TACC-Ling Microtubule Dynamics and Centrosome Function

Total Page:16

File Type:pdf, Size:1020Kb

TACC-Ling Microtubule Dynamics and Centrosome Function Review The TACC proteins: TACC-ling microtubule dynamics and centrosome function Isabel Peset1 and Isabelle Vernos1,2 1 Cell and Developmental Biology Program, Centre for Genomic Regulation (CRG), University Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona 08003, Spain 2 Institucio´ Catalana de Recerca i Estudis Avanc¸ats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain A major quest in cell biology is to understand the Transforming acidic coiled-coil (TACC) proteins emerged molecular mechanisms underlying the high plasticity initially as a group of proteins implicated in cancer. The of the microtubule network at different stages of the first member of the TACC family to be discovered was cell cycle, and during and after differentiation. Initial identified in a search of genomic regions that are amplified reports described the centrosomal localization of in breast cancer. It was named transforming acidic coiled- proteins possessing transforming acidic coiled-coil coil 1 (TACC1) because of its highly acidic nature, the (TACC) domains. This discovery prompted several presence of a predicted coiled-coil domain at its C terminus groups to examine the role of TACC proteins during cell (now known as the TACC domain), and its ability to division, leading to indications that they are important promote cellular transformation [6]. TACC proteins are players in this complex process in different organisms. present in different organisms, ranging from yeasts to Here, we review the current understanding of the role of mammals. There is only one TACC protein in the nema- TACC proteins in the regulation of microtubule tode Caenorhabditis elegans (TAC-1), in Drosophila mel- dynamics, and we highlight the complexity of centro- anogaster (D-TACC), in Xenopus laevis (Maskin), and some function. Introduction Cell proliferation and differentiation require dramatic Abbreviations rearrangements of the cytoskeleton that rely on the highly AINT: ARNT interacting protein dynamic nature of the cytoskeletal components. Microtu- AKAP350: A kinase (PRKA) anchor protein bules are dynamic filaments with fundamental roles in Alp7: Altered growth polarity 7 eukaryotic cell organization and function. During cell Ark1: aurora-related kinase ARNT: aryl hydrocarbon nuclear translocator protein division, they form the bipolar spindle, which segregates AZU-1: anti-zuai-1 the chromosomes into the two daughter cells. Microtubules CBP: calcium-binding protein show prolonged states of polymerization and depolymer- CPEB: cytoplasmic polyadenylation element binding protein ization that interconvert stochastically, exhibiting fre- DCLK: doublecortin-like kinase quent transitions between growing and shrinking ECTACC: endothelial cell TACC E1F4E: eukaryotic initiation factor 4E phases, a property called ‘dynamic instability’ [1]. In the ERIC: erythropoietin-induced cDNA cell, multiple factors modulate this property by acting FOG-1: Friend of Gatal positively or negatively on the nucleation, elongation or GAS41: glioma amplified sequence 41 destabilization of microtubules [1–3]. The relative activity GCN5L2: general control of amino-acid synthesis 5-like 2 g-TURC: g-tubulin related complex of all these factors determines the steady-state length and HEAT: huntingtin, elongation factor 3, A subunit of protein stability of microtubules, in addition to their organization, phosphatase 2A and TOR1 and it is largely dictated by global and local phosphoryl- INI-1: SWI/SNF core subunit ation–dephosphorylation reactions [2,3]. In addition, other Ipl1: Increase-in-ploidy 1 types of factors that have microtubule-severing and - ISREC: Swiss Institute for Experimental Cancer Research KIF2C: kinesin family member 2C anchoring activities also influence the microtubule net- LIS1: Lissencephaly-1 work. The main microtubule-organizing centre (MTOC) LSM7: U6 small nuclear NRA associated of animal cells, the centrosome, acts as a platform upon MBD2: methyl-CpG binding domain protein 2 which the different factors and activities accumulate in a Mial: melanoma inhibitory activity 1 regulated manner. It therefore exerts a tight local and Mps1: MonoPolar Spindle 1 NDEL1 and NUDEL: nude nuclear distribution gene E homolog temporal control on the number, distribution and polarity (A. nidulans)-like 1 pCAF, p300/CBP-associated factor of microtubules [4,5]. SmG: snRNP Sm protein G TTK: TTK protein kinase Zyg-8: ZYGote defective Corresponding authors: Peset, I. ([email protected]); Zyg-9: ZYGote defective Vernos, I. ([email protected]). 