned primarily with establishing certain foundations for science and philosophy, and yet also with bridging the gap between the “new science” and religion. Descartes’ Influence in Shaping the Modern World-View 1) Descartes’ disbelief in authoritarianism: Descartes’ belief that all individuals possess the “natural light of reason,” the belief that each individual has the capacity for the discovery of truth, undermined Roman Catholic authoritarianism.
    [Show full text]
  • Quantum Logical Causality, Category Theory, and the Metaphysics of Alfred North Whitehead
    Quantum Logical Causality, Category Theory, and the Metaphysics of Alfred North Whitehead Connecting Zafiris’ Category Theoretic Models of Quantum Spacetime and the Logical-Causal Formalism of Quantum Relational Realism Workshop Venue: Swiss Federal Institute of Technology (ETH) Chair for Philosophy (building RAC) Raemistrasse 36, 8001 Zurich Switzerland January 29 – 30, 2010 I. Aims and Motivation Recent work in the natural sciences—most notably in the areas of theoretical physics and evolutionary biology—has demonstrated that the lines separating philosophy and science have all but vanished with respect to current explorations of ‘fundamental’ questions (e.g., string theory, multiverse cosmologies, complexity-emergence theories, the nature of mind, etc.). The centuries-old breakdown of ‘natural philosophy’ into the divorced partners ‘philosophy’ and ‘science,’ therefore, must be rigorously re- examined. To that end, much of today’s most groundbreaking scholarship in the natural sciences has begun to include explicit appeals to interdisciplinary collaboration among the fields of applied natural sciences, mathematics and philosophy. This workshop will be dedicated to the question of how a philosophical-metaphysical theory can be fruitfully applied to basic conceptualizations in the natural sciences. More narrowly, we will explore the process oriented metaphysical scheme developed by philosopher and mathematician Alfred North Whitehead (1861-1947) and Michael Epperson’s application of this scheme to recent work in quantum mechanics, and the relation of these to Elias Zafiris’s category theoretic model of quantum event structures. Our aim is to give participants from various fields of expertise (see list below) the opportunity to exchange their specialized knowledge in the context of a collaborative exploration of the fundamental questions raised by recent scholarship in physics and mathematics.
    [Show full text]
  • Stable Structural Color Patterns Displayed on Transparent Insect Wings
    Stable structural color patterns displayed on transparent insect wings Ekaterina Shevtsovaa,1, Christer Hanssona,b,1, Daniel H. Janzenc,1, and Jostein Kjærandsend,1 aDepartment of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden; bScientific Associate of the Entomology Department, Natural History Museum, London SW7 5BD, United Kingdom; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018; and dDepartment of Biology, Museum of Zoology, Lund University, Helgonavägen 3, SE-22362 Lund, Sweden Contributed by Daniel H. Janzen, November 24, 2010 (sent for review October 5, 2010) Color patterns play central roles in the behavior of insects, and are and F). In laboratory conditions most wings are studied against a important traits for taxonomic studies. Here we report striking and white background (Fig. 1 G, H, and J), or the wings are embedded stable structural color patterns—wing interference patterns (WIPs) in a medium with a refractive index close to that of chitin (e.g., —in the transparent wings of small Hymenoptera and Diptera, ref. 19). In both cases the color reflections will be faint or in- patterns that have been largely overlooked by biologists. These ex- visible. tremely thin wings reflect vivid color patterns caused by thin film Insects are an exceedingly diverse and ancient group and interference. The visibility of these patterns is affected by the way their signal-receiver architecture of thin membranous wings the insects display their wings against various backgrounds with and color vision was apparently in place before their huge radia- different light properties. The specific color sequence displayed tion (20–22). The evolution of functional wings (Pterygota) that lacks pure red and matches the color vision of most insects, strongly can be freely operated in multidirections (Neoptera), coupled suggesting that the biological significance of WIPs lies in visual with small body size, has long been viewed as associated with their signaling.
    [Show full text]
  • As Recursive Self-Prediction: Does a Deterministic Mechanism Reduce Responsibility?
