44Th Annual Mt. Wilson Trail Race
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copyrighted Material
Index Abulfeda crater chain (Moon), 97 Aphrodite Terra (Venus), 142, 143, 144, 145, 146 Acheron Fossae (Mars), 165 Apohele asteroids, 353–354 Achilles asteroids, 351 Apollinaris Patera (Mars), 168 achondrite meteorites, 360 Apollo asteroids, 346, 353, 354, 361, 371 Acidalia Planitia (Mars), 164 Apollo program, 86, 96, 97, 101, 102, 108–109, 110, 361 Adams, John Couch, 298 Apollo 8, 96 Adonis, 371 Apollo 11, 94, 110 Adrastea, 238, 241 Apollo 12, 96, 110 Aegaeon, 263 Apollo 14, 93, 110 Africa, 63, 73, 143 Apollo 15, 100, 103, 104, 110 Akatsuki spacecraft (see Venus Climate Orbiter) Apollo 16, 59, 96, 102, 103, 110 Akna Montes (Venus), 142 Apollo 17, 95, 99, 100, 102, 103, 110 Alabama, 62 Apollodorus crater (Mercury), 127 Alba Patera (Mars), 167 Apollo Lunar Surface Experiments Package (ALSEP), 110 Aldrin, Edwin (Buzz), 94 Apophis, 354, 355 Alexandria, 69 Appalachian mountains (Earth), 74, 270 Alfvén, Hannes, 35 Aqua, 56 Alfvén waves, 35–36, 43, 49 Arabia Terra (Mars), 177, 191, 200 Algeria, 358 arachnoids (see Venus) ALH 84001, 201, 204–205 Archimedes crater (Moon), 93, 106 Allan Hills, 109, 201 Arctic, 62, 67, 84, 186, 229 Allende meteorite, 359, 360 Arden Corona (Miranda), 291 Allen Telescope Array, 409 Arecibo Observatory, 114, 144, 341, 379, 380, 408, 409 Alpha Regio (Venus), 144, 148, 149 Ares Vallis (Mars), 179, 180, 199 Alphonsus crater (Moon), 99, 102 Argentina, 408 Alps (Moon), 93 Argyre Basin (Mars), 161, 162, 163, 166, 186 Amalthea, 236–237, 238, 239, 241 Ariadaeus Rille (Moon), 100, 102 Amazonis Planitia (Mars), 161 COPYRIGHTED -
What the Hell Does Orly Think She's Doing in Hawaii
What the Hell Does Orly Think She’s Doing in Hawaii: An attempt at a concise summary of the ongoing Hawaiian antics of Dr. Orly Taitz, Esq Dr. Orly Taitz, Esq v. Loretta Fuddy and Dr. Alvin Onaka Circuit Court for the First Circuit, State of Hawaii Civil Case 11-1-1731 “Petition for a Writ of Mandamus and Request for Inspection of Records Under United Information Practices Act, Statute 92F, State of Hawaii” NOTE: This document contains several links to Dr. Orly Taitz’s website. Dr. Taitz’s website has been known to trigger malware warnings on several occasions, and is often blocked by net nanny and safe browsing software. Click on links at your own risk. NOTE: Due to the highly unpredictable nature of Taitz’s legal antics it can often be difficult to figure out which case she thinks she is arguing. Her default setting on those rare and special occasions when she gets to perform her art in front of a judge seems to be “all of them”. As a result, this timeline includes all of her known interaction with Hawaii State agencies, Hawaii State courts, the Federal District Court for Hawaii, and any filing in any other court that attempts or has attempted to compel or coerce the Hawaii Department of Health into doing anything at all. Also included are references to any and all relevant court or administrative hearing rulings. This is based on the theory that it is likely that Orly will attempt to reference some or all of these activities/events/filings/imaginary animals during any future hearing or court filing. -
The Alkaline Volcanic Rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars Details
The alkaline volcanic rocks of Craters of the Moon National Monument, Idaho and the Columbia Hills of Gusev Crater, Mars Details Meeting 2016 Fall Meeting Section Planetary Sciences Session Terrestrial Analogs for Planetary Processes: Oceans, Volcanoes, Impacts, and Dunes I Identifier P31E-01 Authors Haberle, C W*, Mars Space Flight Facility, Arizona State University, Tempe, AZ, United States Hughes, S S, Idaho State University, Idaho Falls, ID, United States Kobs-Nawotniak, S E, Department of Geosciences, Idaho State University, Idaho Falls, ID, United States Christensen, P R, Arizona State University, Tempe, AZ, United States Index Sediment transport [4558] Terms Atmospheres [5405] Titan [6281] Venus [6295] Abstract Idaho's Eastern Snake River Plain (ESRP) is host to extensive expressions of basaltic volcanism dominated by non evolved olivine tholeiites (NEOT) with localized occurrences of evolved lavas. Craters of the Moon National Monument (COTM) is a polygenetic lava field comprised of more than 60 lava flows emplaced during 8 eruptive periods spanning the last 15 kyrs. The most recent eruptive period (period A; 2500-2000 yr B.P.) produced flows with total alkali vs. silica classifications spanning basalt to trachyte. Coeval with the emplacement of the COTM period A volcanic pile was the emplacement of the Wapi and Kings Bowl NEOT 70 km SSE of COTM along the Great Rift. Previous investigations have determined a genetic link between these two compositionally distinct volcanic centers where COTM compositions can be generated from NEOT melts through complex ascent paths and variable degrees of fractionation and assimilation of lower-middle crustal materials. The Mars Exploration Rover, Spirit, conducted a robotic investigation of Gusev crater from 2004-2010. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Habitability of hydrothermal systems at Jezero and Gusev Craters as constrained by hydrothermal alteration of a terrestrial mafic dike Journal Item How to cite: Costello, Lacey J.; Filiberto, Justin; Crandall, Jake R.; Potter-McIntyre, Sally L.; Schwenzer, Susanne P.; Miller, Michael A.; Hummer, Daniel R.; Olsson-Francis, Karen and Perl, Scott (2020). Habitability of hydrothermal systems at Jezero and Gusev Craters as constrained by hydrothermal alteration of a terrestrial mafic dike. Geochemistry (Early access). For guidance on citations see FAQs. c 2020 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.chemer.2020.125613 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Geochemistry xxx (xxxx) xxxx Contents lists available at ScienceDirect Geochemistry journal homepage: www.elsevier.com/locate/chemer Habitability of hydrothermal systems at Jezero and Gusev Craters as constrained by hydrothermal alteration of a terrestrial mafic dike Lacey J. Costelloa,1, Justin Filibertob,*, Jake R. Crandallc, Sally L. Potter-McIntyrea, Susanne P. Schwenzerd, Michael A. Millere, Daniel R. Hummera, Karen Olsson-Francisd, Scott Perlf a -
The Red Planet's Watery Past
New observations by rovers and orbiters indicate that liquid water not only existed on Mars, it once covered large parts of the planet’s surface, perhaps for more than a billion years WATER FLOWS ACROSS the Martian surface in an artist’s rendering of how the Red Planet may have looked 2.5 billion to four billion years ago. Salt deposits along the water’s edge C REDI T appear purple in this twilight view. 62 SCIENTIFIC AMERICAN DECEMBER 2006 COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. RedThe Planet’s atery W Pastast BY JIM BELL y February 2005 the Mars Exploration Rover named Spirit had already spent more than a year in Gusev Crater, a two-kilometer-deep, Connecticut-size hole in the Red Planet’s surface. Because Gusev lies at the end of an ancient, dry river valley longer than the Grand Canyon, many of us on the rover’s mission team Bhad expected Spirit to fi nd evidence that the crater had been fi lled with water billions of years ago. On the fl at plains where the craft had landed, however, the rover found neither lake deposits nor other preserved signs that water had once fl owed inside Gusev. The rover’s photographs showed only dust and sand and bone-dry volcanic lava rocks. But everything changed once Spirit reached the slopes of the Columbia Hills, about 2.6 kilometers from the landing site. (Each of the hills is named after one of the seven astronauts who died in the space shuttle Columbia disaster in 2003.) As Spirit struggled to climb the western slope of Husband Hill, its wheels dislodged rocks and dug deep C REDI T tracks in the Martian soil. -
Sweet Briar College Magazine – Spring 2019
Dear Sweet Briar alumnae and friends, Friendship and family have been on my mind lately, and so I want to tell you about some new friends I’ve been making this semester. One of them is Ray, who is tall and smart and also known as Love Z, and the other is Blues, who is very personable and a wonderful teacher. My friendship with Ray has grown over time; frankly, I didn’t seem to make much of an impression on him at first. My friendship with Blues blossomed immediately; we seem to be simpatico. As I joked with Merrilee “Mimi” Wroten, the director of Sweet Briar’s acclaimed riding program, maybe I bonded faster with Blues because he’s rather short, and so am I. And if you haven’t already figured it out, Ray, a chestnut warmblood, and Blues, a gray quarter horse, are members of the College’s equine family, and along with Mimi, they’ve been teaching me how to ride. As Sweet Briar’s president, it’s vital for me to learn as much as I can about the Col- lege, its programs and its people. That’s why I taught a course in our inaugural three- week session in the fall of 2018; that’s why I have just instituted collegial gatherings of faculty and staff every Monday evening (called Sweet Briar Hour); and that’s why I’m taking riding lessons, so that I can better understand our equestrian program, its ac- complishments and its needs. Riding also gives me a connection with many members of our Sweet Briar family; a full third of our students identify as riders, whether for competition or recreation. -
