Mark Woolhouse University of Edinburgh, UK

Total Page:16

File Type:pdf, Size:1020Kb

Mark Woolhouse University of Edinburgh, UK WHAT WILL CAUSE THE NEXT PANDEMIC? Mark Woolhouse University of Edinburgh, UK With thanks to: Feifei Zhang, Lu Lu, Liam Brierley, Alistair Morrison, Tara Wagner-Gamble and many others WHAT WILL CAUSE THE NEXT PANDEMIC? The 2018 list of disease priorities needing urgent R&D attention comprises: Crimean-Congo haemorrhagic fever (CCHF) Ebola virus disease and Marburg virus disease Lassa fever MERS-CoV and SARS Nipah and henipaviral diseases Rift Valley fever (RVF) The possibility that a serious Zika international epidemic could be Disease X caused by a pathogen currently unknown to cause human disease Candidates included “highly pathogenic coronaviral diseases other than MERS and SARS” Mark Woolhouse, University of Edinburgh, September 2020 WHAT WILL CAUSE THE NEXT PANDEMIC? • Virus discovery • Known viruses • Disease X • Virus diversity • SARS-CoV-2 WHAT WILL CAUSE THE NEXT PANDEMIC? • Virus discovery • Known viruses • Disease X • Virus diversity • SARS-CoV-2 HUMAN PATHOGEN SURVEY • Systematic review of primary literature • Formal methodology → Taylor et al. (2001) Phil. Trans. B • 70% EIDs are zoonotic • 70% EIDs caused by RNA viruses 214 recognised RNA virus species (to 2015) 55 genera 21 families (+1 unassigned genus) Mark Woolhouse, University of Edinburgh, September 2020 RNA VIRUS DISCOVERY Mark Woolhouse, University of Edinburgh, September 2020 Woolhouse & Brierley (2018) Scientific Data PREDICTING WHERE Risk maps created using a boosted regression tree model with 33 predictors. Models trained on 223 discoveries worldwide and 83 in China. Top predictors: GDP/GDP growth > urbanisation > climate > biodiversity. Discoveries since 2015 indicated (black triangles) and location of Wuhan shown. Mark Woolhouse, University of Edinburgh, September 2020 Zhang et al. (under revision) PLoS Pathogens NATURAL HISTORY WITH NUMBERS • 188/214 (88%) known human RNA viruses naturally infect other mammals • Most of the 26 human-specific RNA viruses have close relatives that infect other mammals [except: rubella, hepatitis delta] • Only 38/214 (18%) infect non-mammals [= birds (37) ± reptiles (7) ± fish (1?)] • 55/74 (74%) mammal RNA virus genera include human viruses • 21/23 mammal RNA virus families include human viruses [except: Arteriviridae, Nodaviridae] • “Majority of human viruses… are the product of host jumping” Kitchen et al. (2011) PNAS • Easier to switch host species than alter tissue tropism or transmission route Human infectivity evolves very easily within the mammal RNA viruses, less easily from birds and never(?) from anything else Mark Woolhouse, University of Edinburgh, September 2020 WHAT WILL CAUSE THE NEXT PANDEMIC? • Virus discovery • Known viruses • Disease X • Virus diversity • SARS-CoV-2 THE RNA VIRUS PYRAMID LEVEL 4 N = 60 EPIDEMIC SPREAD R0 > 1 LEVEL 3 N = 31 TRANSMISSION LEVEL 2 N = 123 INFECTION LEVEL 1 N = ??? EXPOSURE Mark Woolhouse, University of Edinburgh, September 2020 updated from Woolhouse et al. (2014) in One Health CHANGING LEVELS LEVEL 1 → LEVEL 2/3/4 LEVEL 4 • SARS EPIDEMIC SPREAD • MERS • Lujo • … many others LEVEL 3 TRANSMISSION LEVEL 3 → LEVEL 4 • Zaire ebolavirus LEVEL 2 • Chikungunya • Zika INFECTION LEVEL 2 → LEVEL 3/4 LEVEL 1 • None? EXPOSURE Mark Woolhouse, University of Edinburgh, September 2020 Woolhouse et al. (2016) Emerg. Infect. Dis. AN EXAMPLE: ARBOVIRUSES • 91 human RNA virus species from 8 families are transmitted by vectors • All 19 level 3/4 RNA arboviruses are carried by anthropophilic vectors • Main anthropophilic vector species are from 5 dipteran genera: − Aedes spp. − Anopheles spp. − Culex spp. − Culicoides spp. − Phlebotomus spp. • All four Level 4 arboviruses [YFV, DENV, CHIK + ZIKA] are