REGION 4 - Kootenay
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Columbia River Treaty: Recommendations December 2013
L O CA L GOVERNMEN TS’ COMMI TTEE Columbia River Treaty: Recommendations December 2013 The BC Columbia River Treaty Local Governments’ Committee (the Committee) has prepared these Recommendations in response to the Columbia River Treaty-related interests and issues raised by Columbia River Basin residents in Canada. These Recommendations are based on currently-available information. They have been submitted to the provincial and federal governments for incorporation into current decisions regarding the future of the Columbia River Treaty (CRT). The Committee plans to monitor the BC, Canadian and U.S. CRT-related processes and be directly involved when appropriate. As new information becomes available, the Committee will review this information, seek input from Basin residents, and submit further recommendations to the provincial and federal governments, if needed. The CRT Local Governments’ Committee will post its recommendations and other documents at www.akblg.ca/content/columbia-river-treaty. For more information contact the Committee Chair, Deb Kozak ([email protected] 250 352-9383) or the Executive Director, Cindy Pearce ([email protected] 250 837-3966). Background Beginning in 2024, either the U.S. or Canada can The Columbia River Treaty (Treaty) was ratified terminate substantial portions of the Treaty, by Canada and the United States (the U.S.) in with at least 10 years’ prior notice. Canada—via 1964, resulting in the construction of three the BC Provincial Government—and the U.S. are dams in Canada—Mica Dam north of both conducting reviews to consider whether to Revelstoke; Hugh Keenleyside Dam near continue, amend or terminate the Treaty. Castlegar; and Duncan Dam north of Kaslo—and Local governments within the Basin have Libby Dam near Libby, Montana. -
Kootenay System Operations
Columbia River Treaty Review – Technical Studies Appendix C Kootenay System Operations Operation of the Kootenay River system is complicated as it is administered by several different jurisdictions and the hydroelectric facilities are owned by different agencies/companies. As shown in Figure 1, the Kootenay River originates in the Rocky Mountains not far from Field, BC. The river flows south, within a few km of the source of the Columbia River at Canal Flats, and then continues south into Koocanusa Reservoir, formed behind Libby Dam in Montana, United States. From Libby, the Kootenay River turns west and north, and re-enters British Columbia near the community of Creston, flowing into the south arm of Kootenay Lake. In the northern part of the Kootenay basin, the Duncan River is joined by the Lardeau River just downstream from Duncan Dam, and then flows into the north arm of Kootenay Lake. Water from the north and south arms of Kootenay Lake then flows through the west arm of the lake and past the Corra Linn Dam near Nelson (as well as other dams) en route to the Columbia–Kootenay confluence at Castlegar. The components of this system and various agreements/orders that regulate flows are described in this Appendix. November 29, 2013 1 Columbia River Treaty Review – Technical Studies Figure 1: Kootenay and Columbia Region November 29, 2013 2 Columbia River Treaty Review – Technical Studies 1.0 Coordination of Libby Operations Background Under the terms of the Columbia River Treaty, Canada permitted the U.S. to build the Libby Dam on the Kootenai River (U.S. -
KR/KL Burbot Conservation Strategy
January 2005 Citation: KVRI Burbot Committee. 2005. Kootenai River/Kootenay Lake Conservation Strategy. Prepared by the Kootenai Tribe of Idaho with assistance from S. P. Cramer and Associates. 77 pp. plus appendices. Conservation strategies delineate reasonable actions that are believed necessary to protect, rehabilitate, and maintain species and populations that have been recognized as imperiled, but not federally listed as threatened or endangered under the US Endangered Species Act. This Strategy resulted from cooperative efforts of U.S. and Canadian Federal, Provincial, and State agencies, Native American Tribes, First Nations, local Elected Officials, Congressional and Governor’s staff, and other important resource stakeholders, including members of the Kootenai Valley Resource Initiative. This Conservation Strategy does not necessarily represent the views or the official positions or approval of all individuals or agencies involved with its formulation. This Conservation Strategy is subject to modification as dictated by new findings, changes in species status, and the completion of conservation tasks. 2 ACKNOWLEDGEMENTS The Kootenai Tribe of Idaho would like to thank the Kootenai Valley Resource Initiative (KVRI) and the KVRI Burbot Committee for their contributions to this Burbot Conservation Strategy. The Tribe also thanks the Boundary County Historical Society and the residents of Boundary County for providing local historical information provided in Appendix 2. The Tribe also thanks Ray Beamesderfer and Paul Anders of S.P. Cramer and Associates for their assistance in preparing this document. Funding was provided by the Bonneville Power Administration through the Northwest Power and Conservation Council’s Fish and Wildlife Program, and by the Idaho Congressional Delegation through a congressional appropriation administered to the Kootenai Tribe by the Department of Interior. -
