Sediment Transport and Bed Material Adjustments in the Vicinity of Wilsey Dam: Salmon Spawning Habitat Implications
Total Page:16
File Type:pdf, Size:1020Kb
SEDIMENT TRANSPORT AND BED MATERIAL ADJUSTMENTS IN THE VICINITY OF WILSEY DAM: SALMON SPAWNING HABITAT IMPLICATIONS by Giles Andrew Shearing B.Sc. EM, Royal Roads University, 2008 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE COLLEGE OF GRADUATE STUDIES (Environmental Sciences) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) February 2017 © Giles A. Shearing, 2017 The undersigned certify that they have read, and recommend to the College of Graduate Studies for acceptance, a thesis entitled: Sediment Transport and Bed Material Adjustments In The Vicinity Of Wilsey Dam: Salmon Spawning Habitat Implications submitted by Giles Shearing in partial fulfilment of the requirements of the degree of Masters of Science in Environmental Science. Bernard O. Bauer, University of British Columbia Supervisor, Professor Mark S. Lorang, University of Montana Supervisory Committee Member, Professor John S. Richardson, University of British Columbia Supervisory Committee Member, Professor Gholamreza Naser, University of British Columbia University Examiner, Professor December 31, 2016 (Date submitted to Grad Studies) II ABSTRACT Substrate requirements are an important component of the multifaceted spawning needs of salmon, and this research effort was directed at developing a greater understanding of sediment transport dynamics and bed material response in the Middle Shuswap River in consequence of the emplacement and subsequent management of Wilsey Dam. Downstream of Wilsey Dam the river provides spawning habitat for coho (Oncorhynchus kisutch), chinook (O. tshawytscha), pink (O. gorbuscha) and sockeye (O. nerka) salmon. This thesis suggests that sand dredged from deposits filling the upstream reservoir basin of the dam could be redeposited downstream when coupled with specific flow releases (≥100 cubic metres per second). This is seen as a viable option for sediment management on the Middle Shuswap River aimed at restoring sediment transport processes and preserving spawning habitat. Maintaining sediment transport processes after dam emplacement is an important consideration for ecological processes in rivers, consistent with the notion of holistic dam management (Ligon et al. 1995, Tharme 2003) An experimental underwater Automated Grain Sizing method was developed for determining the median grain size (D50) of glide facies throughout the 28.4 km study area. On this basis, estimates of viable salmon spawning habitat were updated from 2002 and mapped below (190,906 m2) and above (387,265 m2) Wilsey Dam. Grain size distributions showed a fining trend in the downstream direction for the Middle Shuswap River, with significant coarsening of bed substrate in the 0.2 km section immediately below the canyon downstream of Wilsey Dam. A one-dimensional (1D) sediment transport model, based on the Wilcock and Crowe (2003) transport equation, showed that sand reintroduced during spring freshet to a 1200 m reach below the dam flushed quickly through in the model. Gravel was also mobilized upon sand reintroduction. The model is an oversimplification of site conditions and would need to be field tested during sand reintroduction trials to establish model integrity. Research undertaken in this thesis contributes to the growing amount of literature on the biophysical impacts of hydroelectric dams and presents ways dam operators can approach and mitigate disruptions to sediment transport process and their resulting ecological impacts. III PREFACE This dissertation presents research conducted by Giles Shearing under the supervision of Dr. Bernard Bauer. Giles Shearing was the primary researcher and was responsible for the main study design, data collection, analysis, interpretation and writing of the content. Conceptual and analytical support were provided by Dr. Bernard Bauer, Dr. Mark Lorang, Dr. John Richardson and Dr. Theodore Fuller. All guidance provided by the Supervisory Committee and all literature referenced is correctly cited. IV TABLE OF CONTENTS THESIS COMMITTEE ...................................................................................................................... II ABSTRACT ....................................................................................................................................... III PREFACE ........................................................................................................................................... IV LIST OF TABLES ............................................................................................................................ VII LIST OF FIGURES ............................................................................................................................ IX LIST OF PHOTOGRAPHS ........................................................................................................... XXI ABBREVIATIONS ...................................................................................................................... XXIII ACKNOWLEDGEMENTS ......................................................................................................... XXIV DEDICATION ............................................................................................................................... XXV CHAPTER 1.0 INTRODUCTION ................................................................................................. 1 1.1 PROJECT OVERVIEW .............................................................................................................. 1 1.2 STUDY AREA ......................................................................................................................... 1 1.3 OBJECTIVES AND HYPOTHESES ............................................................................................. 6 1.4 BACKGROUND ....................................................................................................................... 8 1.4.1 History .............................................................................................................................. 8 1.4.2 Shuswap River Project Operations ................................................................................. 17 1.5 SEDIMENT, DAMS AND SALMON ......................................................................................... 21 1.5.1 Sediment ......................................................................................................................... 21 1.5.2 Dams ............................................................................................................................... 25 1.5.2.1 Aberfeldie Dam Case Study ............................................................................................ 29 1.5.3 Salmon Spawning ........................................................................................................... 34 CHAPTER 2.0 METHODS .......................................................................................................... 45 2.1 HYDROMETRIC DATA .......................................................................................................... 45 2.2 FIELD MEASUREMENTS ................................................................................................ 45 2.2.1 Underwater Automated Grain Sizing ............................................................................. 45 2.3 DIGITAL GRAIN-SIZE ANALYSIS ......................................................................................... 50 2.3.1 Image Modification ........................................................................................................ 52 2.3.2 Image Modification Tests ............................................................................................... 53 2.3.3 Spatial Autocorrelation, Assumptions and Limitations .................................................. 63 2.4 HEADPOND SEDIMENT CHARACTERIZATION ...................................................................... 64 2.5 BEDLOAD SAMPLING ........................................................................................................... 65 2.6 STATISTICAL DETERMINATION OF DOWNSTREAM FINING ................................................. 67 2.7 DETERMINING AVAILABLE SALMON SPAWNING HABITAT ................................................ 68 2.7.1 Step 1: Determining a Range of Suitable Spawning Substrate ...................................... 69 2.7.2 Step 2: Applying the Range of Suitable Spawning Substrate ........................................ 70 2.7.3 Step 3 – Mapping Suitable Spawning Substrate ............................................................. 71 2.8 SEDIMENT TRANSPORT MODELING .......................................................................... 72 CHAPTER 3.0 RESULTS ............................................................................................................ 82 V 3.1 GRAIN SIZE DISTRIBUTIONS ................................................................................................ 82 3.2 BEDLOAD SAMPLING RESULTS ........................................................................................... 82 3.3 DOWNSTREAM FINING TREND ............................................................................................ 83 3.3.1 Tributaries ....................................................................................................................... 86 3.3.2 The Chute ......................................................................................................................