carried by Aedes spp. • There are no anthropophilic ticks: so no Level 4 tick-borne viruses Mark Woolhouse, University of Edinburgh, September 2020 Woolhouse et al. (2016) Emerg. Infect. Dis. L3 RNA VIRUS SPECIES Arenaviruses Coronaviruses Reoviruses (Dandenong*) Middle East respiratory syndrome (Colorado tick fever) Guanarito Nelson Bay Junin Filoviruses Rotavirus H Lassa Bundibugyo ebola Lujo Lake Victoria marburg Rhabdoviruses (Lymphocytic choriomeningitis) Sudan ebola Bas-congo* Machupo Zaire ebola (Rabies) Sabia Flaviviruses Togaviruses Bunyaviruses (Japanese encephalitis) Barmah forest Andes (Usutu) Chikungunya Bwamba (West Nile) O’nyong-nyong Crimean-Congo haemorrhagic fever Zika Ross river Oropouche Semliki forest Rift Valley Paramyxoviruses Venezuelan equine encephalitis Severe fever with thrombocytopenia Nipah syndrome N = 3528 - includes 7 viruses known only through iatrogenic and/or vertical routes (parentheses)(parentheses) 8 with outbreaks >100 cases (bold) *not ICTV recognised Mark Woolhouse, University of Edinburgh, September 2020 adapted from Woolhouse et al. (2016) Emerg. Infect. Dis. L3 RNA VIRUS SPECIES Arenaviruses Coronaviruses Reoviruses Middle East respiratory syndrome Guanarito Nelson Bay Junin Filoviruses Rotavirus H Lassa Bundibugyo ebola Lujo Lake Victoria marburg Rhabdoviruses Sudan ebola Bas-congo* Machupo Zaire ebola Sabia Flaviviruses Togaviruses Bunyaviruses Barmah forest Andes Chikungunya Bwamba O’nyong-nyong Crimean-Congo haemorrhagic fever Zika Ross river Oropouche Semliki forest Rift Valley Paramyxoviruses Venezuelan equine encephalitis Severe fever with thrombocytopenia Nipah syndrome N = 282535 - includes 7 viruses known only through iatrogenic and/or vertical routes (parentheses)(parentheses) - 855 withwith outbreaksoutbreaks >100>100 casescases (bold)(bold) 3 already transitioned to Level 4 [EBOV, ZIKA, CHIK] *not ICTV recognised Mark Woolhouse, University of Edinburgh, September 2020 adapted from Woolhouse et al. (2016) Emerg. Infect. Dis. OUTBREAK DYNAMICS → MANY → P(x)=Γ(x-½)/√πΓ(x) FEW → FEW SMALL → → BIG Mark Woolhouse, University of Edinburgh, September 2020 Woolhouse et al. (2016) Emerg. Inf. Dis. WHAT WILL CAUSE THE NEXT PANDEMIC? • Virus discovery • Known viruses • Disease X • Virus diversity • SARS-CoV-2 PHYLOGENETICS OF DISEASE X 1764 sequences 39 RNA virus genera Levels 1, 2, 3/4 Mammal or bird host Phylogenetic reconstruction of discrete state transitions using Bayesian MCMC / ML tree reconstructions and discrete trait / parsimony state reconstructions Mark Woolhouse, University of Edinburgh, September 2020 Lu et al. (2019) doi.org/10.1101/771394 bioRxiv preprint PHYLOGENETICS OF DISEASE X Majority of new human viruses with epidemic potential are related to but not directly descended Betacoronavirus genus from other viruses that are transmissible in human (cf. Lyssavirus, Orthohantavirus) populations 57 human transmissible lineages (infective but not transmissible similar!) Human NL63 dated at 1921 Lu et al. (2019) – Al-Khannaq et al. (2016) Mark Woolhouse, University of Edinburgh, September 2020 WHAT WILL CAUSE THE NEXT PANDEMIC? • Virus discovery • Known viruses • Disease X • Virus diversity • SARS-CoV-2 LIMITS TO RNA VIRUS DIVERSITY • >200 human RNA virus species known • Have been recognising new species (mean = 2.8 per year since 1955); still discovering (but not yet ratifying) putative new ‘species’ M.E.J. Woolhouse, University of Edinburgh, November 2016 updated from Woolhouse et al. (2012) Phil. Trans. B LIMITS TO RNA VIRUS DIVERSITY • >200 human RNA virus species known • Have been recognising new species (mean = 2.8 per year since 1955); still discovering (but not yet ratifying) putative new ‘species’ • Not finding new families, since a human picobirnavirus in 1988 • Marked slowdown in rate of discovery of new