0962-8924/$ – see front matter ß 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tcb.2008.06.005 Available online 23 July 2008 379 Review Trends in Cell Biology Vol.18 No.8 in the fission yeast Schizosaccharomyces pombe (Alp7 Although TACC1 was originally found to be upregulated also known as Mia1p); by contrast, mammals have three in breast cancer [6], subsequent studies found that its such proteins (TACC1, TACC2 [also known as AZU-1 and expression is reduced in ovarian and breast cancer tissues ECTACC] and TACC3 [also known as AINT and ERIC1]) [18,19]. TACC3 is also upregulated in several cancer cell [7–11]. Alternative splicing further increases the comp- lines, including lung cancer [17,20]; but, again, it was lexity of the TACC protein family in mammals and flies reported as being absent or reduced in ovarian and thyroid [12–16]. cancer tissues [21]. Initially, it was suggested that the The three human genes encoding TACC proteins are all TACC2 splice variant AZU-1 is a tumor suppressor in in genomic regions that are rearranged in certain cancers, breast cancer. However, the lack of any tumor phenotype and their expression is altered in cancers from different in Tacc2-knockout mice did not support this idea [22].It tissues. TACC1 and TACC2 are located in chromosomes therefore appears that these proteins can be upregulated 8p11 and 10q26, respectively, two regions that are impli- or downregulated in different types of cancer or, surpris- cated in breast cancer and other tumors [6], and TACC3 ingly, even in the same type [14,18–25]; as such, their maps to 4p16, within a translocation breakpoint region putative involvement in cancer development and/or pro- associated with the disease multiple myeloma [17]. gression is unclear. Figure 1. The TACC family of proteins: structural organization and regions of interaction with binding partners. The figure shows alignment of the key structural features, and the position of domains that interact with binding partners (underlined regions). TACC proteins have the conserved coiled-coil TACC domain at their C terminus (blue box). In addition, some members have highly acidic, imperfect repeats of 33 amino acids (termed SPD repeats [28] owing to their specific amino acid composition [pale-blue boxes]) or a Ser–Pro Azu-1 motif (SPAZ) [24] (dark-grey boxes). Yellow lines indicate the position of nuclear localization signals (NLSs). The conserved consensus sequences for AurA phosphorylation are shown as orange bars. The conserved Ser residue is highlighted in orange, and additional consensus sites in Maskin are indicated in grey. The position of the Leu residue, which is important for the C. elegans TAC-1–Zyg-9 interaction, is shown with a white line [44]. For the sake of simplicity, only TACC family proteins that have mapped interactions are shown. 380 Review Trends in Cell Biology Vol.18 No.8 Almost at the same time as the identification of the role of TACC proteins at the centrosome, and we TACC1 in humans, Maskin was identified and extensively discuss some of the issues that still remain to be addressed. characterized as a factor involved in the regulation of mRNA translation during maturation of Xenopus oocytes The TACC proteins [26]. Other TACC family members have also been impli- The TACC domain is the signature of this protein family. cated in various events related to gene regulation, in- This coiled-coil domain is found at the C terminus of all cluding the regulation of translation, RNA maturation the family members, which have otherwise very diverse and gene expression (Figure 1, Table 1) [13,25,27–31]. N-terminal domains (Figure 1) [7,16]. The TACC domain However, to date, no major common role has emerged shows a high level of conservation throughout evolution, for TACC proteins in these processes. By contrast, a major and the shorter member of the family, C. elegans TAC-1, breakthrough came with the identification of D-TACC as a consists of basically one TACC domain [8–10]. Together, Drosophila microtubule-associated and centrosomal this suggests that the TACC domain carries most of protein required for centrosome activity and microtubule the common functional properties of this family of assembly during mitosis [12]. Since then, the idea that proteins. TACC proteins have a role in regulating microtubule The temporal and tissue-specific expression patterns of assembly has gained solid support through various studies the three mammalian TACC proteins have been more performed in different experimental systems. In the light extensively studied. TACC1 can be detected in several of these data, we review here our current understanding of adult tissues, but relatively high levels of expression occur Table 1. Partners of TACC proteins, and the putative functions of their interactions The table summarizes all the interreactions described in the literature for some TACC proteins. Proteins involved in MT dynamics and centrosomal functions are indicated in red; proteins involved in RNA regulation are indicated in green; proteins
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Allele-Specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish
    Allele-specific Expression of Ribosomal Protein Genes in Interspecific Hybrid Catfish by Ailu Chen A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 1, 2015 Keywords: catfish, interspecific hybrids, allele-specific expression, ribosomal protein Copyright 2015 by Ailu Chen Approved by Zhanjiang Liu, Chair, Professor, School of Fisheries, Aquaculture and Aquatic Sciences Nannan Liu, Professor, Entomology and Plant Pathology Eric Peatman, Associate Professor, School of Fisheries, Aquaculture and Aquatic Sciences Aaron M. Rashotte, Associate Professor, Biological Sciences Abstract Interspecific hybridization results in a vast reservoir of allelic variations, which may potentially contribute to phenotypical enhancement in the hybrids. Whether the allelic variations are related to the downstream phenotypic differences of interspecific hybrid is still an open question. The recently developed genome-wide allele-specific approaches that harness high- throughput sequencing technology allow direct quantification of allelic variations and gene expression patterns. In this work, I investigated allele-specific expression (ASE) pattern using RNA-Seq datasets generated from interspecific catfish hybrids. The objective of the study is to determine the ASE genes and pathways in which they are involved. Specifically, my study investigated ASE-SNPs, ASE-genes, parent-of-origins of ASE allele and how ASE would possibly contribute to heterosis. My data showed that ASE was operating in the interspecific catfish system. Of the 66,251 and 177,841 SNPs identified from the datasets of the liver and gill, 5,420 (8.2%) and 13,390 (7.5%) SNPs were identified as significant ASE-SNPs, respectively.
    [Show full text]
  • Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-Like Mouse Models: Tracking the Role of the Hairless Gene
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2006 Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene Yutao Liu University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Life Sciences Commons Recommended Citation Liu, Yutao, "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino- like Mouse Models: Tracking the Role of the Hairless Gene. " PhD diss., University of Tennessee, 2006. https://trace.tennessee.edu/utk_graddiss/1824 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Yutao Liu entitled "Molecular and Physiological Basis for Hair Loss in Near Naked Hairless and Oak Ridge Rhino-like Mouse Models: Tracking the Role of the Hairless Gene." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Life Sciences. Brynn H. Voy, Major Professor We have read this dissertation and recommend its acceptance: Naima Moustaid-Moussa, Yisong Wang, Rogert Hettich Accepted for the Council: Carolyn R.
    [Show full text]
  • Molecular Basis for the Distinct Cellular Functions of the Lsm1-7 and Lsm2-8 Complexes
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.22.055376; this version posted April 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes Eric J. Montemayor1,2, Johanna M. Virta1, Samuel M. Hayes1, Yuichiro Nomura1, David A. Brow2, Samuel E. Butcher1 1Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. 2Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA. Correspondence should be addressed to E.J.M. ([email protected]) and S.E.B. ([email protected]). Abstract Eukaryotes possess eight highly conserved Lsm (like Sm) proteins that assemble into circular, heteroheptameric complexes, bind RNA, and direct a diverse range of biological processes. Among the many essential functions of Lsm proteins, the cytoplasmic Lsm1-7 complex initiates mRNA decay, while the nuclear Lsm2-8 complex acts as a chaperone for U6 spliceosomal RNA. It has been unclear how these complexes perform their distinct functions while differing by only one out of seven subunits. Here, we elucidate the molecular basis for Lsm-RNA recognition and present four high-resolution structures of Lsm complexes bound to RNAs. The structures of Lsm2-8 bound to RNA identify the unique 2′,3′ cyclic phosphate end of U6 as a prime determinant of specificity. In contrast, the Lsm1-7 complex strongly discriminates against cyclic phosphates and tightly binds to oligouridylate tracts with terminal purines.
    [Show full text]
  • Environmental Influences on Endothelial Gene Expression
    ENDOTHELIAL CELL GENE EXPRESSION John Matthew Jeff Herbert Supervisors: Prof. Roy Bicknell and Dr. Victoria Heath PhD thesis University of Birmingham August 2012 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT Tumour angiogenesis is a vital process in the pathology of tumour development and metastasis. Targeting markers of tumour endothelium provide a means of targeted destruction of a tumours oxygen and nutrient supply via destruction of tumour vasculature, which in turn ultimately leads to beneficial consequences to patients. Although current anti -angiogenic and vascular targeting strategies help patients, more potently in combination with chemo therapy, there is still a need for more tumour endothelial marker discoveries as current treatments have cardiovascular and other side effects. For the first time, the analyses of in-vivo biotinylation of an embryonic system is performed to obtain putative vascular targets. Also for the first time, deep sequencing is applied to freshly isolated tumour and normal endothelial cells from lung, colon and bladder tissues for the identification of pan-vascular-targets. Integration of the proteomic, deep sequencing, public cDNA libraries and microarrays, delivers 5,892 putative vascular targets to the science community.