Visible-To-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Winter 2018 Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam- Z Investigation on NASA’s Mars-2020 Rover Mission Darian Dixon Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Dixon, Darian, "Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam-Z Investigation on NASA’s Mars-2020 Rover Mission" (2018). WWU Graduate School Collection. 638. https://cedar.wwu.edu/wwuet/638 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam-Z Investigation on NASA’s Mars-2020 Rover Mission By Darian Dixon Accepted in Partial Completion of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Melissa Rice Dr. Pete Stelling Dr. Michael Kraft MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. -
The Surface of Mars Michael H. Carr Index More Information
Cambridge University Press 978-0-521-87201-0 - The Surface of Mars Michael H. Carr Index More information Index Accretion 277 Areocentric longitude Sun 2, 3 Acheron Fossae 167 Ares Vallis 114, 116, 117, 231 Acid fogs 237 Argyre 5, 27, 159, 160, 181 Acidalia Planitia 116 floor elevation 158 part of low around Tharsis 85 floor Hesperian in age 158 Admittance 84 lake 156–8 African Rift Valleys 95 Arsia Mons 46–9, 188 Ages absolute 15, 23 summit caldera 46 Ages, relative, by remote sensing 14, 23 Dikes 47 Alases 176 magma supply rate 51 Alba Patera 2, 17, 48, 54–7, 92, 132, 136 Arsinoes Chaos 115, 117 low slopes 54 Ascreus Mons 46, 49, 51 flank fractures 54 summit caldera 49 fracture ring 54 flank vents 49 dikes 55 rounded terraces 50 pit craters 55, 56, 88 Asteroids 24 sheet flows 55, 56 Astronomical unit 1, 2 Tube-fed flows 55, 56 Athabasca Vallis 59, 65, 122, 125, 126 lava ridges 55 Atlantis Chaos 151 dilatational faults 55 Atmosphere collapse 262 channels 56, 57 Atmosphere, chemical composition 17 pyroclastic deposits 56 circulation 8 graben 56, 84, 86 convective boundary layer 9 profile 54 CO2 retention 260 Albedo 1, 9, 193 early Mars 263, 271 Albor Tholus 60 eddies 8 ALH84001 20, 21, 78, 267, 273–4, 277 isotopic composition 17 Alpha Particle X-ray Spectrometer 232 mass 16 Alpha Proton-ray Spectrometer 231 meridional flow 1 Alpheus Colles 160 pressure variations and range 5, 16 AlQahira 122 temperatures 6–8 Amazonian 277 scale height 5, 16 Amazonis Planitia 45, 64, 161, 195 water content 11 flows 66, 68 column water abundance 174 low -
Wang Et Al., 2008
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E12S40, doi:10.1029/2008JE003126, 2008 Click Here for Full Article Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills Alian Wang,1 J. F. Bell III,2 Ron Li,3 J. R. Johnson,4 W. H. Farrand,5 E. A. Cloutis,6 R. E. Arvidson,1 L. Crumpler,7 S. W. Squyres,2 S. M. McLennan,8 K. E. Herkenhoff,4 S. W. Ruff,9 A. T. Knudson,1 Wei Chen,3 and R. Greenberger1 Received 26 February 2008; revised 27 June 2008; accepted 29 July 2008; published 19 December 2008. [1] Light-toned soils were exposed, through serendipitous excavations by Spirit Rover wheels, at eight locations in the Columbia Hills. Their occurrences were grouped into four types on the basis of geomorphic settings. At three major exposures, the light-toned soils are hydrous and sulfate-rich. The spatial distributions of distinct types of salty soils vary substantially: with centimeter-scaled heterogeneities at Paso Robles, Dead Sea, Shredded, and Champagne-Penny, a well-mixed nature for light-toned soils occurring near and at the summit of Husband Hill, and relatively homogeneous distributions in the two layers at the Tyrone site. Aeolian, fumarolic, and hydrothermal fluid processes are suggested to be responsible for the deposition, transportation, and accumulation of these light-toned soils. In addition, a change in Pancam spectra of Tyrone yellowish soils was observed after being exposed to current Martian surface conditions for 175 sols. This change is interpreted to be caused by the dehydration of ferric sulfates on the basis of laboratory simulations and suggests a relative humidity gradient beneath the surface. -
2011 Elena Daniela