genera M.E.J. Woolhouse, University of Edinburgh, November 2016 updated from Woolhouse et al. (2012) Phil. Trans. B LIMITS TO RNA VIRUS DIVERSITY • Estimate of species pool Mora et al. (2011) PLoS Biol. • hyperexponential model: log(logXr+1) = 2*log(logXr) - log(logXr-1) No. genera per family No. species per genus » Species pool = 275 (±10) [jack-knife 95% CIs] » 75% species already known • Consistent with extrapolations of discovery curve → up to 84% • cf. “unbounded” estimates, e.g. Woolhouse et al. (2008) Proc. B M.E.J. Woolhouse, University of Edinburgh, November 2016 updated from Woolhouse et al. (2013) Future Virol. DIVERSITY OF MAMMAL VIRUSES • <300 from extrapolating discovery curves Woolhouse et al. (2013) Future Virol. • >5000 species of mammal, 10 each → 50,000 Morse (1993) Emerging Viruses • Extrapolating bat/rodent surveys to all mammal and some bird viruses → 1.7M (SE 0.7-2.6M) Carroll et al. (2018) Science ? Do most mammals have any unique viruses at all? Critical community size • Humans = 30% global land zoomass • Livestock = 67% • Wildlife = 3% Smil (2012) Harvesting the Biosphere Mark Woolhouse, University of Edinburgh, September 2020 WT-VIZIONS Wellcome Trust-Viet Nam Initiative on Zoonotic Infections Several thousand enteric, respiratory and CNS samples from hospitalised patients, high risk cohorts and animals UNUSUAL PATHOGENS • Novel cyclovirus (CyCV-VN) in CSF from hospital patients • Novel porcine-like rotavirus (G26P[19]) in paediatric diarrhoea cases • First cases of Trypanosoma evansi infection in SE Asia • First human husavirus infections outside Europe • Novel kobuviruses in bats • Novel hunniviruses in rodents • Novel Bartonella spp in bats M.E.J. Woolhouse, University of Edinburgh, February 2017 WHAT HAVE WE LEARNT? • Exposure is very common; spillover is very rare • Pathogen discovery is not a systematic process • (Multi-faceted) surveillance is the first line of defence against emerging pathogens • “That district produces the greatest variety which is the most examined” – Gilbert White
Recommended publications
  • Uveal Involvement in Marburg Virus Disease B
    Br J Ophthalmol: first published as 10.1136/bjo.61.4.265 on 1 April 1977. Downloaded from British Journal of Ophthalmology, 1977, 61, 265-266 Uveal involvement in Marburg virus disease B. S. KUMING AND N. KOKORIS From the Department of Ophthalmology, Johannesburg General Hospital and University of the Witwatersrand SUMMARY The first reported case of uveal involvement in Marburg virus disease is described. 'Ex Africa semper aliquid novi'. Two outbreaks of Marburg virus disease have been Rhodesia and had also been constantly at his documented. The first occurred in Marburg and bedside till his death. Lassa fever was suspected and Frankfurt, West Germany, in 1967 (Martini, 1969) she was given a unit of Lassa fever convalescent and the second in Johannesburg in 1975 (Gear, serum when she became desperately ill on the fifth 1975). This case report describes the third patient day. She also developed acute pancreatitis. Within in the Johannesburg outbreak, who developed an 52 hours she made a dramatic and uneventful anterior uveitis. The cause of the uveitis was proved recovery. Her illness mainly affected the haema- to be the Marburg virus by identiying it in a tissue topoietic, hepatic, and pancreatic systems. culture of her aqueous fluid. The subject of this report was a nurse who had helped to nurse patients 1 and 2. Nine days after the Case report death ofthe first patient she presented with lower back pain and high fever. She developed hepatitis, a mild Before describing the case history of the patient the disseminated intravascular coagulation syndrome, events leading to her contracting the disease must successfully treated with heparin, and the classical be briefly described.
