General News
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observações Sobre a Ocorrência De Mosca-Negra- Dos-Citros, Aleurocanthus Woglumi Ashby, 1915 (Hemiptera: Sternorrhyncha: Aleyrodidae) No Estado Do Amazonas
Observações sobre a ocorrência de Mosca-Negra- dos-Citros, Aleurocanthus woglumi Ashby, 1915 (Hemiptera: Sternorrhyncha: Aleyrodidae) no estado do Amazonas Beatriz RONCHI-TELES1, Marcia Reis PENA2, Neliton Marques SILVA3 RESUMO A mosca-negra-dos-citros (Aleurocanthus woglumi Ashby) é uma importante praga dos citros de origem asiática. Foi detectada no Brasil pela primeira vez em Belém-PA em 2001. Este trabalho tem como objetivo registrar a ocorrência de mosca-negra-dos- citros no estado do Amazonas, sua distribuição geográfica e estudos de biologia em condições de laboratório. A mosca-negra encontra-se atualmente disseminada em mais da metade dos municípios paraenses. No Amazonas foi detectada em junho de 2004 em Manaus e atualmente encontra-se disseminada em toda a área urbana deste município, ocorrendo também em Itacoatiara, Rio Preto da Eva e Iranduba. Em observações feitas em condições de laboratório em Manaus-AM, foi verificado que o ciclo de ovo-adulto foi de 71,76±2,07 dias, caracterizando como uma espécie multivoltina. PALAVRAS-CHAVE: Amazônia, Praga dos citros, Distribuição, Aleirodídeo. Observation on the occurrence of the citrus blackfly Aleurocanthus woglumi Ashby, 1915 (Hemiptera: Sternorrhyncha: Aleyrodidae) in the Amazonas state ABSTRACT The citrus blackflyAleurocanthus woglumi Ashby, pest of citrus in Asian is considered important pest. It was detected for the first time in Belém, PA in 2001. The objective of this work was to report occurrence of the citrus blackfly in Amazon state. Nowadays is found in the majority of the oriental amazon counties. In Manaus, Amazonas was detected in June 2004, actually disseminated in the urban area and in Itacoatiara, Rio Preto da Eva and Iranduba counties. -
Iranian Aphelinidae (Hymenoptera: Chalcidoidea) © 2013 Akinik Publications Received: 28-06-2013 Shaaban Abd-Rabou*, Hassan Ghahari, Svetlana N
Journal of Entomology and Zoology Studies 2013;1 (4): 116-140 ISSN 2320-7078 Iranian Aphelinidae (Hymenoptera: Chalcidoidea) JEZS 2013;1 (4): 116-140 © 2013 AkiNik Publications Received: 28-06-2013 Shaaban Abd-Rabou*, Hassan Ghahari, Svetlana N. Myartseva & Enrique Ruíz- Cancino Accepted: 23-07-2013 ABSTRACT Aphelinidae is one of the most important families in biological control of insect pests at a worldwide level. The following catalogue of the Iranian fauna of Aphelinidae includes a list of all genera and species recorded for the country, their distribution in and outside Iran, and known hosts in Iran. In total 138 species from 11 genera (Ablerus, Aphelinus, Aphytis, Coccobius, Coccophagoides, Coccophagus, Encarsia, Eretmocerus, Marietta, Myiocnema, Pteroptrix) are listed as the fauna of Iran. Aphelinus semiflavus Howard, 1908 and Coccophagoides similis (Masi, 1908) are new records for Iran. Key words: Hymenoptera, Chalcidoidea, Aphelinidae, Catalogue. Shaaban Abd-Rabou Plant Protection Research 1. Introduction Institute, Agricultural Research Aphelinid wasps (Hymenoptera: Chalcidoidea: Aphelinidae) are important in nature, Center, Dokki-Giza, Egypt. especially in the population regulation of hemipterans on many different plants.These [E-mail: [email protected]] parasitoid wasps are also relevant in the biological control of whiteflies, soft scales and aphids [44] Hassan Ghahari . Studies on this family have been done mainly in relation with pests of fruit crops as citrus Department of Plant Protection, and others. John S. Noyes has published an Interactive On-line Catalogue [78] which includes Shahre Rey Branch, Islamic Azad up-to-date published information on the taxonomy, distribution and hosts records for the University, Tehran, Iran. Chalcidoidea known throughout the world, including more than 1300 described species in 34 [E-mail: [email protected]] genera at world level. -
Orange Spiny Whitefly, Aleurocanthus Spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S