©2011 ELENA DANIELA (DANA) NEACSU ALL RIGHTS RESERVED POLITICAL SATIRE AND POLITICAL NEWS: ENTERTAINING, ACCIDENTALLY REPORTING OR BOTH? THE CASE OF THE DAILY SHOW WITH JON STEWART (TDS) by ELENA-DANIELA (DANA) NEACSU A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Communication, Information and Library Studies Written under the direction of John V. Pavlik, Ph.D And approved by ___Michael Schudson, Ph.D.___ ____Jack Bratich, Ph.D.______ ____Susan Keith, Ph.D.______ ______________________________ New Brunswick, New Jersey MAY 2011 ABSTRACT OF THE DISSERTATION Political Satire and Political News: Entertaining, Accidentally Reporting or Both? The Case of The Daily Show with Jon Stewart (TDS) by ELENA-DANIELA (DANA) NEACSU Dissertation Director: John V. Pavlik, Ph.D. For the last decade, The Daily Show with Jon Stewart (TDS ), a (Comedy Central) cable comedy show, has been increasingly seen as an informative, new, even revolutionary, form of journalism. A substantial body of literature appeared, adopting this view. On closer inspection, it became clear that this view was tenable only in specific circumstances. It assumed that the comedic structure of the show, TDS ’ primary text, promoted cognitive polysemy, a textual ambiguity which encouraged critical inquiry, and that TDS ’ audiences perceived it accordingly. As a result I analyzed, through a dual - encoding/decoding - analytical approach, whether TDS ’ comedic discourse educates and informs its audiences in a ii manner which encourages independent or critical reading of the news. Through a multilayered textual analysis of the primary and tertiary texts of the show, the research presented here asked, “How does TDS ’ comedic narrative (primary text) work as a vehicle of televised political news?” and “How does TDS ’ audience decode its text?” The research identified flaws in the existing literature and the limits inherent to any similar endeavors. -
Highlights & Breakthroughs Contribution for American
1 Highlights & Breakthroughs contribution for American Mineralogist on “Wishstone to Watchtower: 2 Amorphous alteration of plagioclase-rich rocks in Gusev crater, Mars” by Stephen W. Ruff and 3 Victoria E. Hamilton 4 5 Joshua L. Bandfield, Space Science Institute, Boulder, CO 80301 6 7 The Mars Exploration Rover “Spirit” provided us with a serendipitous opportunity to traverse a section 8 of the ancient martian crust, acquiring a trove of imaging, geochemical, and mineralogical 9 measurements along the way. This small window looking out on the Noachian period (>3.7 Ga), 10 dubbed the Columbia Hills, pokes out from the younger, volcanically resurfaced floor of Gusev Crater. 11 It was our first detailed look at early Mars, a time when liquid water appears to have played a much 12 more prominent role in shaping and modifying the planet than later in its history. 13 The abundance of rocks that appear to be snapshots from early in the history of Mars are a luxury 14 compared to the rarity and inevitable metamorphic overprinting of Hadean and early Archean samples 15 from Earth. However, few planetary surfaces of this age anywhere in the solar system escape the 16 disruption caused by impacts. In this sense, it is difficult to identify the geologic context of any given 17 sample or series of samples. Although what appears to be an outcrop of a draping volcaniclastic unit in 18 the Columbia Hills may still be in place, it is also possible for it to have been highly fractured, shocked, 19 and overturned (perhaps multiple times) as part of the ejecta blanket from an impact event (e.g., 20 McCoy et al., 2008). -
Stratigraphic Relationships on Husband Hill, Mars
42nd Lunar and Planetary Science Conference (2011) 1159.pdf STRATIGRAPHIC RELATIONSHIPS ON HUSBAND HILL, MARS. S. B. Cole, W. A. Watters, and S. W. Squyres, Department of Astronomy, Cornell University, 425 Space Sciences Building, Ithaca, NY 14853, [email protected]. Introduction: The Mars Exploration Rover Spirit The purpose of this study is to test the hypotheses that has been exploring the Columbia Hills since mid-2004 1) the Cumberland Ridge outcrops form a stratigraphic (see Fig. 1). The formation of the Hills is uncertain; section, and 2) these units drape Husband Hill. they are hypothesized to be the overlapping rims of multiple craters, or the remains of a central peak or ring. It is not known whether the units visible along Spirit’s traverse are part of the original Columbia Hills edifice, or were deposited after the hills were uplifted. In the former case, outcrop bedding attitudes should conform to the local topography, while with the latter, their dips may be significantly steeper. Between sols 462 and 503, Spirit investigated three prominent outcrops, separated by ~5-15m, on Cumber- land Ridge, to the northwest of Tennessee Valley and the Husband Hill summit (see Fig. 2). The Methuse- lah, Jibsheet, and Larry’s Lookout outcrops were re- markable in their chemical similarity and mineralogical variation [1-4]. Outcrop exposures are rare in the Co- lumbia Hills. As localized bedrock exposures with visible bedding planes, Cumberland Ridge presents a Fig. 2: HiRISE image of Cumberland Ridge. Strikes and rare example of a potential stratigraphic section along dips, with error estimates, are indicated for the Methuselah Spirit’s traverse.