Intel® Core™2 Duo Mobile Processor for Intel® Centrino® Duo Mobile Processor Technology

Total Page:16

File Type:pdf, Size:1020Kb

Intel® Core™2 Duo Mobile Processor for Intel® Centrino® Duo Mobile Processor Technology Intel® Core™2 Duo Mobile Processor for Intel® Centrino® Duo Mobile Processor Technology Datasheet September 2007 Document Number: 314078-004 INFORMATIONLegal Lines and Disclaimers IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Enhanced Intel SpeedStep® Technology for specified units of this processor available Q2/06. See the Processor Spec Finder at http://processorfinder.intel.com or contact your Intel representative for more information 64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel® 64 architecture. Processors will not operate (including 32-bit operation) without an Intel 64 architecture-enabled BIOS. Performance will vary depending on your hardware and software configurations. Consult with your system vendor for more information. Intel, Centrino, Pentium, Intel Core 2, Intel SpeedStep, MMX, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2006 - 2007, Intel Corporation. All rights reserved. 2 Datasheet Contents 1Introduction..............................................................................................................7 1.1 Terminology .......................................................................................................9 1.2 References ....................................................................................................... 10 2 Low Power Features ................................................................................................ 11 2.1 Clock Control and Low Power States .................................................................... 11 2.1.1 Core Low Power State Descriptions ........................................................... 13 2.1.2 Package Low Power State Descriptions ...................................................... 15 2.2 Enhanced Intel SpeedStep® Technology .............................................................. 18 2.3 Extended Low Power States ................................................................................ 19 2.4 FSB Low Power Enhancements ............................................................................ 19 2.5 Processor Power Status Indicator (PSI#) Signal..................................................... 20 3 Electrical Specifications ........................................................................................... 21 3.1 Power and Ground Pins ...................................................................................... 21 3.2 FSB Clock (BCLK[1:0]) and Processor Clocking...................................................... 21 3.3 Voltage Identification......................................................................................... 21 3.4 Catastrophic Thermal Protection .......................................................................... 25 3.5 Reserved and Unused Pins.................................................................................. 25 3.6 FSB Frequency Select Signals (BSEL[2:0])............................................................ 26 3.7 FSB Signal Groups............................................................................................. 26 3.8 CMOS Signals ................................................................................................... 28 3.9 Maximum Ratings.............................................................................................. 28 3.10 Processor DC Specifications ................................................................................ 29 4 Package Mechanical Specifications and Pin Information .......................................... 39 4.1 Package Mechanical Specifications ....................................................................... 39 4.2 Processor Pinout and Pin List .............................................................................. 49 4.3 Alphabetical Signals Reference ............................................................................ 73 5 Thermal Specifications and Design Considerations .................................................. 81 5.1 Thermal Specifications ....................................................................................... 85 5.1.1 Thermal Diode ....................................................................................... 85 5.1.2 Thermal Diode Offset .............................................................................. 85 5.1.3 Intel® Thermal Monitor........................................................................... 87 5.1.4 Digital Thermal Sensor............................................................................ 89 5.1.5 Out of Specification Detection .................................................................. 90 5.1.6 PROCHOT# Signal Pin ............................................................................. 