EENY341 Orange Spiny Whitefly, Aleurocanthus spiniferus (Quaintance) (Insecta: Hemiptera: Aleyrodidae)1 Jamba Gyeltshen, Amanda Hodges, and Greg S. Hodges2 Introduction Africa (Van den Berg et al. 1990). More recently, orange spiny whitefly was reported from Italy (2008), Croatia Orange spiny whitefly, Aleurocanthus spiniferus Quaintance, (2012), and Montenegro (2013) (Radonjic et al. 2014). is a native pest of citrus in tropical Asia. In the early 1920s, Established populations of orange spiny whitefly are not yet pest outbreak infestation levels caused Japan to begin a known to occur in the continental US. biological control program. Primarily, orange spiny whitefly affects host plants by sucking the sap but it also causes indirect damage by producing honeydew and subsequently Description and Life History promoting the growth of sooty mold. Sooty mold is a Whiteflies have six developmental stages: egg, crawler (1st black fungus that grows on honeydew. Heavy infestations instar), two sessile nymphal instars (2nd and 3rd instars), of orange spiny whitefly, or other honeydew-producing the pupa (4th instar), and adult. Identification of the insects such as scales, mealybugs, aphids, and other whitefly Aleyrodidae is largely based upon characters found in the species, can cause sooty mold to completely cover the leaf pupal (4th instar) stage. The duration of the life cycle and surface and negatively affect photosynthesis. the number of generations per year are greatly influenced by the prevailing climate. A mild temperature with high Distribution relative humidity provides ideal conditions for growth and development. About four generations per year have The orange spiny whitefly has spread to Africa, Australia, been recorded in Japan (Kuwana et al. -
E0020 Common Beneficial Arthropods Found in Field Crops
Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents. -
The Citrus Blackfly' in Asia, and the Importation of Its Natural Enemies Into Tropical America
TECHNICAL BULLETIN NO, 320 August, 1932 UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON. D. C. THE CITRUS BLACKFLY' IN ASIA, AND THE IMPORTATION OF ITS NATURAL ENEMIES INTO TROPICAL AMERICA By CURTIS 1*. CLAUSEN, Senior Entomologist, and PAUL A. BEERY, Junior Ento- mologist, Division of Frxiit and Shade Tree Insects, Bureau of Entomology- CONTENTS Page Foreword (by C L. Marlatt).- 1 Potential status of the blackfly in the United Introduction 3 Stales 19 The citrus blackfly 4 Natural enemies of the blackily 19 Distribution 4 Parasites in tropical Asia 20 Status as a citrus pest in the Far East... 7 Predators in tropical Asia 36 Host plants -. - - 8 Native predators in Cuba, JPanama, and Life history and habits 10 Jamaica 45 Mortality factors,.. 11 Fungous diseases 46 Climatic conditions in the infested regions,.. 13 Methods of rearing, shipment, and colo- Relation of meteorological conditions to nization 47 blackily development 16 Summary í6 Comparison with Florida and California. 17 Iviteraturc cited 58 FOREWORD The introduction and establishment of im2)0i'tant Malayan para- sitic and predacious enemies of the blackily in the American Tropics, recorded in this bulletin, is one of the outstanding successes in this rapidly growing field. The eiiort was a cooperative one, supported by Cuba and the United States. The blackily in Cuba has been for juany years a very serious obstacle to the citrus industr}^ and had in adilition a fairly wdde distribution elsewhere in the American Tropics. The interest of the TJnited States was to reduce the risk of entry of this pest into the citrus areas of Florida or other of our subtropical areas, and also as provision for aid in future control ^ Alcurocanthus woylumi Ashby. -
Redalyc.Selectivity of Pesticides Used in Rice Crop on Telenomus Podisi
Pesquisa Agropecuária Tropical ISSN: 1517-6398 [email protected] Escola de Agronomia e Engenharia de Alimentos Brasil de Bastos Pazini, Juliano; Dionei Grützmacher, Anderson; da Silva Martins, José Francisco; Pasini, Rafael Antônio; Rakes, Matheus Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum Pesquisa Agropecuária Tropical, vol. 46, núm. 3, julio-septiembre, 2016, pp. 327-335 Escola de Agronomia e Engenharia de Alimentos Goiânia, Brasil Available in: http://www.redalyc.org/articulo.oa?id=253046880014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative e-ISSN 1983-4063 - www.agro.ufg.br/pat - Pesq. Agropec. Trop., Goiânia, v. 46, n. 3, p. 327-335, Jul./Sep. 2016 Selectivity of pesticides used in rice crop on Telenomus podisi and Trichogramma pretiosum1 Juliano de Bastos Pazini2, Anderson Dionei Grützmacher2, José Francisco da Silva Martins3, Rafael Antônio Pasini2, Matheus Rakes2 ABSTRACT RESUMO Seletividade de pesticidas utilizados em arroz Telenomus and Trichogramma species stand out as sobre Telenomus podisi e Trichogramma pretiosum agents for the biological control in rice crops, and the main strategy for preserving them is the use of selective pesticides. Espécies de Telenomus e Trichogramma destacam-se como This study aimed at evaluating the toxicity of pesticides agentes de controle biológico em áreas orizícolas, e a principal used in irrigated rice crop on Telenomus podisi Ashmead estratégia para sua preservação é a utilização de agrotóxicos seletivos. -
