Boulder Lake

Total Page:16

File Type:pdf, Size:1020Kb

Boulder Lake Overview of Intel® Core 2 Architecture and Software Development Tools Overview of Architecture & Tools We will discuss: What lecture materials are available What labs are available What target courses could be impacted Some high level discussion of underlying technology Objectives After completing this module, you will: Be aware of and have access to several hours worth of MC topics including Architecture, Compiler Technology, Profiling Technology, OpenMP, & Cache Effects Be able create exercises on how to avoid coding common threading hazards associated with some MC systems – such as Poor Cache Utilization, False Sharing and Threading load imbalance Be able create exercises on how to use selected compiler directives & switches to improve behavior on each core Be able create exercises on how to take advantage VTune analyzer to quickly identify load imbalance issues, poor cache reuse and false sharing issues Agenda Multi-core Motivation Tools Overview Taking advantage of Multi-core Taking advantage of parallelism within each core (SSEx) Avoiding Memory/Cache effects Why is the Industry moving to Multi-core? In order to increase performance and reduce power consumption Its is much more efficient to run several cores at a lower frequency than one single core at a much faster frequency Power and Frequency Power vs. Frequency Curve for Single Core Architecture 359 309 259 Dropping Frequency 209 = Large Drop Power 159 Lower Frequency Power (w) Allows Headroom 109 for 2nd Core 59 9 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 Frequency (GHz) Agenda Multi-core Motivation Tools Overview Taking advantage of Multi-core Taking advantage of parallelism within each core (SSEx) Avoiding Memory/Cache effects Processor-independent optimizations /Od Disables optimizations /O1 Optimizes for Binary Size and for Speed: Server Code /O2 Optimizes for Speed (default): Vectorization on Intel 64 /O3 Optimizes for Data Cache: Loopy Floating Point Code /Zi Creates symbols for debugging /Ob0 Turns off inlining which can sometimes help the Analysis tools do a more through job AutoVectorization optimizations QaxSSE2 Intel Pentium 4 and compatible Intel processors. QaxSSE3 Intel(R) Core(TM) processor family with Streaming SIMD Extensions 3 (SSE3) instruction support QaxSSE3_ATOM Can generate MOVBE instructions for Intel processors and can optimize for the Intel(R) Atom(TM) Processor and Intel(R) Intel has a long historyCentrino(R) of Atom(TM) providing Processor auto Technology-vectorization Extensions 3 switches along (SSE3)with support instruction supportfor new processor instructions andQaxSSSE3 backward supportIntel(R) Core(TM)2 for older processor instructions family with SSSE3is maintained QaxSSE4.1 Intel(R) 45nm Hi-k next generation Intel Core(TM) Developers shouldmicroarchitecture keep an witheye support on new for SSE4 developments Vectorizing Compiler in order to leverageand Media the Acceleratorpower of instructions the latest processors QaxSSE4.2 Can generate Intel(R) SSE4 Efficient Accelerated String and Text Processing instructions supported by Intel(R) Core(TM) i7 processors. Can generate Intel(R) SSE4 Vectorizing Compiler and Media Accelerator, Intel(R) SSSE3, SSE3, SSE2, and SSE instructions and it can optimize for the Intel(R) Core(TM) processor family. More Advanced optimizations Qipo Interprocedural optimization performs a static, topological analysis of your application. With /Qipo (-ipo), the analysis spans all of your source files built with /Qipo (-ipo). In other words, code generation in module A can be improved by what is happening in module B. May enable other optimizations like autoparallel and autovector Qparallel enable the auto-parallelizer to generate multi-threaded code for loops that can be safely executed in parallel Qopenmp enable the compiler to generate multi-threaded code based on the OpenMP* directives Lab 1 - AutoParallelization Objective: Use auto-parallelization on a simple code