Kootenai River Resident Fish Mitigation: White Sturgeon, Burbot, Native Salmonid Monitoring and Evaluation
KOOTENAI RIVER RESIDENT FISH MITIGATION: WHITE STURGEON, BURBOT, NATIVE SALMONID MONITORING AND EVALUATION Annual Progress Report May 1, 2016 — April 31, 2017 BPA Project # 1988-065-00 Report covers work performed under BPA contract # 68393 IDFG Report Number 08-09 April 2018 This report was funded by the Bonneville Power Administration (BPA), U.S. Department of Energy, as part of BPA's program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric facilities on the Columbia River and its tributaries. The views in this report are the author's and do not necessarily represent the views of BPA. This report should be cited as follows: Ross et al. 2018. Report for 05/01/2016 – 04/30/2017. TABLE OF CONTENTS Page CHAPTER 1: KOOTENAI STURGEON MONITORING AND EVALUATION ............................... 1 ABSTRACT ................................................................................................................................. 1 INTRODUCTION ........................................................................................................................2 OBJECTIVE ................................................................................................................................3 STUDY SITE ...............................................................................................................................3 METHODS ..................................................................................................................................3 Water -
Ethnohistory of the Kootenai Indians
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1983 Ethnohistory of the Kootenai Indians Cynthia J. Manning The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Manning, Cynthia J., "Ethnohistory of the Kootenai Indians" (1983). Graduate Student Theses, Dissertations, & Professional Papers. 5855. https://scholarworks.umt.edu/etd/5855 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 Th is is an unpublished m a n u s c r ip t in w h ic h c o p y r ig h t su b s i s t s . Any further r e p r in t in g of it s c o n ten ts must be a ppro ved BY THE AUTHOR. MANSFIELD L ib r a r y Un iv e r s it y of Montana D a te : 1 9 8 3 AN ETHNOHISTORY OF THE KOOTENAI INDIANS By Cynthia J. Manning B.A., University of Pittsburgh, 1978 Presented in partial fu lfillm en t of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1983 Approved by: Chair, Board of Examiners Fan, Graduate Sch __________^ ^ c Z 3 ^ ^ 3 Date UMI Number: EP36656 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. -
Link to Full Text
~ .......... ~ ~ - - -- .. ~~ -- .... ..... .., - .. - ... ...., .... IX. ADYNAMIC HESEHV01H SIMULATION MODEL-DYHESM:5 i\ 311 c. transverse and longitUdinal direction playa secondary role and only the variations) ." I in the vertical enter lhe first order balances of mass, momentum and energy. 1/ I Departures from this Stilte of horizontalisopyc'nalsare possible, but these \ tI l A DYNAMIC RESERVOIR SIl\olULATION MODEL enter only as isolated events or as \I/eak pe.!lurbatiQ.D.S. In both cases the.•net eJJ;cJ,J CI DYRESM: 5 is e~plured wi(h a parame!efizalion of their inp,ut (0 the vertical s(rUelure"iiild , ) I comparison of the model prediction and field data must thus be confined to ~ ~ .....of.............,.calm when the structure is truly one-dimensional. lorg 1mberger and John C.. Pattetsun .. ~ ,. The constraints imposed by ~uch a one-dimer.:Jional model may best be University of Western Australia quantified by defining a series of non-dimensional llUmbers. The value of the Nedlands, Western Australia Wedderburn number :) LV =.i.!!.. h (.J" I I '( 14.2 • L- '7 y(l .. n, (I) , \ ..,' I / 1. INTRODUCTION where g' is an effective reoufed gravity across the thermocline, h the depth of the mixed layer, L the basin scale, and u· the surface shear velocity, is a measure of """·".',j<}·,t-·;~·'",,,"~~,'ti The dynamic reservoir simulation model, DYRESM, is a one-dimensional the activity within the mixed layer. Spigel and Imberger (I980) have shown thah, numerical model for the prediction of temperature and salinity in small to medium for W > 00) the departure fmm one-dimensionality is minimal and for I ':I sized reservoirs and Jakes. -
Columbia River Treaty Review Technical Studies Report