Advances in Taxonomy and Systematics of Platygastroidea (Hymenoptera)
Advances in Taxonomy and Systematics of Platygastroidea (Hymenoptera) Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Charuwat Taekul, M.S. Graduate Program in Evolution, Ecology, and Organismal Biology ***** The Ohio State University 2012 Dissertation Committee: Dr. Norman F. Johnson, Advisor Dr. Johannes S. H. Klompen Dr. John V. Freudenstein Dr. Marymegan Daly Copyright by Charuwat Taekul 2012 ABSTRACT Wasps, Ants, Bees, and Sawflies one of the most familiar and important insects, are scientifically categorized in the order Hymenoptera. Parasitoid Hymenoptera display some of the most advanced biology of the order. Platygastroidea, one of the significant groups of parasitoid wasps, attacks host eggs more than 7 insect orders. Despite its success and importance, an understanding of this group is still unclear. I present here the world systematic revisions of two genera in Platygastroidea: Platyscelio Kieffer and Oxyteleia Kieffer, as well as introduce the first comprehensive molecular study of the most important subfamily in platygastroids as biological control benefit, Telenominae. For the systematic study of two Old World genera, I address the taxonomic history of the genus, identification key to species, as well as review the existing concepts and propose descriptive new species. Four new species of Platyscelio are discovered from South Africa, Western Australia, Botswana and Zimbabwe. Four species are considered to be junior synonyms of P. pulchricornis. Fron nine valid species of Oxyteleia, the new species are discovered throughout Indo-Malayan and Australasian regions in total of twenty-seven species. The genus Merriwa Dodd, 1920 is considered to be a new synonym. -
Conservation Biological Control Using Selective Insecticides – a Valuable Tool for IPM T ⁎ Jorge B
Biological Control 126 (2018) 53–64 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Conservation biological control using selective insecticides – A valuable tool for IPM T ⁎ Jorge B. Torresa, , Adeney de F. Buenob a Departamento de Agronomia/Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, Recife, PE 52171-900, Brazil b Embrapa Soja, Caixa Postal 231, Londrina, PR 86001-970, Brazil ARTICLE INFO ABSTRACT Keywords: Conservation biological control (CBC) has widely benefited from ecological practices that enhance both the crop Nontarget and its surrounding environment. However, use of insecticides, whether biological or synthetic compounds, is Pesticide often detrimental to natural enemies. By definition toxic to insects, insecticides may cause direct mortality of Physiological selectivity natural enemies, reduce food resources (prey/host), or disrupt behavioral and biological processes. Therefore, Ecological selectivity choosing a selective insecticide or selectively applying are important decisions for conserving natural enemies if Soybean insecticide is required. In situations where both insecticide and natural enemy do not share the same target pest, Cotton an additive outcome is expected and CBC can minimize pest outbreaks and resurgence. Given that new, selective insecticides are usually more expensive than older ones, using the former typically adds cost per treated area. Therefore, choosing a selective insecticide becomes a matter of benefits and costs, considering the cost compared to other available treatments and potential pest problems. Beyond the differential toxicity of selective in- secticides to natural enemy and target pest species, some human decisions may produce insecticide selectivity, including application of minimal effective rates, and spatiotemporal separation of nonselective insecticides and natural enemies. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
Egg Parasitoids of Stink Bugs (Hemiptera: Coreidae and Pentatomidae) on Soybean and Cowpea in Brazil Antonio De Almeida Paz-Neto1, Ranyse B
Egg parasitoids of stink bugs (Hemiptera: Coreidae and Pentatomidae) on soybean and cowpea in Brazil Antonio de Almeida Paz-Neto1, Ranyse B. Querino2,*, and Cecilia B. Margaría3 Abstract Parasitoids naturally attacking stink bug (Hemiptera: Coreidae and Pentatomidae) eggs and interactions with their hosts were recorded on soybean (Glycine max [L.] Merril; Fabales: Fabaceae) and cowpea (Vigna unguiculata [L.] Walp.; Fabales: Fabaceae) host plants in Brazil. Egg masses of stink bugs collected from plant structures were observed daily until emergence of either parasitoids or bugs. Stink bugs were parasitized by 8 species of egg parasitoids: Trissolcus urichi Crawford, Trissolcus teretis Johnson, Trissolcus