    1 'Free Will' as Recursive Self-Prediction: Does a Deterministic Mechanism Reduce Responsibility? George Ainslie 11,09 To appear in Poland, Jeffrey and Graham, George, Addiction and Responsibility. MIT This material is the result of work supported with resources and the use of facilities at the Department of Veterans Affairs Medical Center, Coatesville, PA, USA. Advances in brain imaging have revealed more and more about the physical basis of motivated behavior, making the age-old dispute about free will and moral responsibility increasingly salient. Science seems to be delineating chains of causality for feelings, choices, and even beliefs; but if all mental life is strictly caused by prior events, and those by still earlier events in a chain extending back before birth, how can individuals be held responsible for their actions? Most people feel that they originate their actions (Nadelhoffer et.al., 2005) and will readily give opinions about whether particular circumstances make an action blameworthy or not (Monterosso et.al., 2005); but when philosophers take the chain of causality explicitly into account they generally distance themselves from these direct introspections, holding for instance that blame is just a way of assuaging instinctive resentment (Strawson, 1962/2003) or a threat to manipulate people’s motives (Dennett, 1984, pp. 131-172). I come to this subject with a behavioral science rather than a philosophy background, but the free will dispute looks to this outsider like something that recent empirical findings might resolve. The dispute is age old because of a fundamental conundrum. We insist on the truth of each of two propositions, the compatibility of which is far from obvious, perhaps absurd: 1.
    [Show full text]
  • Artificial Intelligence: How Does It Work, Why Does It Matter, and What Can We Do About It?
    Artificial intelligence: How does it work, why does it matter, and what can we do about it? STUDY Panel for the Future of Science and Technology EPRS | European Parliamentary Research Service Author: Philip Boucher Scientific Foresight Unit (STOA) PE 641.547 – June 2020 EN Artificial intelligence: How does it work, why does it matter, and what can we do about it? Artificial intelligence (AI) is probably the defining technology of the last decade, and perhaps also the next. The aim of this study is to support meaningful reflection and productive debate about AI by providing accessible information about the full range of current and speculative techniques and their associated impacts, and setting out a wide range of regulatory, technological and societal measures that could be mobilised in response. AUTHOR Philip Boucher, Scientific Foresight Unit (STOA), This study has been drawn up by the Scientific Foresight Unit (STOA), within the Directorate-General for Parliamentary Research Services (EPRS) of the Secretariat of the European Parliament. To contact the publisher, please e-mail [email protected] LINGUISTIC VERSION Original: EN Manuscript completed in June 2020. DISCLAIMER AND COPYRIGHT This document is prepared for, and addressed to, the Members and staff of the European Parliament as background material to assist them in their parliamentary work. The content of the document is the sole responsibility of its author(s) and any opinions expressed herein should not be taken to represent an official position of the Parliament. Reproduction and translation for non-commercial purposes are authorised, provided the source is acknowledged and the European Parliament is given prior notice and sent a copy.
    [Show full text]
  • Consequences of Evolutionary Transitions in Changing Photic Environments
    bs_bs_banner Austral Entomology (2017) 56,23–46 Review Consequences of evolutionary transitions in changing photic environments Simon M Tierney,1* Markus Friedrich,2,3 William F Humphreys,1,4,5 Therésa M Jones,6 Eric J Warrant7 and William T Wcislo8 1School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. 2Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA. 3Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA. 4Terrestrial Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia. 5School of Animal Biology, University of Western Australia, Nedlands, WA 6907, Australia. 6Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia. 7Department of Biology, Lund University, Sölvegatan 35, S-22362 Lund, Sweden. 8Smithsonian Tropical Research Institute, PO Box 0843-03092, Balboa, Ancón, Republic of Panamá. Abstract Light represents one of the most reliable environmental cues in the biological world. In this review we focus on the evolutionary consequences to changes in organismal photic environments, with a specific focus on the class Insecta. Particular emphasis is placed on transitional forms that can be used to track the evolution from (1) diurnal to nocturnal (dim-light) or (2) surface to subterranean (aphotic) environments, as well as (3) the ecological encroachment of anthropomorphic light on nocturnal habitats (artificial light at night). We explore the influence of the light environment in an integrated manner, highlighting the connections between phenotypic adaptations (behaviour, morphology, neurology and endocrinology), molecular genetics and their combined influence on organismal fitness.
    [Show full text]
  • An Introduction to Philosophy
    An Introduction to Philosophy W. Russ Payne Bellevue College Copyright (cc by nc 4.0) 2015 W. Russ Payne Permission is granted to copy, distribute and/or modify this document with attribution under the terms of Creative Commons: Attribution Noncommercial 4.0 International or any later version of this license. A copy of the license is found at http://creativecommons.org/licenses/by-nc/4.0/ 1 Contents Introduction ………………………………………………. 3 Chapter 1: What Philosophy Is ………………………….. 5 Chapter 2: How to do Philosophy ………………….……. 11 Chapter 3: Ancient Philosophy ………………….………. 23 Chapter 4: Rationalism ………….………………….……. 38 Chapter 5: Empiricism …………………………………… 50 Chapter 6: Philosophy of Science ………………….…..… 58 Chapter 7: Philosophy of Mind …………………….……. 72 Chapter 8: Love and Happiness …………………….……. 79 Chapter 9: Meta Ethics …………………………………… 94 Chapter 10: Right Action ……………………...…………. 108 Chapter 11: Social Justice …………………………...…… 120 2 Introduction The goal of this text is to present philosophy to newcomers as a living discipline with historical roots. While a few early chapters are historically organized, my goal in the historical chapters is to trace a developmental progression of thought that introduces basic philosophical methods and frames issues that remain relevant today. Later chapters are topically organized. These include philosophy of science and philosophy of mind, areas where philosophy has shown dramatic recent progress. This text concludes with four chapters on ethics, broadly construed. I cover traditional theories of right action in the third of these. Students are first invited first to think about what is good for themselves and their relationships in a chapter of love and happiness. Next a few meta-ethical issues are considered; namely, whether they are moral truths and if so what makes them so.