90 Datasheet 3 Figures 1 Core Low Power States..............................................................................................12 2 Package Low Power States.........................................................................................13 3 Deeper Sleep VCC and ICC Loadline for Dual-core Standard Voltage Processors..................34 4 Deeper Sleep VCC and ICC Loadline for Dual-core Low Voltage and Ultra Low Voltage Processor.......................................................................................35 5Active VCC and ICC Loadline for Intel Core 2 Solo Processor, Ultra Low Voltage..................36 6 4-MB and 2-MB Fused Micro-FCPGA Processor Package Drawing .....................................40 7 4-MB and 2-MB Fused Micro-FCPGA Processor Package Drawing .....................................41 8 2-MB Micro-FCPGA Processor Package Drawing.............................................................42 9 2-MB Micro-FCPGA Processor Package Drawing.............................................................43 10 4-MB and 2-MB Fused Micro-FCBGA Processor Package Drawing .....................................44 11 4-MB and 2-MB Fused Micro-FCBGA Processor Package Drawing .....................................45 12 2-MB Micro-FCBGA Processor Package Drawing ............................................................46 13 1-MB Micro-FCBGA Processor Package Drawing (2 of 2) .................................................47 14 1-MB Micro-FCBGA Processor Package Drawing (2 of 2) .................................................48 Tables 1 Coordination of Core Low Power States at the Package Level ..........................................13 2 Voltage Identification Definition..................................................................................22 3 BSEL[2:0] Encoding for BCLK Frequency......................................................................26 4 FSB Pin Groups ........................................................................................................27 5 Processor Absolute Maximum Ratings..........................................................................28 6 Voltage and Current Specifications for Dual-core Standard Voltage Processors ..................29 7 Voltage and Current Specifications for Dual-core Low Voltage Processors .........................31 8 Voltage and Current Specifications for Single and Dual-core Ultra Low Voltage Processors ..32 9 AGTL+ Signal Group DC Specifications ........................................................................37 10 CMOS Signal Group DC Specifications..........................................................................38 11 Open Drain Signal Group DC Specifications ..................................................................38 12 The Coordinates of the Processor Pins as Viewed from the Top of the Package (Sheet 1 of 2) ..........................................................................................................50
Recommended publications
  • A Dual Core Processor Has Two Cores (Essentially, Two Cpus on One Chip)
    Faculty of Engineering & Information Technology Al-Azhar University-Gaza Dr. Mohammad Aqel Microprocessors and Interfacing (ITCC 3301) Homework (1) Intel Core is a brand name used for various mid-range to high-end consumer and business microprocessors made by Intel. In general, processors sold as Core are more powerful variants of the same processors marketed as entry-level Celeron and Pentium. Similarly, identical or more capable versions of Core processors are also sold as Xeon processors for the server market. The current lineup of Core processors includes the latest Intel Core i7, Intel Core i5 and Intel Core i3, and the older Intel Core 2 Solo, Intel Core 2 Duo, Intel Core 2 Quad, and Intel Core 2 Extreme lines. 1- The original Core brand refers to Intel's 32-bit dual-core x86 CPUs. 2- Unlike the Intel Core, Intel Core 2 is a 64-bit processor, supporting Intel 64. The Core brand comprised two branches: the Duo (dual-core) and Solo (Duo with one disabled core). A dual core processor has two cores (essentially, two CPUs on one die (piece) silicon chip (IC)). Core2Duo is a specific dual-core processor design. Thus, all Core2Duo CPUs are dual-core CPUs, but not all Intel dual-core CPUs are Core2Duo designs. Core 2 is a brand encompassing a range of Intel's consumer 64-bit x86-64 single-, dual-, and quad-core microprocessors based on the Core microarchitecture. The single- and dual-core models are single-die, whereas the quad-core models comprise two dies, each containing two cores, packaged in a multi-chip module.
    [Show full text]
  • Webcore: Architectural Support for Mobile Web Browsing
    WebCore: Architectural Support for Mobile Web Browsing Yuhao Zhu Vijay Janapa Reddi Department of Electrical and Computer Engineering The University of Texas at Austin [email protected], [email protected] Abstract The Web browser is undoubtedly the single most impor- Browser Browser tant application in the mobile ecosystem. An average user 63% 54% spends 72 minutes each day using the mobile Web browser. Web browser internal engines (e.g., WebKit) are also growing 23% 8% 32% Media 6% in importance because they provide a common substrate for 7% 7% Others developing various mobile Web applications. In a user-driven, Media Games Others interactive, and latency-sensitive environment, the browser’s Email performance is crucial. However, the battery-constrained na- (a) Time dist. of window focus. (b) Time dist. of CPU processing. ture of mobile devices limits the performance that we can de- Fig. 1: Mobile Web browser share study conducted by our industry liver for mobile Web browsing. As traditional general-purpose research partner on their employees’ devices [2]. Similar observa- techniques to improve performance and energy efficiency fall tions were reported by NVIDIA on Tegra-based mobile handsets [3,4]. short, we must employ domain-specific knowledge while still maintaining general-purpose flexibility. network limited. However, this trend is changing. With about In this paper, we first perform design-space exploration 10X improvement in round-trip time from 3G to LTE, network to identify appropriate general-purpose architectures that latency is no longer the only performance bottleneck [51]. uniquely fit the characteristics of a popular Web browsing Prior work has shown that over the past decade, network engine.
