Dear Author, Here Are the Proofs of Your Article. • You Can Submit Your

Total Page:16

File Type:pdf, Size:1020Kb

Dear Author, Here Are the Proofs of Your Article. • You Can Submit Your Dear Author, Here are the proofs of your article. • You can submit your corrections online, via e-mail or by fax. • For online submission please insert your corrections in the online correction form. Always indicate the line number to which the correction refers. • You can also insert your corrections in the proof PDF and email the annotated PDF. • For fax submission, please ensure that your corrections are clearly legible. Use a fine black pen and write the correction in the margin, not too close to the edge of the page. • Remember to note the journal title, article number, and your name when sending your response via e-mail or fax. • Check the metadata sheet to make sure that the header information, especially author names and the corresponding affiliations are correctly shown. • Check the questions that may have arisen during copy editing and insert your answers/ corrections. • Check that the text is complete and that all figures, tables and their legends are included. Also check the accuracy of special characters, equations, and electronic supplementary material if applicable. If necessary refer to the Edited manuscript. • The publication of inaccurate data such as dosages and units can have serious consequences. Please take particular care that all such details are correct. • Please do not make changes that involve only matters of style. We have generally introduced forms that follow the journal’s style. Substantial changes in content, e.g., new results, corrected values, title and authorship are not allowed without the approval of the responsible editor. In such a case, please contact the Editorial Office and return his/her consent together with the proof. • If we do not receive your corrections within 48 hours, we will send you a reminder. • Your article will be published Online First approximately one week after receipt of your corrected proofs. This is the official first publication citable with the DOI. Further changes are, therefore, not possible. • The printed version will follow in a forthcoming issue. Please note After online publication, subscribers (personal/institutional) to this journal will have access to the complete article via the DOI using the URL: http://dx.doi.org/[DOI]. If you would like to know when your article has been published online, take advantage of our free alert service. For registration and further information go to: http://www.link.springer.com. Due to the electronic nature of the procedure, the manuscript and the original figures will only be returned to you on special request. When you return your corrections, please inform us if you would like to have these documents returned. Metadata of the article that will be visualized in OnlineFirst ArticleTitle The Valdostana goat: a genome-wide investigation of the distinctiveness of its selective sweep regions Article Sub-Title Article CopyRight Springer Science+Business Media New York (This will be the copyright line in the final PDF) Journal Name Mammalian Genome Corresponding Author Family Name Bertolini Particle Given Name Francesca Suffix Division Department of Animal Science Organization Iowa State University Address Ames, IA, USA Phone +1-515 294-6114 Fax Email [email protected] URL ORCID Author Family Name Andrea Particle Given Name Talenti Suffix Division Dipartimento di Medicina Veterinaria Organization Università degli Studi di Milano Address Milan, Italy Phone Fax Email URL ORCID Author Family Name Pagnacco Particle Given Name Giulio Suffix Division Dipartimento di Medicina Veterinaria Organization Università degli Studi di Milano Address Milan, Italy Phone Fax Email URL ORCID Author Family Name Pilla Particle Given Name Fabio Suffix Division Dipartimento Agricoltura, Ambiente e Alimenti Organization Università degli Studi del Molise Address via Francesco De Sanctis s.n.c., 86100, Campobasso, Italy Phone Fax Email URL ORCID Author Family Name Ajmone-Marsan Particle Given Name Paolo Suffix Division Istituto di Zootecnica Organization Università Cattolica del Sacro Cuore Address via Emilia Parmense, 84, 29122, Piacenza, Italy Phone Fax Email URL ORCID Author Family Name Rothschild Particle Given Name Max F. Suffix Division Department of Animal Science Organization Iowa State University Address Ames, IA, USA Phone Fax Email URL ORCID Author Family Name Crepaldi Particle Given Name Paola Suffix Division Dipartimento di Medicina Veterinaria Organization Università degli Studi di Milano Address Milan, Italy Phone Fax Email URL ORCID Received 5 July 2016 Schedule Revised Accepted 26 January 2017 Abstract The Valdostana goat is an alpine breed, raised only in the northern Italian region of the Aosta Valley. This breed’s main purpose is to produce milk and meat, but is peculiar for its involvement in the “Batailles de Chèvres,” a recent tradition of non-cruel fight tournaments. At both the genetic and genomic levels, only a very limited number of studies have been performed with this breed and there are no studies about the genomic signatures left by selection. In