    [Show full text]
  • MATERIALISM: a HISTORICO-PHILOSOPHICAL INTRODUCTION Charles Wolfe
    MATERIALISM: A HISTORICO-PHILOSOPHICAL INTRODUCTION Charles Wolfe To cite this version: Charles Wolfe. MATERIALISM: A HISTORICO-PHILOSOPHICAL INTRODUCTION. MATERI- ALISM: A HISTORICO-PHILOSOPHICAL, Springer International Publishing, 2016, Springer Briefs, 978-3-319-24818-9. 10.1007/978-3-319-24820-2. hal-01233178 HAL Id: hal-01233178 https://hal.archives-ouvertes.fr/hal-01233178 Submitted on 24 Nov 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MATERIALISM: A HISTORICO-PHILOSOPHICAL INTRODUCTION Forthcoming in the Springer Briefs series, December 2015 Charles T. Wolfe Centre for History of Science Department of Philosophy and Moral Sciences Ghent University [email protected] TABLE OF CONTENTS Chapter 1 (Introduction): materialism, opprobrium and the history of philosophy Chapter 2. To be is to be for the sake of something: Aristotle’s arguments with materialism Chapter 3. Chance, necessity and transformism: brief considerations Chapter 4. Early modern materialism and the flesh or, forms of materialist embodiment Chapter 5. Vital materialism and the problem of ethics in the Radical Enlightenment Chapter 6. Naturalization, localization: a remark on brains and the posterity of the Enlightenment Chapter 7. Materialism in Australia: The Identity Theory in retrospect Chapter 8.
    [Show full text]
  • Wells Glossary of Critical Philosophy and Mental
    WELLS' UNABRIDGED GLOSSARY OF THE CRITICAL PHILOSOPHY and MENTAL PHYSICS FOURTH EDITION including Critical social-natural science terminology Edited by Richard B. Wells PUBLISHED BY THE WELLS LABORATORY OF COMPUTATIONAL NEUROSCIENCE & MENTAL PHYSICS THE UNIVERSITY OF IDAHO BOISE, IDAHO FIRST PRINTING: October 31, 2014 ©2014 by Richard B. Wells All Rights Reserved INTRODUCTORY That there are many names in use amongst speculative men which do not always suggest to others determinant, particular ideas, or in truth anything at all, is what nobody will deny. – Berkeley Preface to the Fourth Edition The fourth edition of the Critical Glossary adds almost two hundred new technical terms for empirical social-natural sciences. These new social-natural sciences include education theory, economics, political science, social-natural sociology, psychology, organization and institution theory, management theory, mathematics and logic, deontological ethics, and justice theory. The edition covers new terminology development up through the publication of volume III of The Idea of Public Education, entitled The Institution of Public Education. Like the third edition, this edition consists of six main parts arranged in the following order: the Main Glossary, the Table of Realdefinitions of the Categories, the Critical Acroams and Principles, the Summary of the Transcendental Ideas, the Synopsis of the Momenta of Practical Judgment, and the Synopsis of the Momenta of Reflective Judgment. Richard B. Wells, Ph.D., P.E. (ret.) Emeritus Professor, University of Idaho written at The Wells Laboratory of Computational Neuroscience & Mental Physics 8105 S. Diego Way Boise, Idaho, USA 83709 [email protected] Oct. 30, 2014 in Boise, ID ii INTRODUCTORY Preface to the Third Edition This third edition of the Critical Glossary reflects continued developments in the application of the Critical Philosophy and the mental physics of the phenomenon of mind to social-natural science applications.
