Genetic Determinants Underlying Rare Diseases Identified Using Next-Generation Sequencing Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Emery-Dreifuss Muscular Dystrophy: the Most Recognizable Laminopathy
Review paper Emery-Dreifuss muscular dystrophy: the most recognizable laminopathy Agnieszka Madej-Pilarczyk, Andrzej Kochański Neuromuscular Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland The authors dedicate this review to Prof. Irena Hausmanowa-Petrusewicz. Folia Neuropathol 2016; 54 (1): 1-8 DOI: 10.5114/fn.2016.58910 Abstract Emery-Dreifuss muscular dystrophy (EDMD), a rare inherited disease, is characterized clinically by humero-peroneal muscle atrophy and weakness, multijoint contractures, spine rigidity and cardiac insufficiency with conduction defects. There are at least six types of EDMD known so far, of which five have been associated with mutations in genes encoding nuclear proteins. The majority of the EDMD cases described so far are of the emerinopathy (EDMD1) kind, with a recessive X-linked mode of inheritance, or else laminopathy (EDMD2), with an autosomal dominant mode of inheritance. In the work described here, the authors have sought to describe the history by which EDMD came to be distinguished as a separate entity, as well as the clinical and genetic characteristics of the disease, the pathophysiolo- gy of lamin-related muscular diseases and, finally, therapeutic issues, prevention and ethical aspects. Key words: Emery-Dreifuss muscular dystrophy, emerin, lamin A/C, laminopathy, LMNA gene. embryo nic development [14,35]. Lamin A/C plays the Introduction role of a structural integrator in a cell nucleus, ensur- Laminopathies fall within a group of rare diseas- ing the maintenance of the latter’s shape, as well as es connected with structural/functional defects of its mechanical endurance (mechanotransduction). the proteins making up the nuclear envelope (which It takes part in regulation of the cell-division cycle, is composed of inner and outer nuclear membranes). -
Three New Cases of Dilated Cardiomyopathy Caused by Mutations in LMNA Gene
Acta Myologica • 2017; XXXVI: p. 207-212 Three new cases of dilated cardiomyopathy caused by mutations in LMNA gene Larysa N. Sivitskaya1, Nina G. Danilenko1, Tatiyana G. Vaikhanskaya2, Tatsiyana V. Kurushka2 and Oleg G. Davydenko1 1 Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus; 2 Republican Scientific and Practical Center of Cardiology, Minsk, Belarus Three cases of delated cardiomyopathy (DCM) with conduc- Mutations in LMNA affect lamins’ dimerization and as- tion defects (OMIM 115200), limb girdle muscular dystrophy sembly (1, 2). It apparently leads to nuclear stability loss 1B (OMIM 159001) and autosomal dominant Emery-Dreifuss and inability to perform functions in its entirety. The muscular dystrophy 2 (OMIM 181350), all associated with dif- ferent LMNA mutations are presented. Three heterozygous mutations in LMNA lead to at least 10 clinically distinct missense mutations were identified in unrelated patients – p. phenotypes, termed laminopathies, affecting different W520R (c.1558T > C), p.T528R (с.1583С > G) and p.R190P tissues including cardiac and skeletal muscle, cutane- (c.569G > C). We consider these variants as pathogenic, lead- ous, nervous and adipose tissue. There is no explicit ing to isolated DCM with conduction defects or syndromic relation between syndrome development and mutation DCM forms with limb-girdle muscular dystrophy and Emery- domain localization. A number of hot spots were de- Dreifuss muscular dystrophy. The mutations were not detected in the ethnically matched control group and publicly available scribed in LMNA, but the mutations common for lami- population databases. Their de novo occurrence led to the de- nopathies were not found. -
Relevant Sources for Orphan Disease Prevalence Data
16 December 2014 1 EMA/452415/2012 Rev. 1 Human Medicines Research and Development Support This document was valid from 16 December 2014 to 9 January 2018. It is no longer valid. Relevant sources for orphan disease prevalence data Sponsors applying for orphan designation for a medicine under Article 3(1) a paragraph 1 of Regulation (EC) No 141/2000 on orphan medicinal products are requested tovalid provide authoritative references to demonstrate that the condition, for which the medicine is intended, does not affect more than 5 in 10,000 people in the EU at the time the application is made. Possible sources include relevant scientific literature and databases. After more than 10 years of the implementation of the Orphan Regulation the Agency has accumulated a considerable amount of data on