to gain experience with using the compiler’s auto-parallelization feature Follow the VectorSum activity in the student lab doc Try AutoParallel compilation on Lab called VectorSum Extra credit: parallelize manually and see how you can beat the auto-parallel option – see openmp section for constructs to try this Parallel Studio to find where to parallelize Parallel Studio will be used in several labs to find appropriate locations to add parallelism to the code. Parallel Amplifier specifically is used to find hotspot information – where in your code does the application spend most of its time Parallel amplifier does not require instrumenting your code in order to find hotspots, compiling with symbol information is a good idea - /Zi Compiling with /Ob0 turns off inlining and sometimes seems to give a more through analysis in Parallel Studio Parallel Amplifier Hotspots What does hotspot analysis show? What about drilling down? The call stack The call stack shows the callee/caller relationship among function in he code Found potential parallelism Lab 2 – Mandelbrot Hotspot Analysis Objective: Use sampling to find some parallelism in the Mandelbrot application Follow the Mandelbrot activity called Mandelbrot Sampling in the student lab doc Identify candidate loops that could be parallelized Agenda Multi-core Motivation Tools Overview Taking advantage of Multi-core High level overview – Intel® Core Architecture Taking advantage of parallelism within each core (SSEx) Avoiding Memory/Cache effects Intel® Core 2 Architecture Snapshot in time during Penryn, Yorkfield, harpertown Software develoers should know number of cores, cache line size and cache sizes to tackle Cache Effects materials 6M 12M 4M 12M 6M L2 6M 4M L2 2X6M 2X6M 2X3M L2 L2 2 cores 4 cores L2 2 cores 4 cores 4 cores Mobile Platform Optimized Desktop Platform Optimized Server Platform Optimized • 1-4 Execution Cores • 2-4 Execution Cores • 4 Execution Cores • 3/6MB L2 Cache Sizes • 2X3, 2X6 MB L2 Cache Sizes • 2x6 L2 Caches • 64 Byte L2 cache line • 64 Byte L2 Cache line • 64 Byte L2 Cache line • 64-bit • 64-bit • DP/MP support • 64-bit **Feature Names TBD Memory Hierarchy ~ 1’s Cycle ~ 1’s - 10 Cycle L2 CPU L1 Cache Cache ~ 100’s Cycle Main Magnetic Memory Disk ~ 1000’s Cycle Intel® Core™ Microarchitecture – Memory Sub-system High Level Architectural view Intel Core 2 Intel Core 2 Duo Processor Quad Processor A A A A A A E E E E E E C C1 C2 B B B Dual Core has shared cache 64B QuadCache Line core has both shared 64B Cache Line Memory And separated Memorycache A = Architectural State E = Execution Engine & Interrupt C = 2nd Level Cache B = Bus Interface Intel® Core™ Microarchitecture – Memory Sub-system With a separated cache Memory Front Side Bus (FSB) Shipping L2 Cache Line ~Half access to memory Cache Line CPU1 CPU2 Intel® Core™ Microarchitecture – Memory Sub-system Advantages of Shared Cache – using Advanced Smart Cache® Technology Memory Front Side Bus (FSB) L2 is shared: No need to ship cache line Cache Line CPU1 CPU2 False Sharing Performance issue in programs where cores may write to different memory addresses BUT in the same cache lines Known as Ping-Ponging – Cache line is shipped between cores Core 0 Core 1 X[0] = 0 X[1] = 0 X[0] = 1 X[1] = 1 False Sharing not an Time X[0] = 2 issue in shared cache 201 0 It is an issue 1in 11 separated cache Agenda Multi-core Motivation Tools Overview Taking advantage of Multi-core Taking advantage of parallelism within each core (SSEx) Avoiding Memory/Cache effects Super Scalar Execution INT Multiple operations executed within a singleMultiple core at Execution the units SIMD same Allowtime SIMD parallelism Many instructions can be retired in a clock cycle FP History of SSE Instructions Intel Intel Intel Intel SSE SSE2 SSE3 SSSE3 Intel 1999 2000 2004 2006 SSE4.1 2007 70 instr 144 instr 13 instr 32 instr Single- Double- Complex Decode Precision precision Long historyData of new instructions Vectors Vectors 47 instructions MostStreaming require 8/16 /using32 packing & unpacking Video Accelerators instructions operations 64/128-bit Graphics building vector blocks integer Advanced vector instr Will be continued by • Intel SSE4.2 (XML processing end 2008) • See - http://download.intel.com/technology/architecture/new- instructions-paper.pdf SSE Data Types & Speedup Potential SSE 4x floats 2x doubles 16x bytes 8x 16-bit shorts SSE-2 Potential speedup (in the targeted loop) SSE-3 roughly the same as the amount4 xof 32 packing-bit integers SSE-4 ie. For floats – speedup ~ 4X 2x 64-bit integers 1x 128-bit integer Goal of SSE(x) Scalar processing SIMD processing with SSE(2,3,4) traditional mode one instruction produces one instruction produces multiple results one•Uses result full width of XMM registers •ManyX functionalX unitsx3 x2 x1 x0 •Choice+ of many of instructions+ •Not all loops can be vectorized Y y3 y2 y1 y0 Y •Cant vectorize most function calls = = X + Y X + Y x3+y3 x2+y2 x1+y1 x0+y0 Lab 3 – IPO assisted Vectorization Objective: Explore how inlining a function can dramatically improve performance by allowing vectorization of loop with function call Open SquareChargeCVectorizationIPO folder and use “nmake all” to build the project from the command line To add switches to make envirnment use nmake all CF=“/QxSSE3” as example Agenda Multi-core Motivation Tools Overview Taking advantage of Multi-core Taking advantage of parallelism within each core (SSEx) Avoiding Memory/Cache effects Cache effects Cache effects can sometimes impact the speed of an application by
Recommended publications
  • A Dual Core Processor Has Two Cores (Essentially, Two Cpus on One Chip)
    Faculty of Engineering & Information Technology Al-Azhar University-Gaza Dr. Mohammad Aqel Microprocessors and Interfacing (ITCC 3301) Homework (1) Intel Core is a brand name used for various mid-range to high-end consumer and business microprocessors made by Intel. In general, processors sold as Core are more powerful variants of the same processors marketed as entry-level Celeron and Pentium. Similarly, identical or more capable versions of Core processors are also sold as Xeon processors for the server market. The current lineup of Core processors includes the latest Intel Core i7, Intel Core i5 and Intel Core i3, and the older Intel Core 2 Solo, Intel Core 2 Duo, Intel Core 2 Quad, and Intel Core 2 Extreme lines. 1- The original Core brand refers to Intel's 32-bit dual-core x86 CPUs. 2- Unlike the Intel Core, Intel Core 2 is a 64-bit processor, supporting Intel 64. The Core brand comprised two branches: the Duo (dual-core) and Solo (Duo with one disabled core). A dual core processor has two cores (essentially, two CPUs on one die (piece) silicon chip (IC)). Core2Duo is a specific dual-core processor design. Thus, all Core2Duo CPUs are dual-core CPUs, but not all Intel dual-core CPUs are Core2Duo designs. Core 2 is a brand encompassing a range of Intel's consumer 64-bit x86-64 single-, dual-, and quad-core microprocessors based on the Core microarchitecture. The single- and dual-core models are single-die, whereas the quad-core models comprise two dies, each containing two cores, packaged in a multi-chip module.
    [Show full text]
  • Microcode Revision Guidance August 31, 2019 MCU Recommendations
    microcode revision guidance August 31, 2019 MCU Recommendations Section 1 – Planned microcode updates • Provides details on Intel microcode updates currently planned or available and corresponding to Intel-SA-00233 published June 18, 2019. • Changes from prior revision(s) will be highlighted in yellow. Section 2 – No planned microcode updates • Products for which Intel does not plan to release microcode updates. This includes products previously identified as such. LEGEND: Production Status: • Planned – Intel is planning on releasing a MCU at a future date. • Beta – Intel has released this production signed MCU under NDA for all customers to validate. • Production – Intel has completed all validation and is authorizing customers to use this MCU in a production environment.