    [Show full text]
  • Philosophy of Mind and the Problem of Free Will in the Light of Quantum Mechanics
    Philosophy of Mind and the Problem of Free Will in the Light of Quantum Mechanics. Henry P. Stapp Lawrence Berkeley National Laboratory University of California Berkeley, California 94720 Abstract Arguments pertaining to the mind-brain connection and to the physical effectiveness of our conscious choices have been presented in two recent books, one by John Searle, the other by Jaegwon Kim. These arguments are examined, and it is explained how the encountered difficulties arise from a defective understanding and application of a pertinent part of contemporary science, namely quantum mechanics. The principled quantum uncertainties entering at the microscopic levels of brain processing cannot be confined to the micro level, but percolate up to the macroscopic regime. To cope with the conflict between the resulting macroscopic indefiniteness and the definiteness of our conscious experiences, orthodox quantum mechanics introduces the idea of agent-generated probing actions, each of which specifies a definite set of alternative possible empirically/experientially distinguishable outcomes. Quantum theory then introduces the mathematical concept of randomness to describe the probabilities of the various alternative possible outcomes of the chosen probing action. But the agent-generated choice of which probing action to perform is not governed by any known law or rule, statistical or otherwise. This causal gap provides a logical opening, and indeed a logical need, for the entry into the dynamical structure of nature of a process that goes beyond the currently understood quantum mechanical statistical generalization of the deterministic laws of classical physics. The well-known quantum Zeno effect can then be exploited to provide a natural process that establishes a causal psychophysical link within the complex structure consisting of a stream of conscious experiences and certain macroscopic classical features of a quantum mechanically described brain.
    [Show full text]
  • The Development of a Miniature Mechanism for Producing Insect Wing Motion
    The development of a miniature mechanism for producing insect wing motion S. C. Burgess, K. Alemzadeh & L. Zhang Department of Mechanical Engineering, Bristol University, Bristol, UK Abstract Insects are capable of very agile flight on a small scale. If a man-made machine can be built that can fly like an insect, it would have important industrial, civil and military applications. Insects have complex wing motions including non- planar wing strokes and stroke reversal. This paper presents the design of a novel mechanism which can produce insect type wing motion. The mechanism is very light and compact and has potential for use in micro air vehicles. A prototype has been built and some preliminary tests have been carried out to characterize the mechanism performance. Keywords: insect flight, wing motion, novel mechanisms, wing reversal, lift. 1 Introduction The ability for controlled flight has existed in at least four classes of creature: (1) birds; (2) mammals (bats); (3) reptiles (pterosaurs); and (4) insects. Pterosaurs are believed to have been the largest fliers with wingspans up to 12m. It is thought that pterosaurs were capable of flapping flight because fossil records show a similar type of shoulder joint to that found in birds. Birds currently have a large range of size from the large albatross with a wingspan of up to 3.5m, to the tiny bumble hummingbird which has a span of only 8cm. Most birds can perform flapping flight but not true hovering flight. However, hummingbirds have a flexible shoulder joint which enables them to hover in windless conditions. Bats have a relatively small range of size.
    [Show full text]
  • The Certification As a Mechanism for Control of Artificial Intelligence in Europe
    Certification as a control mechanism of Artificial Intelligence in Europe Carlos Galán, PhD THE CERTIFICATION AS A MECHANISM FOR CONTROL OF ARTIFICIAL INTELLIGENCE IN EUROPE By Carlos Galán, PhD Doctor in Computer Science Law Degree and Lawyer specialized in ICT Law Professor of the Carlos III University of Madrid (Spain) President of the Legal Technology Agency CCN Advisor Member of the European Artificial Intelligence Alliance Member of the Cyberpolitical Working Group of the Elcano Royal Institute . Summary / Abstract: The use of Artificial Intelligence (AI) is one of the most significant technological contributions that will permeate the life of western societies in the coming years, providing significant benefits, but also highlighting risks that need to be assessed and minimized. A reality as disruptive as AI requires that its technology and that the products and services supported by it provide enough guarantees of its proper functioning. The present work analyzes and makes a proposal for the application of the mechanisms of Certification of Conformity to the maintenance of the afore mentioned guarantees. --------------------------------- Page 1 / 13 Certification as a control mechanism of Artificial Intelligence in Europe Carlos Galán, PhD INDEX 1. INTRODUCTION: THE RELIABILITY OF ARTIFICIAL INTELLIGENCE 2. THE PROPOSED MODEL 2.1 AI Technology, Products and Services 2.2 Configuration elements of AI Technology and AI Products/Services 2.3 Ex-ante control and Ex-post control 2.4 Audit and Certification of Conformity 3. CONCLUSIONS AND SUBSEQUENT ACTIONS Page 2 / 13 Certification as a control mechanism of Artificial Intelligence in Europe Carlos Galán, PhD 1. INTRODUCTION : THE RELIABILITY OF ARTIFICIAL INTELLIGENCE On July 27, 1987, the one that these lines subscribe defended before the Doctoral Thesis Court of the Polytechnic University of Madrid the work “A model for the understanding of problems proposed in natural language for a limited domain”.
    [Show full text]