Flash Memory and Micro SD Card
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 3 Semiconductor Memories
Chapter 3 Semiconductor Memories Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Introduction Random Access Memories Content Addressable Memories Read Only Memories Flash Memories Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 2 Overview of Memory Types Semiconductor Memories Read/Write Memory or Random Access Memory (RAM) Read Only Memory (ROM) Random Access Non-Random Access Memory (RAM) Memory (RAM) •Mask (Fuse) ROM •Programmable ROM (PROM) •Erasable PROM (EPROM) •Static RAM (SRAM) •FIFO/LIFO •Electrically EPROM (EEPROM) •Dynamic RAM (DRAM) •Shift Register •Flash Memory •Register File •Content Addressable •Ferroelectric RAM (FRAM) Memory (CAM) •Magnetic RAM (MRAM) Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 3 Memory Elements – Memory Architecture Memory elements may be divided into the following categories Random access memory Serial access memory Content addressable memory Memory architecture 2m+k bits row decoder row decoder 2n-k words row decoder row decoder column decoder k column mux, n-bit address sense amp, 2m-bit data I/Os write buffers Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 4 1-D Memory Architecture S0 S0 Word0 Word0 S1 S1 Word1 Word1 S2 S2 Word2 Word2 A0 S3 S3 A1 Decoder Ak-1 Sn-2 Storage Sn-2 Wordn-2 element Wordn-2 Sn-1 Sn-1 Wordn-1 Wordn-1 m-bit m-bit Input/Output Input/Output n select signals are reduced n select signals: S0-Sn-1 to k address signals: A0-Ak-1 Advanced Reliable Systems (ARES) Lab. Jin-Fu Li, EE, NCU 5 Memory Architecture S0 Word0 Wordi-1 S1 A0 A1 Ak-1 Row Decoder Sn-1 Wordni-1 A 0 Column Decoder Aj-1 Sense Amplifier Read/Write Circuit m-bit Input/Output Advanced Reliable Systems (ARES) Lab. -
Class Notes Class: IX Topic: INPUT, OUTPUT, MEMORY and STORAGE DEVICES of a COMPUTER SYSTEM Subject: INFORMATION TECHNOLOGY
Class Notes Class: IX Topic: INPUT, OUTPUT, MEMORY AND STORAGE DEVICES OF A COMPUTER SYSTEM Subject: INFORMATION TECHNOLOGY Q1. A collection of eight bits is called BYTE Q2. Which of the following is an example of non-volatile memory? a) ROM b)RAM c) LSI d) VLSI Q3. Which of the following is unit of measurement used with computer system? a) Byte b) Megabyte c) Gigabyte d) All of the above Q4. Which of the following statement is false? a) Secondary storage in non-volatile. b) Primary storage is volatile. c) When the computer is turned off, data and instructions stored in primary storage are erased. d) None of the above. Q5. The secondary storage devices can only store data but they cannot perform a) Arithmetic operation b) Logic operation c) Fetch operation d) Either of above Q6. Which of the following does not represent an I/O device a) Speaker which beep b) Plotter C) Joystick d) ALU Q7. Which of the following is a correct definition of volatile memory? a) It loses its content at high temperatures. b) It is to be kept in airtight boxes. c) It loses its contents on failure of power supply d) It does not lose its contents on failure of power supply Q8. One thousand byte represent a a) Megabyte b) Gigabyte c) Kilobyte d) None of these Q9.What does a storage unit provide? a) A place to show data b) A place to store currently worked on information b) A place to store information Q10. What are four basic components of a computer? a) Input devices, Output devices, printing and typing b) Input devices, processing unit, storage and Output devices c) Input devices, CPU, Output devices and RAM Q11. -
The Era of Expeditious Nanoram-Based Computers Enhancement of Operating System Performance in Nanotechnology Environment