this work, 24 unrelated Valdostana animals were screened for runs of homozygosity to identify highly homozygous regions. Then, six different approaches (ROH comparison, Fst single SNPs and windows based, Bayesian, Rsb, and XP-EHH) were applied comparing the Valdostana dataset with 14 other Italian goat breeds to confirm regions that were different among the comparisons. A total of three regions of selection that were also unique among the Valdostana were identified and located on chromosomes 1, 7, and 12 and contained 144 genes. Enrichment analyses detected genes such as cytokines and lymphocyte/leukocyte proliferation genes involved in the regulation of the immune system. A genetic link between an aggressive challenge, cytokines, and immunity has been hypothesized in many studies both in humans and in other species. Possible hypotheses associated with the signals of selection detected could be therefore related to immune-related factors as well as with the peculiar battle competition, or other breed-specific traits, and provided insights for further investigation of these unique regions, for the understanding and safeguard of the Valdostana breed. Footnote Information Talenti Andrea and Francesca Bertolini have contributed equally to the work. Electronic supplementary material The online version of this article (doi:10.1007/s00335-017-9678-7) contains supplementary material, which is available to authorized users. Mamm Genome DOI 10.1007/s00335-017-9678-7 1 The Valdostana goat: a genome-wide investigation 2 of the distinctiveness of its selective sweep regions 3 Talenti Andrea1 · Francesca Bertolini2 · Giulio Pagnacco1 · Fabio Pilla3 · 4 Paolo Ajmone-Marsan4 · Max F. Rothschild2 · Paola Crepaldi1 · The Italian Goat 5 Consortium 6 7 Received: 5 July 2016 / Accepted: 26 January 2017 © Springer Science+Business Media New York 2017 8 Abstract The Valdostana goat is an alpine breed, raised 7, and 12 and contained 144 genes. Enrichment analyses 25 9 only in the northern Italian region of the Aosta Valley. This detected genes such as cytokines and lymphocyte/leuko- 26 10 breed’s main purpose is to produce milk and meat, but is cyte proliferation genes involved in the regulation of the 27 11 peculiar for its involvement in the “Batailles de Chèvres,” a immune system. A genetic link between an aggressive chal- 28 12 recent tradition of non-cruel fight tournaments. At both the lenge, cytokines, and immunity has been hypothesized in 29 13 genetic and genomic levels, only a very limited number of many studies both in humans and in other species. Possible 30 14 studies have been performed with this breed and there are hypotheses associated with the signals of selection detected 31 15 no studies about the genomic signatures left by selection. In could be therefore related to immune-related factors as well 32 16 this work, 24 unrelated Valdostana animals were screened as with the peculiar battle competition, or other breed-spe- 33 17 for runs of homozygosity to identify highly homozygous cific traits, and provided insights for further investigation of 34 18 regions. Then, six different approaches (ROH comparison, these unique regions, for the understanding and safeguard 35 19 Fst single SNPs and windows based, Bayesian, Rsb, and of the Valdostana breed. 36 20 XP-EHH) were applied comparing the Valdostana dataset 21 with 14 other Italian goat breeds to confirm regions that 22 were different among the comparisons. A total of three Introduction 37 23 regions of selection that were also unique among the Val- 24 dostana were identified and located on chromosomes 1, Over the past several years, the increase of genomic tech- 38 nologies and molecular information has given researchers 39 40 A1 Talenti Andrea and Francesca Bertolini have contributed equally the chance of developing useful tools for genome-wide A2 to the work. analyses in livestock. Since 2008, a series of single-nucle- 41 otide polymorphism (SNP) chips of medium and high 42 A3 Electronic supplementary material The online version of this density have been developed and assessed for the major 43 A4 article (doi:10.1007/s00335-017-9678-7) contains supplementary livestock species (Nicolazzi et al. 2015). These tools have 44 A5 material, which is available to authorized users. provided the opportunity to investigate the underlying 45 A6 * Francesca Bertolini structure of genomes for several purposes such as detec- 46 A7 [email protected] tion of selective sweeps, breed differentiation, genome- 47 48 1 UNCORRECTEDwide association studies PROOF (GWAS), and genomic selection in A8 Dipartimento di Medicina Veterinaria, Università degli Studi 49 A9 di Milano, Milan, Italy cattle, pigs, sheep, horses, and chickens (Meuwissen et al. 50 2 2013; Nicolazzi et al. 2015). A10 Department of Animal Science, Iowa State University, Ames, 51 A11 IA, USA The selective sweep can be defined as a reduction or 52 3 elimination of variation among the nucleotides in genomic A12 Dipartimento Agricoltura, Ambiente e Alimenti, Università 53 A13 degli Studi del Molise, via Francesco De Sanctis s.n.c., regions adjacent to a mutation that become fixed from nat- A14 86100 Campobasso, Italy ural or artificial selective pressure.