    [Show full text]
  • Transmission and Evolution of Tick-Borne Viruses
    Available online at www.sciencedirect.com ScienceDirect Transmission and evolution of tick-borne viruses Doug E Brackney and Philip M Armstrong Ticks transmit a diverse array of viruses such as tick-borne Bourbon viruses in the U.S. [6,7]. These trends are driven encephalitis virus, Powassan virus, and Crimean-Congo by the proliferation of ticks in many regions of the world hemorrhagic fever virus that are reemerging in many parts of and by human encroachment into tick-infested habitats. the world. Most tick-borne viruses (TBVs) are RNA viruses that In addition, most TBVs are RNA viruses that mutate replicate using error-prone polymerases and produce faster than DNA-based organisms and replicate to high genetically diverse viral populations that facilitate their rapid population sizes within individual hosts to form a hetero- evolution and adaptation to novel environments. This article geneous population of closely related viral variants reviews the mechanisms of virus transmission by tick vectors, termed a mutant swarm or quasispecies [8]. This popula- the molecular evolution of TBVs circulating in nature, and the tion structure allows RNA viruses to rapidly evolve and processes shaping viral diversity within hosts to better adapt into new ecological niches, and to develop new understand how these viruses may become public health biological properties that can lead to changes in disease threats. In addition, remaining questions and future directions patterns and virulence [9]. The purpose of this paper is to for research are discussed. review the mechanisms of virus transmission among Address vector ticks and vertebrate hosts and to examine the Department of Environmental Sciences, Center for Vector Biology & diversity and molecular evolution of TBVs circulating Zoonotic Diseases, The Connecticut Agricultural Experiment Station, in nature.
    [Show full text]
  • As a Model of Human Ebola Virus Infection
    Viruses 2012, 4, 2400-2416; doi:10.3390/v4102400 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review The Baboon (Papio spp.) as a Model of Human Ebola Virus Infection Donna L. Perry 1,*, Laura Bollinger 1 and Gary L.White 2 1 Integrated Research Facility, Division of Clinical Research, NIAID, NIH, Frederick, MD, USA; E-Mail: [email protected] 2 Department of Pathology, University of Oklahoma Baboon Research Resource, University of Oklahoma, Ft. Reno Science Park, OK, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-301-631-7249; Fax: +1-301-619-5029. Received: 8 October 2012; in revised form: 17 October 2012 / Accepted: 17 October 2012 / Published: 23 October 2012 Abstract: Baboons are susceptible to natural Ebola virus (EBOV) infection and share 96% genetic homology with humans. Despite these characteristics, baboons have rarely been utilized as experimental models of human EBOV infection to evaluate the efficacy of prophylactics and therapeutics in the United States. This review will summarize what is known about the pathogenesis of EBOV infection in baboons compared to EBOV infection in humans and other Old World nonhuman primates. In addition, we will discuss how closely the baboon model recapitulates human EBOV infection. We will also review some of the housing requirements and behavioral attributes of baboons compared to other Old World nonhuman primates. Due to the lack of data available on the pathogenesis of Marburg virus (MARV) infection in baboons, discussion of the pathogenesis of MARV infection in baboons will be limited.
    [Show full text]
  • The Hemorrhagic Fevers of Southern Africa South African Institute For
    THE YALE JOURNAL OF BIOLOGY AND MEDICINE 55 (1982), 207-212 The Hemorrhagic Fevers of Southern Africa with Special Reference to Studies in the South African Institute for Medical Research J.H.S. GEAR, M.D. National Institute for Virology, Johannesburg, South Africa Received April 19, 1982 In this review of studies on the hemorrhagic fevers of Southern Africa carried out in the South African Institute for Medical Research, attention has been called to occurrence of meningococcal septicemia in recruits to the mining industry and South African Army, to cases of staphylococcal and streptococcal septicemia with hemorrhagic manifestations, and to the occurrence of plague which, in its septicemic form, may cause a hemorrhagic state. "Onyalai," a bleeding disease in tropical Africa, often fatal, was related to profound throm- bocytopenia possibly following administration of toxic witch doctor medicine. Spirochetal diseases, and rickettsial diseases in their severe forms, are often manifested with hemorrhagic complications. Of enterovirus infections, Coxsackie B viruses occasionally caused severe hepa- titis associated with bleeding, especially in newborn babies. Cases of hemorrhagic fever presenting in February-March, 1975 are described. The first out- break was due to Marburg virus disease and the second, which included seven fatal cases, was caused by Rift Valley fever virus. In recent cases of hemorrhagic fever a variety of infective organisms have been incriminated including bacterial infections, rickettsial diseases, and virus diseases, including Herpesvirus hominis; in one patient, the hemorrhagic state was related to rubella. A boy who died in a hemorrhagic state was found to have Congo fever; another pa- tient who died of severe bleeding from the lungs was infected with Leptospira canicola, and two patients who developed a hemorrhagic state after a safari trip in Northern Botswana were infected with Trypanosoma rhodesiense.