International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 1 (2018) pp. 375-384 © Research India Publications. http://www.ripublication.com The Era of Expeditious NanoRAM-Based Computers Enhancement of Operating System Performance in Nanotechnology Environment Mona Nabil ElGohary PH.D Student, Computer Science Department Faculty of Computers and Information, Helwan University, Cairo, Egypt. 1ORCID: 0000-0002-1996-4673 Dr. Wessam ElBehaidy Assistant Professor, Computer Science Department, Faculty of Computers and Information, Helwan University, Cairo, Egypt. Ass. Prof. Hala Abdel-Galil Associative Professor, Computer Science Department Faculty of Computers and Information, Helwan University, Cairo, Egypt. Prof. Dr. Mostafa-Sami M. Mostafa Professor of Computer Science Faculty of Computers and Information, Helwan University, Cairo, Egypt. Abstract They announced that by 2018 will produce the first NanoRAM. The availability of a new generation of memory that is 1000 times faster than traditional DDRAM which can deliver This new NanoRam has many excellent properties that would terabytes of storage capacity, and consumes very little power, make an excellent replacement for the current DDRAM: being has the potential to change the future of the computer’s non-volatile, its large capacity, high speed read / write cycles. operating system. This paper studies the different changes that All the properties are introduced in the next section. will arise on the operating system functions; memory By replacing this NanoRAM instead of DDRAM in the CPU, management and job scheduling (especially context switch) this will affect the functionality of the operating system; such when integrating NanoRAM into the computer system. It is as main memory management, virtual memory, job scheduling, also looking forward to evaluating the possible enhancements secondary storage management; and thus the efficiency of the of computer’s performance with NanoRAM. -
Section 10 Flash Technology
10 FLASH TECHNOLOGY Overview Flash memory technology is a mix of EPROM and EEPROM technologies. The term “flash” was chosen because a large chunk of memory could be erased at one time. The name, therefore, distinguishes flash devices from EEPROMs, where each byte is erased individually. Flash memory technology is today a mature technology. Flash memory is a strong com- petitor to other memories such as EPROMs, EEPROMs, and to some DRAM applications. Figure 10-1 shows the density comparison of a flash versus other memories. 64M 16M 4M DRAM/EPROM 1M SRAM/EEPROM Density 256K Flash 64K 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, "Memory 1996" 18613A Figure 10-1. Flash Density Versus Other Memory How the Device Works The elementary flash cell consists of one transistor with a floating gate, similar to an EPROM cell. However, technology and geometry differences between flash devices and EPROMs exist. In particular, the gate oxide between the silicon and the floating gate is thinner for flash technology. It is similar to the tunnel oxide of an EEPROM. Source and INTEGRATED CIRCUIT ENGINEERING CORPORATION 10-1 Flash Technology drain diffusions are also different. Figure 10-2 shows a comparison between a flash cell and an EPROM cell with the same technology complexity. Due to thinner gate oxide, the flash device will be more difficult to process. CMOS Flash Cell CMOS EPROM Cell Mag. 10,000x Mag. 10,000x Flash Memory Cell – Larger transistor – Thinner floating gate – Thinner oxide (100-200Å) Photos by ICE 17561A Figure 10-2. -
Toshiba's Standard SD Cards Are the Perfect Way to Capture and Store Your Memories. the Series Is Compatible with Cameras
July 2015 Toshiba’s standard SD cards are the perfect way to capture and store your memories. The series is compatible with cameras, laptops, tablets and other devices that support the SDHC Standard. With 8, 16 and 32GB capacities, it offers enough space for your photos, video and data. High Speed N102 SDHC™ Overview: Capacity 8GB, 16GB, 32GB Interface SD Memory Card standard compatible Speed Class * Warranty 5 Years Physical Specification: Dimensions 32.0 mm (L) × 24.0 mm (W) × 2.1 mm (H) Weight Approx. 