    [Show full text]
  • EVA: an Efficient Vision Architecture for Mobile Systems
    EVA: An Efficient Vision Architecture for Mobile Systems Jason Clemons, Andrea Pellegrini, Silvio Savarese, and Todd Austin Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109 fjclemons, apellegrini, silvio, [email protected] Abstract The capabilities of mobile devices have been increasing at a momen- tous rate. As better processors have merged with capable cameras in mobile systems, the number of computer vision applications has grown rapidly. However, the computational and energy constraints of mobile devices have forced computer vision application devel- opers to sacrifice accuracy for the sake of meeting timing demands. To increase the computational performance of mobile systems we Figure 1: Computer Vision Example The figure shows a sock present EVA. EVA is an application-specific heterogeneous multi- monkey where a computer vision application has recognized its face. core having a mix of computationally powerful cores with energy The algorithm would utilize features such as corners and use their efficient cores. Each core of EVA has computation and memory ar- geometric relationship to accomplish this. chitectural enhancements tailored to the application traits of vision Watts over 250 mm2 of silicon, typical mobile processors are limited codes. Using a computer vision benchmarking suite, we evaluate 2 the efficiency and performance of a wide range of EVA designs. We to a few Watts with typically 5 mm of silicon [4] [22]. show that EVA can provide speedups of over 9x that of an embedded To meet the limited computation capability of mobile proces- processor while reducing energy demands by as much as 3x. sors, computer vision application developers reluctantly sacrifice image resolution, computational precision or application capabili- Categories and Subject Descriptors C.1.4 [Parallel Architec- ties for lower quality versions of vision algorithms.
    [Show full text]
  • Intel® Audience Impression Metric (AIM) Suite User Guide July 2011 2 Document Number: 465720-1.1
    Intel® Audience Impression Metric (AIM) Suite User Guide July 2011 Revision 1.1 Document Number: 465720 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Any software source code reprinted in this document is furnished under a software license and may only be used or copied in accordance with the terms of that license. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
    [Show full text]
  • CISC Processor - Intel X86
    Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO Architecture of Computers and Parallel Systems Part 4: Intel x86 History Ing. Petr Olivka [email protected] Department of Computer Science FEI VSB-TUO CISC Processor - Intel x86 This chapter will introduce the CISC processors evolution. We will try to illustrate the history on one typical processor, because the comparison of multiple processors simultaneously would not be clear for readers. But the selection of one typical processor is complicated due to a variety of products and manufactures in the past 30 years. We have decided to describe in this presentation one of the best- known and longest mass-produced processors in existence. We definitely do not want to say that it is the best technology or that these are processors with the highest performance! The Intel x86 processors are the selected product line. Intel 8080 (Year-Technology-Transistors-Frequency-Data bus-Address Bus) Y: 1974 T: NMOS 6μm Tr: 6000 F: 2MHz D: 8b A: 16b This 8 bit processor is not directly the first member of x86 series, but it can not be skipped. It is one of the first commercially successful microprocessors. This microprocessor became the basis for a number of the first single-board computers and its instruction set inspired other manufacturers to develop 8-bit processors.