    [Show full text]
  • Clinically Important Vector-Borne Diseases of Europe
    Natalie Cleton, DVM Erasmus MC, Rotterdam Department of Viroscience [email protected] No potential conflicts of interest to disclose © by author ESCMID Online Lecture Library Erasmus Medical Centre Department of Viroscience Laboratory Diagnosis of Arboviruses © by author Natalie Cleton ESCMID Online LectureMarion Library Koopmans Chantal Reusken [email protected] Distribution Arboviruses with public health impact have a global and ever changing distribution © by author ESCMID Online Lecture Library Notifications of vector-borne diseases in the last 6 months on Healthmap.org Syndromes of arboviral diseases 1) Febrile syndrome: – Fever & Malaise – Headache & retro-orbital pain – Myalgia 2) Neurological syndrome: – Meningitis, encephalitis & myelitis – Convulsions & coma – Paralysis 3) Hemorrhagic syndrome: – Low platelet count, liver enlargement – Petechiae © by author – Spontaneous or persistent bleeding – Shock 4) Arthralgia,ESCMID Arthritis and Online Rash: Lecture Library – Exanthema or maculopapular rash – Polyarthralgia & polyarthritis Human arboviruses: 4 main virus families Family Genus Species examples Flaviviridae flavivirus Dengue 1-5 (DENV) West Nile virus (WNV) Yellow fever virus (YFV) Zika virus (ZIKV) Tick-borne encephalitis virus (TBEV) Togaviridae alphavirus Chikungunya virus (CHIKV) O’Nyong Nyong virus (ONNV) Mayaro virus (MAYV) Sindbis virus (SINV) Ross River virus (RRV) Barmah forest virus (BFV) Bunyaviridae nairo-, phlebo-©, orthobunyavirus by authorCrimean -Congo heamoragic fever (CCHFV) Sandfly fever virus
    [Show full text]
  • Ebola in the DRC: Report September 2020
    The Congo Research Group (CRG) is an independent, non-profit research project dedicated to understanding the violence that affects millions of Congolese. We carry out rigorous research on different aspects of the conflict in the Democratic Republic of the Congo. All of our research is informed by deep historical and social knowledge of the problem at hand. We are based at the Center on International Cooperation at New York University. All of our publications, blogs and podcasts are available at: www.congoresearchgroup.org and www.gecongo.org This report was made possible thanks to funding from the European Union through its Instrument contributing to Stability and Peace. Cover photo: 17 January 2019, Beni, North Kivu region, Democratic Republic of Congo. A doctor talks with Julie, in her cube at the Ebola Treatment Center. Photo: World Bank / Vincent Tremeau Ebola in the DRC: Report September 2020 Table of Contents Executive Summary ...................................................................................................................................... 4 Introduction ................................................................................................................................................. 5 Ebola: From Neglected Tropical Disease to Global Health Security Threat ....................................................... 7 Medicine in DRC: From Colonial Tool to Site of Extraction .............................................................................. 8 The Building of a Parallel Health System .....................................................................................................11
    [Show full text]
  • When Neglected Tropical Diseases Knock on California's Door
    When Neglected Tropical Diseases Knock on California’s Door Anne Kjemtrup, DVM, MPVM, PhD California Department of Public Health Vector-Borne Disease Section Overview of Today’s Topics • Neglected tropical diseases: setting the stage for impact on California • California Public Health Overview – Surveillance/response structure – Vector-Borne Disease program areas THE MONSTER RETURNS • Two examples: Peter McCarty – Arbovirus introduction (dengue, chikungunya, zika) – Re-emergence of Rocky Mountain spotted fever (not really NTD but similar principals) Neglected Tropical Diseases* • Buruli Ulcer • Leishmaniasis • Chagas disease • Leprosy (Hansen disease) • Dengue and Chikungunya • Lymphatic filariasis • Dracunculiasis (guinea • Onchocerciasis (river worm disease) blindness) • Echinococcosis • Mycetoma • Endemic treponematoses • Rabies (Yaws) • Schistosomiasis • Foodborne trematodiases • Soil-transmitted • Human African helminthiases trypanosomiasis (sleeping • Taeniasis/Cysticercosis sickness) • Trachoma * from: http://www.who.int/neglected_diseases/diseases/en/ Neglected Tropical Diseases • Buruli Ulcer • Leishmaniasis • Chagas disease • Leprosy (Hansen disease) • Dengue and Chikungunya • Lymphatic filariasis • Dracunculiasis (guinea • Mycetoma worm disease) • Onchocerciasis (river • Echinococcosis blindness) • Endemic treponematoses • Rabies (Yaws) • Schistosomiasis • Foodborne trematodiases • Soil-transmitted • Human African helminthiases trypanosomiasis (sleeping • Taeniasis/Cysticercosis sickness) • Trachoma California has vector and/or