2g Environmental: Operating Temp. -25°C to +85°C Storage Temp. -40°C to +85°C 8GB 16GB 32GB Model Numbers: EAN Code 4047999329169 4047999329176 4047999329183 Part Number THN-N102K0080M4 THN-N102K0160M4 THN-N102K0320M4 www.toshiba-memory.com In 1984, Toshiba developed a new type of semiconductor memory called flash memory, leading the industry into the next generation ahead of its competitors. Some time later in 1987, NAND flash memory was developed, and this has since been used in a variety of memory cards and electronic equipments. The NAND flash market has grown rapidly, with flash memory becoming an internationally standardized memory device. Toshiba, the inventor of flash memory, has carved out a path to a new era in which we are all able to carry videos, music and data with us wherever we go. History of Flash Memory 1984 Developed NOR-type Flash Memory 1987 Developed NAND-type Flash Memory Jul. 2000 Released SD™ Memory Card Jun. 2003 Released miniSD™ Memory Card Dec. 2003 Released USB Flash Memory Jul. 2006 Released microSD™ Memory Card Oct. -
Let's Talk About Storage & Recovery Methods for Non-Volatile Memory
Let’s Talk About Storage & Recovery Methods for Non-Volatile Memory Database Systems Joy Arulraj Andrew Pavlo Subramanya R. Dulloor [email protected] [email protected] [email protected] Carnegie Mellon University Carnegie Mellon University Intel Labs ABSTRACT of power, the DBMS must write that data to a non-volatile device, The advent of non-volatile memory (NVM) will fundamentally such as a SSD or HDD. Such devices only support slow, bulk data change the dichotomy between memory and durable storage in transfers as blocks. Contrast this with volatile DRAM, where a database management systems (DBMSs). These new NVM devices DBMS can quickly read and write a single byte from these devices, are almost as fast as DRAM, but all writes to it are potentially but all data is lost once power is lost. persistent even after power loss. Existing DBMSs are unable to take In addition, there are inherent physical limitations that prevent full advantage of this technology because their internal architectures DRAM from scaling to capacities beyond today’s levels [46]. Using are predicated on the assumption that memory is volatile. With a large amount of DRAM also consumes a lot of energy since it NVM, many of the components of legacy DBMSs are unnecessary requires periodic refreshing to preserve data even if it is not actively and will degrade the performance of data intensive applications. used. Studies have shown that DRAM consumes about 40% of the To better understand these issues, we implemented three engines overall power consumed by a server [42]. in a modular DBMS testbed that are based on different storage Although flash-based SSDs have better storage capacities and use management architectures: (1) in-place updates, (2) copy-on-write less energy than DRAM, they have other issues that make them less updates, and (3) log-structured updates. -
Nanotechnology ? Nram (Nano Random Access
International Journal Of Engineering Research and Technology (IJERT) IFET-2014 Conference Proceedings INTERFACE ECE T14 INTRACT – INNOVATE - INSPIRE NANOTECHNOLOGY – NRAM (NANO RANDOM ACCESS MEMORY) RANJITHA. T, SANDHYA. R GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE 13. containing elements, nanotubes, are so small, NRAM technology will Abstract— NRAM (Nano Random Access Memory), is one of achieve very high memory densities: at least 10-100 times our current the important applications of nanotechnology. This paper has best. NRAM will operate electromechanically rather than just been prepared to cull out answers for the following crucial electrically, setting it apart from other memory technologies as a questions: nonvolatile form of memory, meaning data will be retained even What is NRAM? when the power is turned off. The creators of the technology claim it What is the need of it? has the advantages of all the best memory technologies with none of How can it be made possible? the disadvantages, setting it up to be the universal medium for What is the principle and technology involved in NRAM? memory in the future. What are the advantages and features of NRAM? The world is longing for all the things it can use within its TECHNOLOGY palm. As a result nanotechnology is taking its head in the world. Nantero's technology is based on a well-known effect in carbon Much of the electronic gadgets are reduced in size and increased nanotubes where crossed nanotubes on a flat surface can either be in efficiency by the nanotechnology. The memory storage devices touching or slightly separated in the vertical direction (normal to the are somewhat large in size due to the materials used for their substrate) due to Van der Waal's interactions. -