    [Show full text]
  • Asrock G41C-VS Motherboard, a Reliable Motherboard Produced Under Asrock’S Consistently Stringent Quality Control
    G41C-VS User Manual Version 1.0 Published October 2009 Copyright©2009 ASRock INC. All rights reserved. 1 Copyright Notice: No part of this manual may be reproduced, transcribed, transmitted, or translated in any language, in any form or by any means, except duplication of documentation by the purchaser for backup purpose, without written consent of ASRock Inc. Products and corporate names appearing in this manual may or may not be regis- tered trademarks or copyrights of their respective companies, and are used only for identification or explanation and to the owners’ benefit, without intent to infringe. Disclaimer: Specifications and information contained in this manual are furnished for informa- tional use only and subject to change without notice, and should not be constructed as a commitment by ASRock. ASRock assumes no responsibility for any errors or omissions that may appear in this manual. With respect to the contents of this manual, ASRock does not provide warranty of any kind, either expressed or implied, including but not limited to the implied warran- ties or conditions of merchantability or fitness for a particular purpose. In no event shall ASRock, its directors, officers, employees, or agents be liable for any indirect, special, incidental, or consequential damages (including damages for loss of profits, loss of business, loss of data, interruption of business and the like), even if ASRock has been advised of the possibility of such damages arising from any defect or error in the manual or product. This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
    [Show full text]
  • MBP4ASG41M-VS3.Pdf
    ASRock > G41M-VS3 Página 1 de 2 Home | Global / English [Change] About ASRock Products News Support Forum Download Awards Dealer Zone Where to Buy Products G41M-VS3 Motherboard Series »G41M-VS3 Translate »Overview & Specifications ■ Supports FSB1333/1066/800/533 MHz CPUs »Download ■ Supports Dual Channel DDR3 1333(OC) ■ Intel® Graphics Media Accelerator X4500, Pixel Shader 4.0, DirectX 10, Max. shared »Manual memory 1759MB »FAQ ■ EuP Ready »CPU Support List ■ Supports ASRock XFast RAM, XFast LAN, XFast USB Technologies ■ Supports Instant Boot, Instant Flash, OC DNA, ASRock OC Tuner (Up to 158% CPU »Memory QVL frequency increase) »Beta Zone ■ Supports Intelligent Energy Saver (Up to 20% CPU Power Saving) ■ Free Bundle : CyberLink DVD Suite - OEM and Trial; Creative Sound Blaster X-Fi MB - Trial This model may not be sold worldwide. Please contact your local dealer for the availability of this model in your region. Product Specifications General - LGA 775 for Intel® Core™ 2 Extreme / Core™ 2 Quad / Core™ 2 Duo / Pentium® Dual Core / Celeron® Dual Core / Celeron, supporting Penryn Quad Core Yorkfield and Dual Core Wolfdale processors - Supports FSB1333/1066/800/533 MHz CPU - Supports Hyper-Threading Technology - Supports Untied Overclocking Technology - Supports EM64T CPU - Northbridge: Intel® G41 Chipset - Southbridge: Intel® ICH7 - Dual Channel DDR3 memory technology - 2 x DDR3 DIMM slots - Supports DDR3 1333(OC)/1066/800 non-ECC, un-buffered memory Memory - Max. capacity of system memory: 8GB* *Due to the operating system limitation, the actual memory size may be less than 4GB for the reservation for system usage under Windows® 32-bit OS. For Windows® 64-bit OS with 64-bit CPU, there is no such limitation.