    [Show full text]
  • The Ecology of New Constituents of the Tick Virome and Their Relevance to Public Health
    viruses Review The Ecology of New Constituents of the Tick Virome and Their Relevance to Public Health Kurt J. Vandegrift 1 and Amit Kapoor 2,3,* 1 The Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA; [email protected] 2 Center for Vaccines and Immunity, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA 3 Department of Pediatrics, Ohio State University, Columbus, OH 43205, USA * Correspondence: [email protected] Received: 21 March 2019; Accepted: 29 May 2019; Published: 7 June 2019 Abstract: Ticks are vectors of several pathogens that can be transmitted to humans and their geographic ranges are expanding. The exposure of ticks to new hosts in a rapidly changing environment is likely to further increase the prevalence and diversity of tick-borne diseases. Although ticks are known to transmit bacteria and viruses, most studies of tick-borne disease have focused upon Lyme disease, which is caused by infection with Borrelia burgdorferi. Until recently, ticks were considered as the vectors of a few viruses that can infect humans and animals, such as Powassan, Tick-Borne Encephalitis and Crimean–Congo hemorrhagic fever viruses. Interestingly, however, several new studies undertaken to reveal the etiology of unknown human febrile illnesses, or to describe the virome of ticks collected in different countries, have uncovered a plethora of novel viruses in ticks. Here, we compared the virome compositions of ticks from different countries and our analysis indicates that the global tick virome is dominated by RNA viruses. Comparative phylogenetic analyses of tick viruses from these different countries reveals distinct geographical clustering of the new tick viruses.
    [Show full text]
  • Tick Talk: Advancing the Understanding and Prevention of Tick-Borne Diseases
    Tick Talk: Advancing the Understanding and Prevention of Tick-borne Diseases Seemay Chou UCSF Dept of Biochemistry & Biophysics Osher Mini Med School, 11/14/19 Malaria Sleeping sickness Lyme disease Topics: 1. Ticks and their vector capacity 2. Challenges associated with diagnosing Lyme 3. Strategies for blocking tick-borne diseases 4. What else can we learn from ticks? Ticks are vectors for human diseases Lyme Disease Ixodes scapularis Anaplasmosis Ixodes pacificus Babesiosis Powassan Disease Dermacentor andersoni Rocky Mountain Spotted Fever Dermacentor variablis Colorado Tick Fever Ehrlichiosis Amblyomma maculatum Rickettsiosis Amblyomma americanum Mammalian Meat Allergy Different ticks have different lifestyles Hard scutum Soft capitulum Ixodes scapularis Ornithodoros savignyi Different ticks have different lifestyles Hard • 3 stages: larvae, nymphs, adults • Single bloodmeal between each • Bloodmeal: days to over a week Ixodes scapularis Lyme disease cases in the U.S. are on the rise Ixodes scapularis Borrelia burgdorferi Lyme disease Cases have tripled in past decade Most commonly reported vector-borne disease in U.S. Centers for Disease Control Tick–pathogen relationships are remarkably specific Source: CDC.gov Lyme disease is restricted to where tick vectors are Source: CDC.gov West coast vector: Ixodes pacificus Western blacklegged tick West coast vector: Ixodes pacificus Sceloporus occidentalis Western fence lizard County level distribution of submitted Ixodes Nieto et al, 2018 Distribution of other tick species received Nieto
    [Show full text]
  • Healthcare Providers, Hospitals, Local Health Departments (Lhds)