sources of prevalence of rare diseases from the applications for orphan designation. In most cases those sources are publicly available but not easily accessible. The Agency has decided to make the information collected so far publicly available. This will decrease the administrative burden for applicants for orphan designation and thus encourage the development of medicines for rare diseases. The information is provided in the table below will be updated regularly. The information provided herewith does not replace the obligation for the sponsor under the legislation to establish the prevalence (see Regulation (EC) No 141/2000 and the Guideline on the format and content of applications for designation as orphan medicinal product, ENTR/6283/00). Sponsors are still obliged to submit an original, up-to-date prevalence calculation supported by data with their orphan designation application. -
Analysis of Gene Expression Data for Gene Ontology
ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins. -
A Yeast Phenomic Model for the Gene Interaction Network Modulating
Louie et al. Genome Medicine 2012, 4:103 http://genomemedicine.com/content/4/12/103 RESEARCH Open Access A yeast phenomic model for the gene interaction network modulating CFTR-ΔF508 protein biogenesis Raymond J Louie3†, Jingyu Guo1,2†, John W Rodgers1, Rick White4, Najaf A Shah1, Silvere Pagant3, Peter Kim3, Michael Livstone5, Kara Dolinski5, Brett A McKinney6, Jeong Hong2, Eric J Sorscher2, Jennifer Bryan4, Elizabeth A Miller3* and John L Hartman IV1,2* Abstract Background: The overall influence of gene interaction in human disease is unknown. In cystic fibrosis (CF) a single allele of the cystic fibrosis transmembrane conductance regulator (CFTR-ΔF508) accounts for most of the disease. In cell models, CFTR-ΔF508 exhibits defective protein biogenesis and degradation rather than proper trafficking to the plasma membrane where CFTR normally functions. Numerous genes function in the biogenesis of CFTR and influence the fate of CFTR-ΔF508. However it is not known whether genetic variation in such genes contributes to disease severity in patients. Nor is there an easy way to study how numerous gene interactions involving CFTR-ΔF would manifest phenotypically. Methods: To gain insight into the function and evolutionary conservation of a gene interaction network that regulates biogenesis of a misfolded ABC transporter, we employed yeast genetics to develop a ‘phenomic’ model, in which the CFTR-ΔF508-equivalent residue of a yeast homolog is mutated (Yor1-ΔF670), and where the genome is scanned quantitatively for interaction. We first confirmed that Yor1-ΔF undergoes protein misfolding and has reduced half-life, analogous to CFTR-ΔF. Gene interaction was then assessed quantitatively by growth curves for approximately 5,000 double mutants, based on alteration in the dose response to growth inhibition by oligomycin, a toxin extruded from the cell at the plasma membrane by Yor1. -
Genetic Mutations and Mechanisms in Dilated Cardiomyopathy
Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, … , Jessica R. Golbus, Megan J. Puckelwartz J Clin Invest. 2013;123(1):19-26. https://doi.org/10.1172/JCI62862. Review Series Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of congestive heart failure. In hypertrophic cardiomyopathy (HCM), cardiac output is limited by the thickened myocardium through impaired filling and outflow. Mutations in the genes encoding the thick filament components myosin heavy chain and myosin binding protein C (MYH7 and MYBPC3) together explain 75% of inherited HCMs, leading to the observation that HCM is a disease of the sarcomere. Many mutations are “private” or rare variants, often unique to families. In contrast, dilated cardiomyopathy (DCM) is far more genetically heterogeneous, with mutations in genes encoding cytoskeletal, nucleoskeletal, mitochondrial, and calcium-handling proteins. DCM is characterized by enlarged ventricular dimensions and impaired systolic and diastolic function. Private mutations account for most DCMs, with few hotspots or recurring mutations. More than 50 single genes are linked to inherited DCM, including many genes that also link to HCM. Relatively few clinical clues guide the diagnosis of inherited DCM, but emerging evidence supports the use of genetic testing to identify those patients at risk for faster disease progression, congestive heart failure, and arrhythmia. Find the latest version: https://jci.me/62862/pdf Review series Genetic mutations and mechanisms in dilated cardiomyopathy Elizabeth M. McNally, Jessica R. Golbus, and Megan J. Puckelwartz Department of Human Genetics, University of Chicago, Chicago, Illinois, USA. Genetic mutations account for a significant percentage of cardiomyopathies, which are a leading cause of conges- tive heart failure. -