Columbia River Treaty Review Technical Studies Prepared by BC Hydro and Power Authority November 29, 2013 Table of Contents Chapter 1: Introduction ........................................................................................................................................ 5 1.1 Background ......................................................................................................................................... 5 1.2 Approach to Treaty Strategic Decision ............................................................................................... 5 1.3 Process and Scope of Analysis ............................................................................................................ 7 1.3.1 Environmental Advisory Committee and Fish and Wildlife Technical Committee ............. 7 1.3.2 Water Use Plan and Structured Decision Making Process ................................................... 8 Chapter 2: Columbia and Kootenay Hydroelectric System Summary ............................................................. 9 2.1 Operations on the Columbia River - Relationship between Columbia River Treaty, Non Treaty Storage Agreement, and Water Use Plans ............................................................................................... 10 2.2 Operations on the Kootenay River - Relationship between Columbia River Treaty, Duncan Water Use Plan, International Joint Commission Order, and Canal Plant Agreement ...................................... 12 Chapter 3: Selection of Alternatives to Model ................................................................................................. -
British Columbia Vegetation and Climate History with Focus on 6 Ka BP
Document generated on 10/01/2021 4:51 p.m. Géographie physique et Quaternaire British Columbia Vegetation and Climate History with Focus on 6 ka BP Histoire du climat et de la végétation de la Colombie-Britannique, notamment de la période de 6 ka BP Geschichte der Vegetation und des Klimas in British Columbia während des Holozäns, besonders um 6 ka v.u.Z. Richard J. Hebda La paléogéographie et la paléoécologie d’il y a 6000 ans BP au Canada Article abstract Paleogeography and Paleoecology of 6000 yr BP in Canada British Columbia Holocene vegetation and climate is reconstructed from pollen Volume 49, Number 1, 1995 records. A coastal Pinus contorta paleobiome developed after glacier retreat under cool and probably dry climate. Cool moist forests involving Picea, Abies, URI: https://id.erudit.org/iderudit/033030ar Tsuga spp., and Pinus followed until the early Holocene. Pseudotsuga menziesii DOI: https://doi.org/10.7202/033030ar arrived and spread in the south 10 000-9000 BP, and Picea sitchensis - Tsuga heterophylla forests developed in the north. T. heterophylla increased 7500-7000 BP, and Cupressaceae expanded 5000-4000 BP. Bogs began to See table of contents develop and expland. Modern vegetation arose 4000-2000 BP. There were early Holocene grass and Artemisia communities at mid-elevations and pine stands at high elevations in southern interior B.C. Forests expanded downslope and Publisher(s) lakes formed 8500-7000 BP. Modern forests arose 4500-4000 BP while lower and upper tree lines declined. In northern B.C. non-arboreal communities Les Presses de l'Université de Montréal preceded middle Holocene Picea forests. -
Integrated Water Quality Monitoring Plan for the Shuswap Lakes, BC
Final Report November 7th 2010 Integrated Water Quality Monitoring Plan for the Shuswap Lakes, BC Prepared for the: Fraser Basin Council Kamloops, BC Integrated Water Quality Monitoring Plan for the Shuswap Lakes, BC Prepared for the: Fraser Basin Council Kamloops, BC Prepared by: Northwest Hydraulic Consultants Ltd. 30 Gostick Place North Vancouver, BC V7M 3G3 Final Report November 7th 2010 Project 35138 DISCLAIMER This document has been prepared by Northwest Hydraulic Consultants Ltd. in accordance with generally accepted engineering and geoscience practices and is intended for the exclusive use and benefit of the client for whom it was prepared and for the particular purpose for which it was prepared. No other warranty, expressed or implied, is made. Northwest Hydraulic Consultants Ltd. and its officers, directors, employees, and agents assume no responsibility for the reliance upon this document or any of its contents by any party other than the client for whom the document was prepared. The contents of this document are not to be relied upon or used, in whole or in part, by or for the benefit of others without specific written authorization from Northwest Hydraulic Consultants Ltd. and our client. Report prepared by: Ken I. Ashley, Ph.D., Senior Scientist Ken J. Hall, Ph.D. Associate Report reviewed by: Barry Chilibeck, P.Eng. Principal Engineer NHC. 2010. Integrated Water Quality Monitoring Plan for the Shuswap Lakes, BC. Prepared for the Fraser Basin Council. November 7thth, 2010. © copyright 2010 Shuswap Lake Integrated Water Quality Monitoring Plan i CREDITS AND ACKNOWLEDGEMENTS We would like to acknowledge to Mike Crowe (DFO, Kamloops), Ian McGregor (Ministry of Environment, Kamloops), Phil Hallinan (Fraser Basin Council, Kamloops) and Ray Nadeau (Shuswap Water Action Team Society) for supporting the development of the Shuswap Lakes water quality monitoring plan. -