bodkini Crawford, Telenomus podisi Ashmead, Phanuropsis semiflaviven- tris Girault (Hymenoptera: Platygastridae), Neorileya flavipes Ashmead (Hymenoptera: Eurytomidae), Ooencyrtus anasae (Ashmead) (Hymenoptera: Encyrtidae), andAnastatus sp. (Hymenoptera: Eupelmidae). Trissolcus urichi, Te. podisi, O. anasae, and N. flavipes parasitized eggs of 2 or more spe- cies of stink bugs, andTr. urichi and Te. podisi were the most generalist. Phanuropsis semiflaviventris, Tr. teretis, Tr. bodkini, and Anastatus sp. showed specialist behavior, because each of them parasitized only 1 species of stink bug. Key Words: biological control; generalist; host; Glycine max; Vigna unguiculata Resumen Se registraron los parasitoides que atacan los huevos de los chinches (Hemiptera: Coreidae y Pentatomidae) de forma natural y las interacciones con sus hospederos -
Hemiptera, Pentatomidae) and Its Parasitoid, Telenomus Podisi (Hymenoptera, Platygastridae), on Irrigated Rice Fields in Rio Grande Do Sul, Brazil
SHORT COMMUNICATION First records of Glyphepomis adroguensis (Hemiptera, Pentatomidae) and its parasitoid, Telenomus podisi (Hymenoptera, Platygastridae), on irrigated rice fields in Rio Grande do Sul, Brazil Patrícia Menegaz de Farias1, Joana Tartari Klein2, Josué Sant’Ana1, Luiza Rodrigues Redaelli1,2 & Jocélia Grazia2 1Programa de Pós-graduação em Fitotecnia, Departamento de Fitossanidade, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 7712, 91540–000 Porto Alegre-RS, Brasil. patrí[email protected]; [email protected]; [email protected] 2Programa de Pós-graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501–970 Porto Alegre-RS, Brasil. [email protected]; [email protected] ABSTRACT. First records of Glyphepomis adroguensis (Hemiptera, Pentatomidae) and its parasitoid, Telenomus podisi (Hymenoptera, Platygastridae), on rice fields in Rio Grande do Sul, Brazil. Eggs, nymphs, and adults of Glyphepomis adroguensis Berg, 1891 (Hemiptera, Pentatomidae) were observed for the first time on rice fields (Oryza sativa L.) in Charqueadas (29°59’S, 51°31’W) and Eldorado do Sul (30°02’S, 51°23’W) of Rio Grande do Sul state, Brazil. Telenomus podisi Ashmead, 1893 (Hymenoptera, Platygastridae) was found in G. adroguensis eggs. KEYWORDS. Egg parasitoids; rice; stink bug. RESUMO. Primeiros registros de Glyphepomis adroguensis (Hemiptera, Pentatomidae) e seu parasitoide, Telenomus podisi (Hymenoptera, Platygastridae), em arroz irrigado no Rio Grande do Sul. Ovos, ninfas e adultos de Glyphepomis adroguensis Berg, 1891 (Hemiptera, Pentatomidae) foram observados pela primeira vez no Rio Grande do Sul, Brasil, em lavouras de arroz irrigado (Oryza sativa L.) em Charqueadas (29°59’S, 51°31’W) e Eldorado do Sul (30°02’S, 51°23’W). -
Response of the Egg Parasitoids Trissolcus Basalis and Telenomus Podisi to Compounds from Defensive Secretions of Stink Bugs
J Chem Ecol (2009) 35:8–19 DOI 10.1007/s10886-008-9578-0 Response of the Egg Parasitoids Trissolcus basalis and Telenomus podisi to Compounds from Defensive Secretions of Stink Bugs Raúl A. Laumann & Michely F. S. Aquino & Maria C. B. Moraes & Martín Pareja & Miguel Borges Received: 24 October 2008 /Revised: 1 December 2008 /Accepted: 8 December 2008 /Published online: 7 January 2009 # Springer Science + Business Media, LLC 2008 Abstract We tested the hypotheses that host-searching N. viridula glandular secretion. Higher residence time, behavior of the egg parasitoids Telenomus podisi and reduced linear velocity, and higher tortuosity in the arm of Trissolcus basalis may be differentially influenced by the the olfactometer supplied with 4-oxo-(E)-2-hexenal showed different blends of volatiles released from the metathoracic that this compound modifies the kinetics of some traits of T. glands of adult stink bug host species. We further studied basalis walking pattern and suggests that it might stimulate whether such a differential response is due to different the searching behavior of this parasitoid. The parasitoid T. individual components of these glands and whether these podisi was attracted to crude gland extracts of the preferred responses reflect host preferences. Y-tube olfactometer bio- host (Euschistus heros) and also to 4-oxo-(E)-2-hexenal. assays were carried out with crude extracts of metathoracic Additionally, this parasitoid responded positively to (E)-2- glands of five different host species of neotropical stink hexenal and to the hydrocarbon tridecane, both of which are bugs. Additionally, we tested the parasitoids’ responses to defensive compounds released from the metathoracic synthetic standards of individual compounds identified in glands by several stink bugs.