    [Show full text]
  • Intel Unveils All New 2010 Intel® Core™ Processor Family
    Intel Unveils All New 2010 Intel® Core™ Processor Family Industry's Smartest, Most Advanced Technology Available in Variety of Price Points LAS VEGAS, Jan 07, 2010 (BUSINESS WIRE) -- Intel Corporation: NEWS HIGHLIGHTS 1 ● Mainstream processors now offer Intel(R) Turbo Boost Technology , automatically adapting to an individual's performance needs ● First 32 nanometer processors and first time Intel is mass-producing a variety of chips at mainstream prices at start of new manufacturing process, reflecting last year's $7 billion investment during economic recession 4 ● Intel(R) Core(TM) i5 processors are about twice as fast as comparable existing PCs for visibly faster video, photo and music downloading experience ● Historic milestone: select processors integrate graphics directly on processors; also include Intel's second generation high-k metal gate transistors ● Beyond laptops and PCs, processors also target ATMs, travel kiosks, digital displays ● More than 10 new chipsets and new 802.11n WiFi and WiMAX products with new Intel(R) My WiFi features Intel Corporation introduced its all new 2010 Intel(R) Core(TM) family of processors today, delivering unprecedented integration and smart performance, including Intel(R) Turbo Boost Technology1 for laptops, desktops and embedded devices. The introduction of new Intel(R) Core(TM) i7, i5 and i3 chips coincides with the arrival of Intel's groundbreaking new 32 nanometer (nm) manufacturing process - which for the first time in the company's history - will be used to immediately produce and deliver processors and features at a variety of price points, and integrate high-definition graphics inside the processor. This unprecedented ramp and innovation reflects Intel's $7 billion investment announced early last year in the midst of a major global economic recession.
    [Show full text]
  • 6Th Generation Intel® Core™ Processors Based on the Mobile U-Processor for Iot Solutions (Intel® Core™ I7-6600U, I5-6300U, and I3-6100U Processors)
    PLATFORM BRIEF 6th Generation Intel® Core™ Mobile Processor Family Internet of Things 6th Generation Intel® Core™ Processors Based on the Mobile U-Processor for IoT Solutions (Intel® Core™ i7-6600U, i5-6300U, and i3-6100U Processors) Harness the Performance, Features, and Edge-to-Cloud Scalability to Build Tomorrow’s IoT Solutions Today Product Overview Stunning Visual Performance Intel is proud to announce its 6th The 6th generation Intel Core generation Intel® Core™ processor processors utilize the new Gen9 family featuring ultra low-power, graphics engine, which improves 64-bit, multicore processors built on graphic performance by up to the latest 14 nm technology. Designed 34 percent.1 The improvements are for small form-factor applications, this demonstrated through faster 3-D multichip package (MCP) integrates graphics performance and rendering a low-power CPU and platform applications at low power. Video controller hub (PCH) onto a common playback is also faster and smoother package substrate. thanks to the new multiplane overlay capability. The new generation offers The 6th generation Intel Core processor up to three independent audio streams family offers dramatically higher CPU and displays, Ultra HD 4K support, and and graphics performance, a broad workload consolidation for lower BOM range of power and features scaling costs and energy output. the entire Intel product line, and new, advanced features that boost edge-to- Users will also enjoy enhanced cloud Internet of Things (IoT) designs high-density streaming applications in a wide variety of markets. These and optimized 4K videoconferencing processors run at 15W thermal design with accelerated 4K hardware media power (TDP) and are ideal for small, codecs HEVC (8-bit), VP8, VP9, and energy-efficient, form-factor designs, VDENC encoding, decoding, and including digital signage, point-of-sale transcoding.