Recommended publications
  • Keep Garfagnina Alive. an Integrated Study on Patterns of Homozygosity, Genomic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.044644; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Keep Garfagnina alive. An integrated study on patterns of homozygosity, genomic 2 inbreeding, admixture and breed traceability of the Italian Garfagnina goat breed. 3 4 5 Christos Dadousis1,*, Francesca Cecchi2, Michela Ablondi1, Maria Chiara Fabbri3, 6 Alessandra Stella4,5, Riccardo Bozzi3 7 8 9 1 Dipartimento di Scienze Medico‐Veterinarie, Università di Parma, Parma, Italy. 10 2 Dipartimento di Scienze Veterinarie, Università di Pisa, Italy. 11 3 Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, 12 Università di Firenze, Firenze, 50144, Italy. 13 4 Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, 14 Milano, Italy. 15 5 Fondazione Parco Tecnologico Padano, Lodi, Italy. 16 17 18 * Corresponding author: 19 Email: [email protected] (CD) 20 ORCID ID: https://orcid.org/0000-0002-7689-6443 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.044644; this version posted April 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract 2 The objective of this study was to investigate the genomic background of the 3 Garfagnina (GRF) goat breed that faces the risk of extinction.
    [Show full text]
  • The Climatic and Genetic Heritage of Italian Goat Breeds with Genomic
    www.nature.com/scientificreports OPEN The climatic and genetic heritage of Italian goat breeds with genomic SNP data Matteo Cortellari 1,16, Mario Barbato2,16, Andrea Talenti1,3*, Arianna Bionda1, Antonello Carta4, Roberta Ciampolini5, Elena Ciani6, Alessandra Crisà7, Stefano Frattini1, Emiliano Lasagna8, Donata Marletta9, Salvatore Mastrangelo10, Alessio Negro1, Ettore Randi11, Francesca M. Sarti8, Stefano Sartore12, Dominga Soglia12, Luigi Liotta13, Alessandra Stella14, Paolo Ajmone‑Marsan2, Fabio Pilla15, Licia Colli2 & Paola Crepaldi1 Local adaptation of animals to the environment can abruptly become a burden when faced with rapid climatic changes such as those foreseen for the Italian peninsula over the next 70 years. Our study investigates the genetic structure of the Italian goat populations and links it with the environment and how genetics might evolve over the next 50 years. We used one of the largest national datasets including > 1000 goats from 33 populations across the Italian peninsula collected by the Italian Goat Consortium and genotyped with over 50 k markers. Our results showed that Italian goats can be discriminated in three groups refective of the Italian geography and its geo‑political situation preceding the country unifcation around two centuries ago. We leveraged the remarkable genetic and geographical diversity of the Italian goat populations and performed landscape genomics analysis to disentangle the relationship between genotype and environment, fnding 64 SNPs intercepting genomic regions linked to growth, circadian rhythm, fertility, and infammatory response. Lastly, we calculated the hypothetical future genotypic frequencies of the most relevant SNPs identifed through landscape genomics to evaluate their long‑term efect on the genetic structure of the Italian goat populations.