    May 11, 2015 TO: Healthcare Providers, Hospitals, Local Health Departments (LHDs) FROM: NYSDOH Bureau of Communicable Disease Control HEALTH ADVISORY: TESTING AND REPORTING OF MOSQUITO- AND TICK-BORNE ILLNESSES For healthcare facilities, please distribute immediately to the Infection Control Department, Emergency Department, Infectious Disease Department, Director of Nursing, Medical Director, Laboratory Service, and all patient care areas. The New York State Department of Health (NYSDOH) is advising physicians on the procedures to test and report suspected cases of mosquito-borne illnesses, including West Nile virus (WNV), eastern equine encephalitis (EEE), dengue fever, and chikungunya as well as tick-borne illnesses including Lyme disease, babesiosis, anaplasmosis, ehrlichiosis, and Rocky Mountain spotted fever. SUMMARY Mosquito-borne (arboviral) illnesses: o During the mosquito season (early summer until late fall), health care providers should consider mosquito-borne infections in the differential diagnosis of any adult or pediatric patient with clinical evidence of viral encephalitis or viral meningitis. o All cases of suspected viral encephalitis should be reported immediately to the LHD. o Dengue and/or chikungunya should be suspected year round in patients presenting with fever, arthralgia, myalgia, rash, or other illness consistent with infection and recent travel to endemic areasi. o Wadsworth Center, the NYSDOH public health laboratory, provides testing for a number of domestic, exotic, common and rare viruses. The tests performed will depend on the clinical characteristics, patient status and travel history. Health care providers should contact the LHD of the patient’s county of residence prior to submission of specimens. Tick-borne illnesses: o Tick-borne disease symptoms vary by type of infection and can include fever, fatigue, headache, and rash.
    [Show full text]
  • Zoonoses of Importance in Wildlife Rehabilitation
    Zoonoses of Importance in Wildlife Rehabilitation Margaret A. Wild, Colorado Division of Wildlife, 317 W. Prospect Road, Fort Collins, Colorado 80526 W. John Pape, Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive South, Denver, Colorado 80222-1530 Zoonoses are infections or infestations shared in nature by humans and other vertebrate animals. Because wildlife rehabilitators work with animals that have unknown health histories, may be ill, and may be more susceptible to disease due to the stress of captivity, there is a risk of exposure to zoonotic diseases. Although infection of wildlife with most zoonotic diseases is uncommon in Colorado, it is prudent to follow precautions when housing, handling, and treating wild species. In general, most problems can be avoided by using common sense and good hygiene practices. Prevention of infection with zoonotic diseases should be a major emphasis in protocols for rehabilitation of wildlife. In addition to specific control and prevention guidelines listed below for each group of diseases, some general guidelines should be followed in all cases. First, isolation of the wild animal is important both for the animal and to minimize exposure of humans to potential pathogens. Second, good personal hygiene is important. Handwashing after handling animals or animal facilities is extremely important. People should not consume food or drink in the animal facilities. Additional precautions may include wearing protective clothing (lab coat, coveralls), boots, gloves, and/or dust mask depending on the situation. Because children are more susceptible to some zoonotic diseases, particular emphasis should be placed on protecting children. Third, animal facilities and equipment should be kept clean.
    [Show full text]
  • Mapping the Risk and Distribution of Epidemics in the WHO African Region
    Mapping the Risk and Distribution of Epidemics in the WHO African Region A Technical Report May 2016 WHO/AFRO Library Cataloguing – in – Publication Data Mapping the Risk and Distribution of Epidemics in the WHO African Region: a technical report 1. Disease Outbreaks – statistics and numerical data 2. Epidemics – statistics and numerical data 3. Communicable Diseases – statistics and numerical data 4. Risk Assessment – supply and distribution – statistics and numerical data 5. Data collection – utilization 6. Africa I. Work Health Organization. Regional Office for Africa II. Title ISBN: 978-9290233084-4 (NLM Classification : WA 105) © WHO Regional Office for Africa, 2016 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention. All rights reserved. Copies of this publication may be obtained from the Library, WHO Regional Office for Africa, P.O. Box 6, Brazzaville, Republic of Congo (Tel: +47 241 39100; Fax: +47 241 39507; E-mail: [email protected]). Requests for permission to reproduce or translate this publication – whether for sale or for non-commercial distribution – should be sent to the same address. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned.
    [Show full text]