    [Show full text]
  • PART I ITEM 1. BUSINESS Industry We Are
    PART I ITEM 1. BUSINESS Industry We are the world’s largest semiconductor chip maker, based on revenue. We develop advanced integrated digital technology products, primarily integrated circuits, for industries such as computing and communications. Integrated circuits are semiconductor chips etched with interconnected electronic switches. We also develop platforms, which we define as integrated suites of digital computing technologies that are designed and configured to work together to provide an optimized user computing solution compared to ingredients that are used separately. Our goal is to be the preeminent provider of semiconductor chips and platforms for the worldwide digital economy. We offer products at various levels of integration, allowing our customers flexibility to create advanced computing and communications systems and products. We were incorporated in California in 1968 and reincorporated in Delaware in 1989. Our Internet address is www.intel.com. On this web site, we publish voluntary reports, which we update annually, outlining our performance with respect to corporate responsibility, including environmental, health, and safety compliance. On our Investor Relations web site, located at www.intc.com, we post the following filings as soon as reasonably practicable after they are electronically filed with, or furnished to, the U.S. Securities and Exchange Commission (SEC): our annual, quarterly, and current reports on Forms 10-K, 10-Q, and 8-K; our proxy statements; and any amendments to those reports or statements. All such filings are available on our Investor Relations web site free of charge. The SEC also maintains a web site (www.sec.gov) that contains reports, proxy and information statements, and other information regarding issuers that file electronically with the SEC.
    [Show full text]
  • Inside Intel® Core™ Microarchitecture and Smart Memory Access an In-Depth Look at Intel Innovations for Accelerating Execution of Memory-Related Instructions
    White Paper Inside Intel® Core™ Microarchitecture and Smart Memory Access An In-Depth Look at Intel Innovations for Accelerating Execution of Memory-Related Instructions Jack Doweck Intel Principal Engineer, Merom Lead Architect Intel Corporation Entdecken Sie weitere interessante Artikel und News zum Thema auf all-electronics.de! Hier klicken & informieren! White Paper Intel Smart Memory Access and the Energy-Efficient Performance of the Intel Core Microarchitecture Introduction . 2 The Five Major Ingredients of Intel® Core™ Microarchitecture . 3 Intel® Wide Dynamic Execution . 3 Intel® Advanced Digital Media Boost . 4 Intel® Intelligent Power Capability . 4 Intel® Advanced Smart Cache . 5 Intel® Smart Memory Access . .5 How Intel Smart Memory Access Improves Execution Throughput . .6 Memory Disambiguation . 7 Predictor Lookup . 8 Load Dispatch . 8 Prediction Verification . .8 Watchdog Mechanism . .8 Instruction Pointer-Based (IP) Prefetcher to Level 1 Data Cache . .9 Traffic Control and Resource Allocation . 10 Prefetch Monitor . 10 Summary . .11 Author’s Bio . .11 Learn More . .11 References . .11 2 Intel Smart Memory Access and the Energy-Efficient Performance of the Intel Core Microarchitectures White Paper Introduction The Intel® Core™ microarchitecture is a new foundation for Intel® architecture-based desktop, mobile, and mainstream server multi-core processors. This state-of-the-art, power-efficient multi-core microarchi- tecture delivers increased performance and performance per watt, thus increasing overall energy efficiency. Intel Core microarchitecture extends the energy-efficient philosophy first delivered in Intel's mobile microarchitecture (Intel® Pentium® M processor), and greatly enhances it with many leading edge microarchitectural advancements, as well as some improvements on the best of Intel NetBurst® microarchitecture.
    [Show full text]
  • HP Zbook 15 G3 Mobile Workstation
    QuickSpecs HP ZBook 15 G3 Mobile Workstation Overview HP ZBook 15 G3 Mobile Workstation FRONT VIEW 1. WLAN antennas (2) 9. Lower right, center, left touchpad buttons 2. Internal microphone 10. Storage light indicator 3. Webcam light (with webcam) 11. Battery light indicator 4. Webcam 12. Power light indicator 5. Wireless button 13. Wireless light indicator 6. Volume mute button 14. Upper Right, Center, Left Touchpad buttons 7. Fingerprint reader (select models only) 15. Pointstick 8. Touchpad with scroll zone 16. Power button c04834946 — DA -15374 Worldwide — Version 2 — November 25, 2015 Page 1 QuickSpecs HP ZBook 15 G3 Mobile Workstation Overview LEFT VIEW 1. Security cable slot 4. USB 3.0 port (charging) 2. RJ-45 (Ethernet) 5. SD Card reader 3. VGA port RIGHT VIEW 1. Smart Card reader 5. (2) Thunderbolt™ 3* ports 2. Stereo microphone in / headphone-out combo jack 6. Power connector 3. (2) USB 3.0 Ports 7. Power LED 4. HDMI port c04834946 — DA -15374 Worldwide — Version 2 — November 25, 2015 Page 2 QuickSpecs HP ZBook 15 G3 Mobile Workstation Overview BOTTOM VIEW 1. Speakers c04834946 — DA -15374 Worldwide — Version 2 — November 25, 2015 Page 3 QuickSpecs HP ZBook 15 G3 Mobile Workstation Overview At A Glance Windows® 10 editions, Windows® 7 editions, or FreeDOS Mainstream full performance industrial design, Casted magnesium-reinforced chassis, top cover frame features soft touch paint with lightweight aluminum insert anodized in HP’s new “Space Silver” color with chemical etching. Backlight keyboard in full aluminum deck with magnesium bottom reinforcement, chemically strengthened glass touchpad, and updated system functions indicators.