    [Show full text]
  • Toshiba Hardware Portfolio – Microsoft Support by Family
    Date created: 6/17/2020 Toshiba Hardware Portfolio – Microsoft Support by Family Windows 10 Windows 10 Windows 10 Toshiba Windows 10 Toshiba IoT IoT Enterprise Intel Platform Machine Intel Processor Model IoT Enterprise Family Enterprise LTSC 2019 Type LTSB 2015 LTSB 2016 Core i3 9100TE 777 TCx™ 700 4900 Core i5 9500T 787 9th Gen Core Core i7 9700T 797 (Coffee Lake Not Supported Refresh) Core i3 9100TE 371 TCx™ 300 4810 Core i5 9500T 381 Core i7 9700T 391 8th Gen Core TCx™ 300 4810 361 Celeron 4900T (Coffee Lake) TCx™ 700 4900 767 107 Available now and Core i7 7600U 117 supported until 137 Not Supported Jan 9, 2029 105 Core i5 7300U 115 7th Gen Core 135 TCx™ 800 6200 Available (Kaby Lake) 103 now and Core i3 7100U 113 supported until 133 Oct 13, 2026 10C Celeron 3965U 11C 13C N/A 4750 AMD GX-218GL D10 SoC Family Basics Celeron J1900 4818 T10 (Bay Trail) Quad Not Supported 6th Gen Core 145 TCxWave™ 6140 Core i5 6300U (Skylake/Q170) 155 Date created: 6/17/2020 14C Celeron 3955U 15C SoC Family Celeron J1900 A3R (Bay Trail) Quad Core i5 4950S 786 Available Core i3 4330 C86 now and TCx™ 700 4900 Celeron G1820 supported until 746 Oct 14, 2025 4th Gen Core Celeron G1820TE (Haswell/Q87) C46 Core i5 4570TE 380 TCx™ 300 4810 Core i3 4330TE 370 Celeron G1820TE 360 3rd Gen Core + TCxWave ™ 6140 Core i3 3217UE 120 2nd Gen PCH SurePOS (IvyBridge CPU + 4852 Core i5 3550S 580 CougarPoint PCH) 500 Toshiba Toshiba Limited TCxWave ™ 6140 Celeron 847E 100 Limited Support SurePOS Celeron G540 785 Support 2nd Gen Core 4900 700 Core i3 2120 C85 (SandyBridge/Q67)
    [Show full text]
  • Class-Action Lawsuit
    Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 1 of 279 Steve D. Larson, OSB No. 863540 Email: [email protected] Jennifer S. Wagner, OSB No. 024470 Email: [email protected] STOLL STOLL BERNE LOKTING & SHLACHTER P.C. 209 SW Oak Street, Suite 500 Portland, Oregon 97204 Telephone: (503) 227-1600 Attorneys for Plaintiffs [Additional Counsel Listed on Signature Page.] UNITED STATES DISTRICT COURT DISTRICT OF OREGON PORTLAND DIVISION BLUE PEAK HOSTING, LLC, PAMELA Case No. GREEN, TITI RICAFORT, MARGARITE SIMPSON, and MICHAEL NELSON, on behalf of CLASS ACTION ALLEGATION themselves and all others similarly situated, COMPLAINT Plaintiffs, DEMAND FOR JURY TRIAL v. INTEL CORPORATION, a Delaware corporation, Defendant. CLASS ACTION ALLEGATION COMPLAINT Case 3:20-cv-00863-SI Document 1 Filed 05/29/20 Page 2 of 279 Plaintiffs Blue Peak Hosting, LLC, Pamela Green, Titi Ricafort, Margarite Sampson, and Michael Nelson, individually and on behalf of the members of the Class defined below, allege the following against Defendant Intel Corporation (“Intel” or “the Company”), based upon personal knowledge with respect to themselves and on information and belief derived from, among other things, the investigation of counsel and review of public documents as to all other matters. INTRODUCTION 1. Despite Intel’s intentional concealment of specific design choices that it long knew rendered its central processing units (“CPUs” or “processors”) unsecure, it was only in January 2018 that it was first revealed to the public that Intel’s CPUs have significant security vulnerabilities that gave unauthorized program instructions access to protected data. 2. A CPU is the “brain” in every computer and mobile device and processes all of the essential applications, including the handling of confidential information such as passwords and encryption keys.