    [Show full text]
  • Genetic Determinants Underlying Rare Diseases Identified Using Next-Generation Sequencing Technologies
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-2-2018 1:30 PM Genetic determinants underlying rare diseases identified using next-generation sequencing technologies Rosettia Ho The University of Western Ontario Supervisor Hegele, Robert A. The University of Western Ontario Graduate Program in Biochemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Rosettia Ho 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Medical Genetics Commons Recommended Citation Ho, Rosettia, "Genetic determinants underlying rare diseases identified using next-generation sequencing technologies" (2018). Electronic Thesis and Dissertation Repository. 5497. https://ir.lib.uwo.ca/etd/5497 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Rare disorders affect less than one in 2000 individuals, placing a huge burden on individuals, families and the health care system. Gene discovery is the starting point in understanding the molecular mechanisms underlying these diseases. The advent of next- generation sequencing has accelerated discovery of disease-causing genetic variants and is showing numerous benefits for research and medicine. I describe the application of next-generation sequencing, namely LipidSeq™ ‒ a targeted resequencing panel for the identification of dyslipidemia-associated variants ‒ and whole-exome sequencing, to identify genetic determinants of several rare diseases. Utilization of next-generation sequencing plus associated bioinformatics led to the discovery of disease-associated variants for 71 patients with lipodystrophy, two with early-onset obesity, and families with brachydactyly, cerebral atrophy, microcephaly-ichthyosis, and widow’s peak syndrome.
    [Show full text]
  • Local Adaptations of Mediterranean Sheep and Goats Through an Integrative Approach
    Supplemental Information for: Local adaptations of Mediterranean sheep and goats through an integrative approach Bruno Serranito 1,2# , Marco Cavalazzi 3# , Pablo Vidal 4, Dominique Taurisson-Mouret 5, Elena Ciani 6, Marie Bal 3, Eric Rouvellac 3, Bertrand Servin 7, Carole Moreno-Romieux 7, Gwenola Tosser-Klopp 7, Stephen J. G. Hall 8, Johannes A. Lenstra 9, François Pompanon 10 , Badr Benjelloun 10,11 , Anne Da Silva 1* #: Serranito B. and Cavalazzi M. should be considered joint first author * Correspondence: [email protected] Table of Contents: Supplementary Table 1. Initial list breeds for the constitution of the datasets. Page 1 Supplementary Figure 1. Synthetic schema of the main steps for the Page 2 proposed approach. Supplementary Figure 2. Goat and sheep cradles description as a function of Pages 3-4 environmental variables: Synthetic descriptions of cradles and some characteristic breed phenotypic traits. Supplementary Table 2. Description of the breeds included in the sheep and Pages 5 -16 goat datasets. Number of individuals considered, country of origin, information on the breed history, geographical definition of the cradle, description of the breed, use and status. Supplementary Figure 3. LD analyses for sheep and goats. Page 17 Supplementary Text 1. Genetic structure assessment: admixture analyses, Pages 18 -20 sNMF cross-entropies and Mantel tests. Supplementary Figure 4 . Mapping display for sheep and goats, of the Pages 21 -22 geographical cradles and the GPS coordinates of the sampled points; statistical comparisons for the variables Annual Mean Temperature, Annual Mean Precipitation and Altitude between the distributions obtained by the cradle method and the GPS area method, display of the results via boxplots.
    [Show full text]
  • PRNP Polymorphisms in Eight Local Goat Populations/Breeds from Central and Southern Italy
    animals Article PRNP Polymorphisms in Eight Local Goat Populations/Breeds from Central and Southern Italy Martina Torricelli 1,† , Carla Sebastiani 1,† , Marcella Ciullo 1, Simone Ceccobelli 2, Barbara Chiappini 3, Gabriele Vaccari 3 , Antonio Capocefalo 3, Michela Conte 3, Samira Giovannini 4, Emiliano Lasagna 4 , Francesca Maria Sarti 4 and Massimo Biagetti 1,* 1 Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche-Togo Rosati (IZSUM), Via Salvemini 1, 06126 Perugia, Italy; [email protected] (M.T.); [email protected] (C.S.); [email protected] (M.C.) 2 Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; [email protected] 3 Dipartimento di Sicurezza Alimentare, Nutrizione e Sanità Pubblica Veterinaria, Istituto Superiore di Sanità, 00161 Rome, Italy; [email protected] (B.C.); [email protected] (G.V.); [email protected] (A.C.); [email protected] (M.C.) 4 Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, 06121 Perugia, Italy; [email protected] (S.G.); [email protected] (E.L.); [email protected] (F.M.S.) * Correspondence: [email protected] † These authors contributed equally. Simple Summary: Scrapie is a naturally occurring transmissible spongiform encephalopathy of sheep and goats. Polymorphisms in single nucleotides in the coding sequence of the prion protein gene play a major role in relative susceptibility or resistance to classical scrapie. The most recent Citation: Torricelli, M.; Sebastiani, C.; Ciullo, M.; Ceccobelli, S.; Chiappini, modification of European Union Regulation 999/2001 (Regulation EU 772/2020) deals with the B.; Vaccari, G.; Capocefalo, A.; Conte, possible use of genetics in goats for scrapie outbreak management.