    [Show full text]
  • NVIDIA Tegra 4 Family CPU Architecture 4-PLUS-1 Quad Core
    Whitepaper NVIDIA Tegra 4 Family CPU Architecture 4-PLUS-1 Quad core 1 Table of Contents ...................................................................................................................................................................... 1 Introduction .............................................................................................................................................. 3 NVIDIA Tegra 4 Family of Mobile Processors ............................................................................................ 3 Benchmarking CPU Performance .............................................................................................................. 4 Tegra 4 Family CPUs Architected for High Performance and Power Efficiency ......................................... 6 Wider Issue Execution Units for Higher Throughput ............................................................................ 6 Better Memory Level Parallelism from a Larger Instruction Window for Out-of-Order Execution ...... 7 Fast Load-To-Use Logic allows larger L1 Data Cache ............................................................................. 8 Enhanced branch prediction for higher efficiency .............................................................................. 10 Advanced Prefetcher for higher MLP and lower latency .................................................................... 10 Large Unified L2 Cache .......................................................................................................................
    [Show full text]
  • DIGITAL WORKPLACE EXPERIENCES Powered by Aruba Mobile First Architecture Jason White Ojchief Nguyen Technologist – Hybrid I.T
    DIGITAL WORKPLACE EXPERIENCES Powered by Aruba Mobile First Architecture Jason White OJChief Nguyen Technologist – Hybrid I.T. Systems Engineering Manager [email protected]@hpe.com @networksjuice “Customer First, Customer Last” Dedicated Sales and Support HPE’s Intelligent Edge Business Unit Intelligent Edge Networking for the Mobile, Cloud, and IoT Era Founded: 2002 Innovation Pioneers IPO: 2007 Leader in Wired and Joined HPE: 2015 Wireless Networking Innovation Hubs Santa Clara, CA -HQ, Portland, Canada, China, Costa Rica, India Workplace experiences Operational experiences for mobile workforce with real-time insights INTELLIGENT EDGE INSIGHTS FROM THE CONVERGENCE OF PEOPLE, PLACES, AND THINGS Brand experiences IT experiences with fueling revenue automation and generation predictive analytics EVOLUTION OF INTELLIGENT EDGE 802.11n 20B Intel Microsoft Enables Connected Introduces Introduces Network “Things” Centrino Right-sizing Lync 2018 and 2003 2007 2009 2010 2013 2014 Beyond Apple iPad 1.5M servers Apple iPhone Enters in operation Drives BYOD Board Rooms INTELLIGENT EDGE DATACENTER, PRIVATE & PUBLIC CLOUD WAN CAMPUS BRANCH INDUSTRIAL SITE Mobile-First Mobile-First, Mobile-First, Cloud-First Cloud-First IoT Centric Mobile-First Campus Infrastructure Management Security Experience Campus AP Access AirWave ClearPass NetInsight Beacons Core / Agg Mobility Master IntroSpect Controllers Partnerships Mobile-First, Cloud-First Branch – “SD-Branch” Infrastructure Security Management Experience Branch Gateways Access Switches
    [Show full text]