    [Show full text]
  • TACC1–Chtog–Aurora a Protein Complex in Breast Cancer
    Oncogene (2003) 22, 8102–8116 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc TACC1–chTOG–Aurora A protein complex in breast cancer Nathalie Conte1,Be´ ne´ dicte Delaval1, Christophe Ginestier1, Alexia Ferrand1, Daniel Isnardon2, Christian Larroque3, Claude Prigent4, Bertrand Se´ raphin5, Jocelyne Jacquemier1 and Daniel Birnbaum*,1 1Department of Molecular Oncology, U119 Inserm, Institut Paoli-Calmettes, IFR57, Marseille, France; 2Imaging Core Facility, Institut Paoli-Calmettes, Marseille, France; 3E229 Inserm, CRLC Val d’Aurelle/Paul Lamarque, Montpellier, France; 4Laboratoire du cycle cellulaire, UMR 6061 CNRS, IFR 97, Faculte´ de Me´decine, Rennes, France; 5Centre de Ge´ne´tique Mole´culaire, Gif-sur-Yvette, France The three human TACC (transforming acidic coiled-coil) metabolism, including mitosis and intracellular trans- genes encode a family of proteins with poorly defined port of molecules, is progressing but many components functions that are suspected to play a role in oncogenesis. remain to be discovered and characterized. We describe A Xenopus TACC homolog called Maskin is involved in here the interaction of the TACC1 protein with several translational control, while Drosophila D-TACC interacts protein partners that makes it a good candidate to with the microtubule-associated protein MSPS (Mini participate in microtubule-associated processes in nor- SPindleS) to ensure proper dynamics of spindle pole mal and tumoral cells. microtubules during cell division. We have delineated here In
    [Show full text]
  • Genetic Variant in 3' Untranslated Region of the Mouse Pycard Gene
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 3 Title: 4 Genetic Variant in 3’ Untranslated Region of the Mouse Pycard Gene Regulates Inflammasome 5 Activity 6 Running Title: 7 3’UTR SNP in Pycard regulates inflammasome activity 8 Authors: 9 Brian Ritchey1*, Qimin Hai1*, Juying Han1, John Barnard2, Jonathan D. Smith1,3 10 1Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 11 Cleveland, OH 44195 12 2Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 13 44195 14 3Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western 15 Reserve University, Cleveland, OH 44195 16 *, These authors contributed equally to this study. 17 Address correspondence to Jonathan D. Smith: email [email protected]; ORCID ID 0000-0002-0415-386X; 18 mailing address: Cleveland Clinic, Box NC-10, 9500 Euclid Avenue, Cleveland, OH 44195, USA. 19 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437184; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 20 Abstract 21 Quantitative trait locus mapping for interleukin-1 release after inflammasome priming and activation 22 was performed on bone marrow-derived macrophages (BMDM) from an AKRxDBA/2 strain intercross.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Gene Section Review
    Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Gene Section Review TACC1 (transforming, acidic coiled-coil containing protein 1) Ivan Still, Melissa R Eslinger, Brenda Lauffart Department of Biological Sciences, Arkansas Tech University, 1701 N Boulder Ave Russellville, AR 72801, USA (IS), Department of Chemistry and Life Science Bartlett Hall, United States Military Academy, West Point, New York 10996, USA (MRE), Department of Physical Sciences Arkansas Tech University, 1701 N Boulder Ave Russellville, AR 72801, USA (BL) Published in Atlas Database: December 2008 Online updated version : http://AtlasGeneticsOncology.org/Genes/TACC1ID42456ch8p11.html DOI: 10.4267/2042/44620 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence. © 2009 Atlas of Genetics and Cytogenetics in Oncology and Haematology Identity Note: - AK304507 and AK303596 sequences may be suspect Other names: Ga55; DKFZp686K18126; KIAA1103 (see UCSC Genome Bioinformatics Site HGNC (Hugo): TACC1 (http://genome.ucsc.edu) for more details. - Transcript/isoform nomenclature as per Line et al, Location: 8p11.23 2002 and Lauffart et al., 2006. TACC1F transcript Note: This gene has three proposed transcription start includes exon 1, 2 and 3 (correction to Fig 6 of Lauffart sites beginning at 38763938 bp, 38733914 bp, et al., 2006). 38705165 bp from pter. Pseudogene DNA/RNA Partially processed pseudogene: - 91% identity corresponding to base 596 to 2157 of Description AF049910. The gene is composed of 19 exons spanning 124.5 kb. Location: 10p11.21. Location base pair: starts at 37851943 and ends at Transcription 37873633 from pter (according to hg18-March_2006).