    [Show full text]
  • INTEL Central Processing Units (CPU) This Page of Product Is Rohs Compliant
    INTEL Central Processing Units (CPU) This page of product is RoHS compliant. CENTRAL PROCESSING UNITS (CPU) Intel Processor families include the most powerful and flexible Central Processing Units (CPUs) available today. Utilizing industry leading 22nm device fabrication techniques, Intel continues to pack greater processing power into smaller spaces than ever before, providing desktop, mobile, and embedded products with maximum performance per watt across a wide range of applications. Atom Celeron Core Pentium Xeon For quantities greater than listed, call for quote. MCU \ MPU / DSP MPU / MCU \ MOUSER Intel Core Cache Data TDP Price Each Package Processor Family Code Freq. Size No. of Bus Width (Max) STOCK NO. Part No. Series Name (GHz) (MB) Cores (bit) (W) 1 25 50 100 Desktop 607-DF8064101211300Y DF8064101211300S R0VY FCBGA-559 D2550 Atom™ Cedarview 1.86 1 2 64 10 607-CM8063701444901S CM8063701444901S R10K FCLGA-1155 G1610 Celeron® Ivy Bridge 2.6 2 2 64 55 Intel 607-CM8062301046804S CM8062301046804S R05J FCLGA-1155 G540 Celeron® Sandy Bridge 2.5 2 2 64 65 607-AT80571RG0641MLS AT80571RG0641MLS LGTZ LGA-775 E3400 Celeron® Wolfdale 2.6 1 2 64 65 607-HH80557PG0332MS HH80557PG0332MS LA99 LGA-775 E4300 Core™ 2 Conroe 1.8 2 2 64 65 607-AT80570PJ0806MS AT80570PJ0806MS LB9J LGA-775 E8400 Core™ 2 Wolfdale 3.0 6 2 64 65 607-AT80571PH0723MLS AT80571PH0723MLS LGW3 LGA-775 E7400 Core™ 2 Wolfdale 2.8 3 2 64 65 607-AT80580PJ0676MS AT80580PJ0676MS LB6B LGA-775 Q9400 Core™ 2 Yorkfield 2.66 6 4 64 95 607-CM80616003060AES CM80616003060AES LBTD FCLGA-1156
    [Show full text]
  • Multiprocessing Contents
    Multiprocessing Contents 1 Multiprocessing 1 1.1 Pre-history .............................................. 1 1.2 Key topics ............................................... 1 1.2.1 Processor symmetry ...................................... 1 1.2.2 Instruction and data streams ................................. 1 1.2.3 Processor coupling ...................................... 2 1.2.4 Multiprocessor Communication Architecture ......................... 2 1.3 Flynn’s taxonomy ........................................... 2 1.3.1 SISD multiprocessing ..................................... 2 1.3.2 SIMD multiprocessing .................................... 2 1.3.3 MISD multiprocessing .................................... 3 1.3.4 MIMD multiprocessing .................................... 3 1.4 See also ................................................ 3 1.5 References ............................................... 3 2 Computer multitasking 5 2.1 Multiprogramming .......................................... 5 2.2 Cooperative multitasking ....................................... 6 2.3 Preemptive multitasking ....................................... 6 2.4 Real time ............................................... 7 2.5 Multithreading ............................................ 7 2.6 Memory protection .......................................... 7 2.7 Memory swapping .......................................... 7 2.8 Programming ............................................. 7 2.9 See also ................................................ 8 2.10 References .............................................