    [Show full text]
  • Selection Signatures in Two Oldest Russian Native Cattle Breeds Revealed Using High- Density Single Nucleotide Polymorphism Analysis
    PLOS ONE RESEARCH ARTICLE Selection signatures in two oldest Russian native cattle breeds revealed using high- density single nucleotide polymorphism analysis Natalia Anatolievna Zinovieva1*, Arsen Vladimirovich Dotsev1, Alexander Alexandrovich Sermyagin1, Tatiana Evgenievna Deniskova1, Alexandra 1 1 2 Sergeevna Abdelmanova , Veronika Ruslanovna KharzinovaID , Johann SoÈ lkner , a1111111111 Henry Reyer3, Klaus Wimmers3, Gottfried Brem1,4 a1111111111 a1111111111 1 L.K. Ernst Federal Science Center for Animal Husbandry, Federal Agency of Scientific Organizations, settl. Dubrovitzy, Podolsk Region, Moscow Province, Russia, 2 Division of Livestock Sciences, University of a1111111111 Natural Resources and Life Sciences, Vienna, Austria, 3 Institute of Genome Biology, Leibniz Institute for a1111111111 Farm Animal Biology [FBN], Dummerstorf, Germany, 4 Institute of Animal Breeding and Genetics, University of Veterinary Medicine [VMU], Vienna, Austria * [email protected] OPEN ACCESS Citation: Zinovieva NA, Dotsev AV, Sermyagin AA, Abstract Deniskova TE, Abdelmanova AS, Kharzinova VR, et al. (2020) Selection signatures in two oldest Native cattle breeds can carry specific signatures of selection reflecting their adaptation to Russian native cattle breeds revealed using high- the local environmental conditions and response to the breeding strategy used. In this density single nucleotide polymorphism analysis. study, we comprehensively analysed high-density single nucleotide polymorphism (SNP) PLoS ONE 15(11): e0242200. https://doi.org/ genotypes
    [Show full text]
  • Linee Guida Per La Conservazione E La
    La Newsletter n.53 di R.A.R.E. Novembre 2016 Cari Soci, in questa Newsletter troverete un sunto delle relazioni presentate nel corso del Convegno annuale di RARE tenutosi a Guastalla (RE) nell’ambito della manifestazione “Piante e animali perduti” del Comune di Guastalla. Informazioni sulla nostra associazione sono reperibili sul nostro sito: o www.associazionerare.it Abbiamo di recente aperto anche un account di RARE (RARE - Associazione Italiana Razze Autoctone a Rischio di Estinzione) su FaceBook, vi invitiamo a cercarci, comunicare notizie, opinioni… o https://www.facebook.com/associazionerare/?fref=ts è possibile contattarci via mail al nostro indirizzo di posta elettronica: o [email protected] o telefonando al numero: 0968.51633 (Floro De Nardo) Ricordiamo che non verranno più spedite NL ai soci non in regola con il pagamento della quota associativa. Le quote associative sono: € 25 (socio sostenitore) o almeno € 10 (socio simpatizzante). Spero che, anche nel 2015, continuerai a sostenere R.A.R.E. rinnovando la tua adesione con un versamento su CCP n° 21786397 intestato a RARE – Via Nemo Sottili, 1 – 42123 Reggio Emilia. E’ possibile versare la quota di adesione tramite bonifico bancario utilizzando l’IBAN n. IT31Z0760101000000021786397 ma per l’invio delle Newsletter ed eventuali comunicazioni, si invita chi paga tramite bonifico ad inviare i propri dati, via mail all’indirizzo dell’associazione indicato sopra. In questo numero 14° convegno annuale di RARE …………………….…………………..……2 Riccardo Fortina - Università di Torino, RARE
    [Show full text]
  • A Review of the Recent Advances Made with SIRT6 and Its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets
    biomolecules Review A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets Rubayat Islam Khan †, Saif Shahriar Rahman Nirzhor † and Raushanara Akter * Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh; [email protected] (R.I.K.); [email protected] (S.S.R.N.) * Correspondence: [email protected]; Tel.: +880-179-8321-273 † These authors contributed equally to this work. Received: 10 June 2018; Accepted: 26 June 2018; Published: 29 June 2018 Abstract: Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings
    [Show full text]
  • Enti Selezionatori Che Tengono Libri Genealogici Per Gli Animali Riproduttori Di Razza Pura
    REGOLAMENTO DI ESECUZIONE (UE) 2017/716 DELLA COMMISSIONE del 10 aprile 2017 recante modalità di applicazione del regolamento (UE) 2016/1012 del Parlamento europeo e del Consiglio per quanto riguarda i modelli di formulari da utilizzare per le informazioni da includere negli elenchi degli enti selezionatori e degli enti ibridatori riconosciuti. Gazzetta ufficiale dell’Unione europea L 109/1. DIPEISR - Dipartimento delle politiche europee e internazionali e dello sviluppo rurale DISR - Direzione generale dello sviluppo rurale DISR VII - Produzioni animali Dirigente: dott. Francesco BONGIOVANNI Via XX Settembre, 20 - 00187 Roma Piano 3, Stanza 96 Telefono: +39 06 4665 5096 E-Mail: [email protected] PEC: [email protected] WWW: https://www.politicheagricole.it/ ____________________________________________________________________ Enti selezionatori che tengono libri genealogici per gli animali riproduttori di razza pura Enti ibridatori che tengono registri suini ibridi per i suini ibridi riproduttori 1 REGOLAMENTO DI ESECUZIONE (UE) 2017/716 DELLA COMMISSIONE del 10 aprile 2017 recante modalità di applicazione del regolamento (UE) 2016/1012 del Parlamento europeo e del Consiglio per quanto riguarda i modelli di formulari da utilizzare per le informazioni da includere negli elenchi degli enti selezionatori e degli enti ibridatori riconosciuti. Gazzetta ufficiale dell’Unione europea L 109/1. I. Enti selezionatori che tengono libri genealogici per gli animali riproduttori di razza pura a) Animali riproduttori di razza
    [Show full text]
  • Cell Migration: How Neutrophils Set Their Compass
    RESEARCH HIGHLIGHTS IN BRIEF CELL MIGRATION How neutrophils set their compass Sustained directionality is an essential component of successful chemotaxis. Here, the authors show that the G protein Gαi and the mammalian homologue of the Drosophila melanogaster polarity protein Inscuteable (known as MINSC) are important for the maintenance of polarity and directionality during neutrophil chemotaxis. They observed that Gαi (which is released from Gβγ following ligand binding) accumulates at the leading edge of the cell. Gαi interacts directly with AGS3 or LGN, which themselves are bound to MINSC, recruiting it to this part of the cell. Moreover, MINSC is bound to the polarity complex PAR3–PAR6– aPKC, and this interaction targets the complex to the leading edge, thus establishing polarity. Notably, MINSC-deficient neutrophils, or neutrophils in which aPKC was blocked, showed normal motility but lacked directionality in their chemotaxis. ORIGINAL RESEARCH PAPER Kamakura, S. et al. The cell polarity protein mInsc regulates neutrophil chemotaxis via a noncanonical G protein signaling pathway. Dev. Cell http://dx.doi.org/10.1016/j.devcel.2013.06.008 (2013) DNA DAMAGE Facilitating repair The repair of DNA double-strand breaks (DSBs) can be hindered by the inability of repair factors to access damage sites in the tightly packaged chromatin. This study identifies a key role for the deacetylase sirtuin 6 (SIRT6) in facilitating chromatin relaxation and promoting repair. Toiber et al. observed that SIRT6 is rapidly recruited to DSBs, with much faster kinetics than previously reported. SIRT6 was shown to target the chromatin remodelling factor SNF2H to these sites and accelerate its association with them, as well as to deacetylate histone 3 at Lys56 (H3K56), which was required for SNF2H-mediated chromatin relaxation.