DATA Poster Numbers: P Da001 - 130 Application Posters: P Da001 - 041
POSTER LIST ORDERED ALPHABETICALLY BY POSTER TITLE GROUPED BY THEME/TRACK THEME/TRACK: DATA Poster numbers: P_Da001 - 130 Application posters: P_Da001 - 041 Poster EasyChair Presenting Author list Title Abstract Theme/track Topics number number author APPLICATION POSTERS WITHIN DATA THEME P_Da001 773 Benoît Carrères, Anne Benoît Carrères A systems approach to explore Microalgae are promising platforms for sustainable biofuel production. They produce triacyl-glycerides (TAG) which are easily converted into biofuel. When exposed to nitrogen limitation, Data/ Application Klok, Maria Suarez Diez, triacylglycerol production in Neochloris Neochloris oleoabundans accumulates up to 40% of its dry weight in TAG. However, a feasible production requires a decrease of production costs, which can be partially reached by Application Lenny de Jaeger, Mark oleoabundans increasing TAG yield.We built a constraint-based model describing primary metabolism of N. oleoabundans. It was grown in combinations of light absorption and nitrate supply rates and the poster Sturme, Packo Lamers, parameters needed for modeling of metabolism were measured. Fluxes were then calculated by flux balance analysis. cDNA samples of 16 experimental conditions were sequenced, Rene' Wijffels, Vitor Dos assembled and functionally annotated. Relative expression changes and relative flux changes for all reactions in the model were compared.The model predicts a maximum TAG yield on light Santos, Peter Schaap of 1.07g (mol photons)-1, more than 3 times current yield under optimal conditions. Furthermore, from optimization scenarios we concluded that increasing light efficiency has much higher and Dirk Martens potential to increase TAG yield than blocking entire pathways.Certain reaction expression patterns suggested an interdependence of the response to nitrogen and light supply. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Deciphering Nuclear Mechanobiology in Laminopathy
cells Review Deciphering Nuclear Mechanobiology in Laminopathy Jungwon Hah and Dong-Hwee Kim * KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-3290-4615 Received: 29 January 2019; Accepted: 5 March 2019; Published: 11 March 2019 Abstract: Extracellular mechanical stimuli are translated into biochemical signals inside the cell via mechanotransduction. The nucleus plays a critical role in mechanoregulation, which encompasses mechanosensing and mechanotransduction. The nuclear lamina underlying the inner nuclear membrane not only maintains the structural integrity, but also connects the cytoskeleton to the nuclear envelope. Lamin mutations, therefore, dysregulate the nuclear response, resulting in abnormal mechanoregulations, and ultimately, disease progression. Impaired mechanoregulations even induce malfunction in nuclear positioning, cell migration, mechanosensation, as well as differentiation. To know how to overcome laminopathies, we need to understand the mechanisms of laminopathies in a mechanobiological way. Recently, emerging studies have demonstrated the varying defects from lamin mutation in cellular homeostasis within mechanical surroundings. Therefore, this review summarizes recent findings highlighting the role of lamins, the architecture of nuclear lamina, and their disease relevance in the context of nuclear mechanobiology. We will also provide an overview of the differentiation of cellular mechanics in laminopathy. Keywords: lamin; laminopathy; cytoskeleton; nucleus 1. Introduction Mechanical stimuli are the key to controlling numerous biological processes, including proliferation, differentiation, and migration [1–3]. Integrin mediates the transduction of forces from the external microenvironment to the intracellular cytoskeleton, and the nucleo-cytoskeletal molecular connections transmit the forces to the intranuclear chromosomal organizations [4,5]. -
Marfan Syndrome