    [Show full text]
  • Deep Multiomics Profiling of Brain Tumors Identifies Signaling Networks
    ARTICLE https://doi.org/10.1038/s41467-019-11661-4 OPEN Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes Hong Wang 1,2,3, Alexander K. Diaz3,4, Timothy I. Shaw2,5, Yuxin Li1,2,4, Mingming Niu1,4, Ji-Hoon Cho2, Barbara S. Paugh4, Yang Zhang6, Jeffrey Sifford1,4, Bing Bai1,4,10, Zhiping Wu1,4, Haiyan Tan2, Suiping Zhou2, Laura D. Hover4, Heather S. Tillman 7, Abbas Shirinifard8, Suresh Thiagarajan9, Andras Sablauer 8, Vishwajeeth Pagala2, Anthony A. High2, Xusheng Wang 2, Chunliang Li 6, Suzanne J. Baker4 & Junmin Peng 1,2,4 1234567890():,; High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT down- stream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics inte- grative approaches, and providing novel tumor vulnerabilities.
    [Show full text]
  • The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives
    cancers Review The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives Maria Francesca Santolla and Marcello Maggiolini * Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; [email protected] * Correspondence: [email protected] or [email protected] Received: 8 September 2020; Accepted: 16 October 2020; Published: 18 October 2020 Simple Summary: The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging therapeutic target in breast cancer. Here, we discussed previous studies dealing with FGFR molecular aberrations, the alterations in the FGF/FGFR signaling across the different subtypes of breast cancer, the functional interplay between the FGF/FGFR axis and important components of the breast microenvironment, the therapeutic usefulness of FGF/FGFR inhibitors for the treatment of breast cancer. Abstract: One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer.
    [Show full text]
  • TACC2 Antibody
    Product Datasheet TACC2 Antibody Catalog No: #AB43154 Orders: [email protected] Description Support: [email protected] Product Name TACC2 Antibody Host Species Rabbit Clonality Polyclonal Purification Antigen affinity purification. Applications WB IHC Species Reactivity Hu Ms Specificity The antibody detects endogenous levels of total TACC2 protein. Immunogen Type peptide Immunogen Description Synthetic peptide of human TACC2 Target Name TACC2 Other Names AZU-1; ECTACC Accession No. Swiss-Prot#: O95359Gene ID: 10579 Calculated MW 310kd Concentration 2mg/ml Formulation Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol. Storage Store at -20°C Application Details Western blotting: 1:200-1:1000 Immunohistochemistry: 1:25-1:100 Images Gel: 6%SDS-PAGE Lysate: 40 µg Lane: Mouse muscle tissue Primary antibody: 1/300 dilution Secondary antibody: Goat anti rabbit IgG at 1/8000 dilution Exposure time: 5 minutes Address: 8400 Baltimore Ave. Suite 302 College Park MD 20740 USA http://www.abscitech.com 1 Immunohistochemical analysis of paraffin-embedded Human liver cancer tissue using #43154 at dilution 1/30. Immunohistochemical analysis of paraffin-embedded Human esophagus cancer tissue using #43154 at dilution 1/30. Background Transforming acidic coiled-coil proteins are a conserved family of centrosome- and microtubule-interacting proteins that are implicated in cancer. This gene encodes a protein that concentrates at centrosomes throughout the cell cycle. This gene lies within a chromosomal region associated with tumorigenesis. Expression of this gene is induced by erythropoietin and is thought to affect the progression of breast tumors. Several transcript variants encoding different isoforms have been found for this gene.? Note: This product is for in vitro research use only and is not intended for use in humans or animals.
    [Show full text]