    [Show full text]
  • S12711-018-0421-Y.Pdf
    Bertolini et al. Genet Sel Evol (2018) 50:57 https://doi.org/10.1186/s12711-018-0421-y Genetics Selection Evolution RESEARCH ARTICLE Open Access Signatures of selection and environmental adaptation across the goat genome post‑domestication Francesca Bertolini1,2* , Bertrand Servin3, Andrea Talenti4, Estelle Rochat5, Eui Soo Kim6, Claire Oget3, Isabelle Palhière3, Alessandra Crisà7, Gennaro Catillo7, Roberto Steri7, Marcel Amills8, Licia Colli9,10, Gabriele Marras11, Marco Milanesi9,12, Ezequiel Nicolazzi11, Benjamin D. Rosen13, Curtis P. Van Tassell13, Bernt Guldbrandtsen14, Tad S. Sonstegard6, Gwenola Tosser‑Klopp3, Alessandra Stella10, Max F. Rothschild1, Stéphane Joost5, Paola Crepaldi4 and the AdaptMap consortium Abstract Background: Since goat was domesticated 10,000 years ago, many factors have contributed to the diferentiation of goat breeds and these are classifed mainly into two types: (i) adaptation to diferent breeding systems and/or purposes and (ii) adaptation to diferent environments. As a result, approximately 600 goat breeds have developed worldwide; they difer considerably from one another in terms of phenotypic characteristics and are adapted to a wide range of climatic conditions. In this work, we analyzed the AdaptMap goat dataset, which is composed of data from more than 3000 animals collected worldwide and genotyped with the CaprineSNP50 BeadChip. These animals were partitioned into groups based on geographical area, production uses, available records on solid coat color and environmental variables including the sampling geographical coordinates, to investigate the role of natural and/or artifcial selection in shaping the genome of goat breeds. Results: Several signatures of selection on diferent chromosomal regions were detected across the diferent breeds, sub-geographical clusters, phenotypic and climatic groups.
    [Show full text]
  • Le Razze Autoctone Caprine Dell'arco Alpino E I Loro Sistemi Di Allevamento
    Michele Corti1,2, Luigi Andrea Brambilla1 1Associazione R.A.R.E (Razze autoctone a rischio di estinzione) 2 Università degli Studi di Milano, Facoltà di Agraria Convegno L’allevamento ovicaprino nelle Alpi: Razze, tradizioni e prodotti in sintonia con l’ambiente Cavalese il 21 settem- bre 2002, pp. 61-80 Le razze autoctone caprine dell’arco alpino e i loro sistemi di alleva- mento Parte prima aspetti generali Introduzione Nel corso degli ultimi 20 anni la capra ha riconquistato un posto di tutto rispetto nel quadro del sistema zootecnico alpino. A partire dall’età moderna (XVI secolo) le trasformazioni dell’agricoltura e della socie- tà (non solo in ambito alpino ma anche nel più vasto ambito europeo) avevano sempre più circoscritto l’importanza della capra nell’ambito dell’economia di sussistenza. La crisi delle piccole comunità alpine e l’applicazione di misure forestali e fiscali anti-capre nel corso del XX secolo hanno condotto alla pres- soché totale scomparsa dell’allevamento caprino in alcune aree delle Alpi orientali ed ad un drastico ri- dimensionamento del patrimonio allevato anche nelle Alpi centrali e occidentali. L’aspetto più noto del revival caprino è consistito nell’introduzione di nuove razze “migliorate” o “gentili” e, con esse, di nuove tecniche di allevamento e tecnologie casearie. In questo modo la capra è uscita da una condizione di marginalità zootecnica. Meno note risultano le trasformazioni che hanno interessato il mondo dell’allevamento “tradizionale”. Anch’esso ha conosciuto un’evoluzione importante, segnata in alcuni casi da dinamiche positive, in al- tre da atrofizzazione o regressione. Tale dinamica dal punto di vista quantitativo si è tradotta in un for- te recupero del patrimonio caprino alpino che è cresciuto in modo significativo dai minimi degli anni ’70 sino agli anni ’90 del XX secolo.
    [Show full text]