Late Prehistoric Cultural Horizons on the Canadian Plateau
LATE PREHISTORIC CULTURAL HORIZONS ON THE CANADIAN PLATEAU Department of Archaeology Thomas H. Richards Simon Fraser University Michael K. Rousseau Publication Number 16 1987 Archaeology Press Simon Fraser University Burnaby, B.C. PUBLICATIONS COMMITTEE Roy L. Carlson (Chairman) Knut R. Fladmark Brian Hayden Philip M. Hobler Jack D. Nance Erie Nelson All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system, without permission in writing from the publisher. ISBN 0-86491-077-0 PRINTED IN CANADA The Department of Archaeology publishes papers and monographs which relate to its teaching and research interests. Communications concerning publications should be directed to the Chairman of the Publications Committee. © Copyright 1987 Department of Archaeology Simon Fraser University Late Prehistoric Cultural Horizons on the Canadian Plateau by Thomas H. Richards and Michael K. Rousseau Department of Archaeology Simon Fraser University Publication Number 16 1987 Burnaby, British Columbia We respectfully dedicate this volume to the memory of CHARLES E. BORDEN (1905-1978) the father of British Columbia archaeology. 11 TABLE OF CONTENTS Page Acknowledgements.................................................................................................................................vii List of Figures.....................................................................................................................................iv -
Slocan Lake 2007 - 2010
BC Lake Stewardship and Monitoring Program Slocan Lake 2007 - 2010 A partnership between the BC Lake Stewardship Society and the Ministry of Environment The Importance of Slocan Lake & its Watershed British Columbians want lakes to provide good water quality, quality of the water resource is largely determined by a water- aesthetics, and recreational opportunities. When these features shed’s capacity to buffer impacts and absorb pollution. are not apparent in our local lakes, people begin to wonder why. Concerns often include whether the water quality is getting Every component of a watershed (vegetation, soil, wildlife, etc.) worse, if the lake has been impacted by land development or has an important function in maintaining good water quality and a other human activities, and what conditions will result from more healthy aquatic environment. It is a common misconception that development within the watershed. detrimental land use practices will not impact water quality if they are kept away from the area immediately surrounding a water- The BC Lake Stewardship Society (BCLSS), in collaboration body. Poor land use practices in a watershed can eventually im- with the Ministry of Environment (MoE), has designed a pro- pact the water quality of the downstream environment. gram, entitled The BC Lake Stewardship and Monitoring Pro- gram, to address these concerns. Through regular water sample Human activities that impact water bodies range from small but collections, we can come to understand a lake's current water widespread and numerous non-point sources throughout the wa- quality, identify the preferred uses for a given lake, and monitor tershed to large point sources of concentrated pollution (e.g. -
The Kootenay Wreck Tour River Above Castlegar
Underwater Archaeological Society of British Columbia Vol. 22 No.6 Nov-Dec 2011 waterfront. The Ymir was made of wood and is 77’ long x 16’ wide x 6’ deep. It was built and launched at Nel‐ son in 1899 and was used to move Transfer barges around. The super structure is gone but the hull, deck planking and boiler are still in place. Directly off the bow of the Ymir is a fifteen car Railway Transfer barge in about 50’ of water. This is a shore dive and the fact that most of the decking is gone means that the inter‐ nal structure of the barge can be seen. This dive site also happens to be the location of the CPR shipways on Kootenay Lake. The CPR fleet of stern‐ wheelers, tugs and Rail barge would have been built and maintained at this location in the late 1800’s up to 1930. Our next site to visit was the Steam Tug Elco II located in the Columbia The Kootenay Wreck Tour River above Castlegar. The Elco II was by, Bill Meekel 76’ long x 15’ wide x 7’ deep. It was built by the Edgewood Lumber Co in In September 2011, eight UASBC concentrates from the mines around 1924 to move log booms on the Arrow members made a visit to the the lake before the railway was in‐ Lakes to their sawmill. The vessel is a Kootenays to visit some of the wrecks stalled. The barge is 197’ long x 33’ shore dive and is upside down on the in the area.