Marfan syndrome Description Marfan syndrome is a disorder that affects the connective tissue in many parts of the body. Connective tissue provides strength and flexibility to structures such as bones, ligaments, muscles, blood vessels, and heart valves. The signs and symptoms of Marfan syndrome vary widely in severity, timing of onset, and rate of progression. Because connective tissue is found throughout the body, Marfan syndrome can affect many systems, often causing abnormalities in the heart, blood vessels, eyes, bones, and joints. The two primary features of Marfan syndrome are vision problems caused by a dislocated lens (ectopia lentis) in one or both eyes and defects in the large blood vessel that distributes blood from the heart to the rest of the body (the aorta). The aorta can weaken and stretch, which may lead to a bulge in the blood vessel wall (an aneurysm). Stretching of the aorta may cause the aortic valve to leak, which can lead to a sudden tearing of the layers in the aorta wall (aortic dissection). Aortic aneurysm and dissection can be life threatening. Many people with Marfan syndrome have additional heart problems including a leak in the valve that connects two of the four chambers of the heart (mitral valve prolapse) or the valve that regulates blood flow from the heart into the aorta (aortic valve regurgitation). Leaks in these valves can cause shortness of breath, fatigue, and an irregular heartbeat felt as skipped or extra beats (palpitations). Individuals with Marfan syndrome are usually tall and slender, have elongated fingers and toes (arachnodactyly), loose joints, and have an arm span that exceeds their body height. -
Mutation in Genes FBN1, AKT1, and LMNA: Marfan Syndrome, Proteus Syndrome, and Progeria Share Common Systemic Involvement
Review Mutation in Genes FBN1, AKT1, and LMNA: Marfan Syndrome, Proteus Syndrome, and Progeria Share Common Systemic Involvement Tonmoy Biswas.1 Abstract Genetic mutations are becoming more deleterious day by day. Mutations of Genes named FBN1, AKT1, LMNA result specific protein malfunction that in turn commonly cause Marfan syndrome, Proteus syndrome, and Progeria, respectively. Articles about these conditions have been reviewed in PubMed and Google scholar with a view to finding relevant clinical features. Precise keywords have been used in search for systemic involvement of FBN1, AKT1, and LMNA gene mutations. It has been found that Marfan syndrome, Proteus syndrome, and Progeria commonly affected musculo-skeletal system, cardiovascular system, eye, and nervous system. Not only all of them shared identical systemic involvement, but also caused several very specific anomalies in various parts of the body. In spite of having some individual signs and symptoms, the mutual manifestations were worth mentio- ning. Moreover, all the features of the mutations of all three responsible genes had been co-related and systemically mentioned in this review. There can be some mutual properties of the genes FBN1, AKT1, and LMNA or in their corresponding proteins that result in the same presentations. This study may progress vision of knowledge regarding risk factors, patho-physiology, and management of these conditions, and relation to other mutations. Keywords: Genetic mutation; Marfan syndrome; Proteus syndrome; Progeria; Gene FBN1; Gene AKT1; Gene LMNA; Musculo-skeletal system; Cardiovascular system; Eye; Nervous system (Source: MeSH, NLM). Introduction Records in human mutation databases are increasing day by 5 About the author: Tonmoy The haploid human genome consists of 3 billion nucleotides day. -
Orthopedic-Conditions-Treated.Pdf
Orthopedic and Orthopedic Surgery Conditions Treated Accessory navicular bone Achondroplasia ACL injury Acromioclavicular (AC) joint Acromioclavicular (AC) joint Adamantinoma arthritis sprain Aneurysmal bone cyst Angiosarcoma Ankle arthritis Apophysitis Arthrogryposis Aseptic necrosis Askin tumor Avascular necrosis Benign bone tumor Biceps tear Biceps tendinitis Blount’s disease Bone cancer Bone metastasis Bowlegged deformity Brachial plexus injury Brittle bone disease Broken ankle/broken foot Broken arm Broken collarbone Broken leg Broken wrist/broken hand Bunions Carpal tunnel syndrome Cavovarus foot deformity Cavus foot Cerebral palsy Cervical myelopathy Cervical radiculopathy Charcot-Marie-Tooth disease Chondrosarcoma Chordoma Chronic regional multifocal osteomyelitis Clubfoot Congenital hand deformities Congenital myasthenic syndromes Congenital pseudoarthrosis Contractures Desmoid tumors Discoid meniscus Dislocated elbow Dislocated shoulder Dislocation Dislocation – hip Dislocation – knee Dupuytren's contracture Early-onset scoliosis Ehlers-Danlos syndrome Elbow fracture Elbow impingement Elbow instability Elbow loose body Eosinophilic granuloma Epiphyseal dysplasia Ewing sarcoma Extra finger/toes Failed total hip replacement Failed total knee replacement Femoral nonunion Fibrosarcoma Fibrous dysplasia Fibular hemimelia Flatfeet Foot deformities Foot injuries Ganglion cyst Genu valgum Genu varum Giant cell tumor Golfer's elbow Gorham’s disease Growth plate arrest Growth plate fractures Hammertoe and mallet toe Heel cord contracture