    [Show full text]
  • CISC Processor - Intel X86
    Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO CISC Processor - Intel x86 This chapter will introduce the CISC processors evolution. We will try to illustrate the history on one typical processor, because the comparison of multiple processors simultaneously would not be clear for readers. But the selection of one typical processor is complicated due to a variety of products and manufactures in the past 30 years. We have decided to describe in this presentation one of the best- known and longest mass-produced processors in existence. We definitely do not want to say that it is the best technology or that these are processors with the highest performance! The Intel x86 processors are the selected product line. Intel 8080 (Year-Technology-Transistors-Frequency-Data bus-Address Bus) Y: 1974 T: NMOS 6μm Tr: 6000 F: 2MHz D: 8b A: 16b This 8 bit processor is not directly the first member of x86 series, but it can not be skipped. It is one of the first commercially successful microprocessors. This microprocessor became the basis for a number of the first single-board computers and its instruction set inspired other manufacturers to develop 8-bit processors.
    [Show full text]
  • Intel® Celeron® Processor 900 Series and Ultra Low Voltage 700 Series
    Intel® Celeron® Processor 900 Series and Ultra Low Voltage 700 Series Datasheet For platforms based on Mobile Intel® 4 Series Chipset family February 2010 Document Number: 320389-003 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
    [Show full text]
  • HC19.21.810.45Nm Next Generation Intel® Core™ Microarchitecture
    45nm Next Generation Intel® Core™ Microarchitecture (Penryn) HOT CHIPS 2007 Varghese George Principal Engineer, Intel Corp Legal Disclaimer Today’s presentation may contain forward-looking statements. All statements made that are not historical facts are subject to a number of risks and uncertainties, and actual results may differ materially. Please refer to our most recent Earnings Release and our most recent Form 10-Q or 10-K filing available on our website for more information on the risk factors that could cause actual results to differ. INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® Core™ Microarchitecture, Intel® Pentium, Intel® Pentium II, Intel® Pentium III, Intel® Pentium 4, Intel® Pentium Pro, Intel® Pentium D, Intel® Pentium M , Itanium®, Xeon® may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 2.0
    The Intel x86 Microarchitectures Map Version 2.0 P6 (1995, 0.50 to 0.35 μm) 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P5 (1993, 0.80 to 0.35 μm) NetBurst (2000 , 180 to 130 nm) Skylake (2015, 14 nm) Alternative Names: i686 Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: Pentium, 80586, 586, i586 Alternative Names: Pentium 4, Pentium IV, P4 Alternative Names: SKL (Desktop and Mobile), SKX (Server) Series: Pentium Pro (used in desktops and servers) • 16-bit data bus: 8086 (iAPX Series: Series: Series: Series: • Variant: Klamath (1997, 0.35 μm) 86) • Desktop/Server: i386DX Desktop/Server: P5, P54C • Desktop: Willamette (180 nm) • Desktop: Desktop 6th Generation Core i5 (Skylake-S and Skylake-H) • Alternative Names: Pentium II, PII • 8-bit data bus: 8088 (iAPX • Desktop lower-performance: i386SX Desktop/Server higher-performance: P54CQS, P54CS • Desktop higher-performance: Northwood Pentium 4 (130 nm), Northwood B Pentium 4 HT (130 nm), • Desktop higher-performance: Desktop 6th Generation Core i7 (Skylake-S and Skylake-H), Desktop 7th Generation Core i7 X (Skylake-X), • Series: Klamath (used in desktops) 88) • Mobile: i386SL, 80376, i386EX, Mobile: P54C, P54LM Northwood C Pentium 4 HT (130 nm), Gallatin (Pentium 4 Extreme Edition 130 nm) Desktop 7th Generation Core i9 X (Skylake-X), Desktop 9th Generation Core i7 X (Skylake-X), Desktop 9th Generation Core i9 X (Skylake-X) • Variant: Deschutes (1998, 0.25 to 0.18 μm) i386CXSA, i386SXSA, i386CXSB Compatibility: Pentium OverDrive • Desktop lower-performance: Willamette-128
    [Show full text]