SDC420T Memory Card
SDC420T memory card Description Features Transcend’s 3D flash technology combines the Transcend’s 3D NAND flash technology advantages of high performance and exceptional Excellent endurance endurance. The industrial memory cards can endure Compatible with SD Specification Ver. 5.1 operating temperatures ranging from -25°C to 85°C; UHS-I with Video Speed Class V10 setting a new standard in consistent, long-term Application Performance Class1 (A1) performance even in the harshest conditions. Early move and Read Retry Built-in ECC and Wear leveling RoHS compliant product. Support ESD IEC 61000-4-2 Architecture Pin Definition SD Mode SPI Mode Pin No. Name Description Name Description 1 CD/DAT3 Card Detect/ Data Line [Bit3] CS Chip Select (neg true) 2 CMD Command/ Response DI Data In 3 VSS1 Supply voltage ground VSS Supply voltage ground 4 VDD Supply voltage VDD Supply voltage 5 CLK Clock SCLK Clock 6 VSS2 Supply voltage ground VSS2 Supply voltage ground 7 DAT0 Data Line [Bit0] DO Data out 8 DAT1 Data Line [Bit1] RSV Reserved 9 DAT2 Data Line [ Bit2 ] RSV Reserved Specifications Physical Specification Form Factor SD SD specification SD5.1 (32GB and larger capacity),SD3.01 (16GB) Length 32.00 ± 0.1 Dimensions (mm) Width 24.00 ± 0.1 Height 2.10 ± 0.15 Data Transfer Specification Application Model P/N SD Type Interface* Speed Class Performance Class TS16GSDC420T SDHC UHS-I SDR104 C10/U1 N/A TS32GSDC420T SDHC UHS-I SDR104 V10/U1 A1 TS64GSDC420T SDHC UHS-I SDR104 V10/U1 A1 TS128GSDC420T SDHC UHS-I SDR104 V10/U1 A1 TS256GSDC420T SDHC UHS-I -
Memory Card Reader • USB 3.0 Cable Compactflash (CF) Card • Quick Setup Guide Insert Label Side Up
Front view LED indicator QUICK SETUP GUIDE Memory Card microSD, microSDXC Reader Insert label side up. NS-DCR30D3K / NS-DCR30D3K-C SD card Insert label side up. PACKAGE CONTENTS • USB 3.0 multi-format memory card reader • USB 3.0 cable CompactFlash (CF) card • Quick Setup Guide Insert label side up. SYSTEM REQUIREMENTS Back view • Windows® 10, Windows® 8.1, Windows® 8, Windows® 7, Windows Vista®, Mac OS 9.0 or higher, or Linux Kernal 2.4.1 or above FEATURES • Supports USB 3.0 and below • Multi-port and multi-driver letter display USB cable port • Plug & Play • Works with the following card formats: Micro SD/T-FLASH/Micro SDXC/Micro SDHC, SD/SDHC/SDXC/ Mini-SD, CompactFlash (CF) type I Caution: All cards must be inserted into the card reader label side up. Failure to do so could result in damage to the memory card or the card reader. Do not force a memory card into the card reader. Before using your new product, please read these instructions to prevent any damage. CONNECTING THE CARD READER 5 Do not remove your card from the card reader until the data LED Plug one end of a USB cable into the USB port of the card reader and stops blinking and the name of your card disappears from the Finder the other end into an available USB port on your computer. Your window. computer loads the drivers automatically. SPECIFICATIONS USING THE CARD READER • Dimensions: 2.87 × 1.98 × .68 in. (7.3 × 5.05 × 1.75 cm) Cautions: • Transmission port: USB 3.0 • Insert a card, label side up, into the appropriate slot. -
DXG-587V HD User's Manual
DXG-587V HD User’s Manual DXG USA Table of Contents About this manual ............................................................. v Copyright ........................................................................... v Precautions ...................................................................... vi Before You Start ............................................................. viii 1 Introduction ................................................ 1 1.1 System requirements ............................................... 1 1.2 Features .................................................................. 1 1.3 Unpacking the camcorder ...................................... 2 1.4 About the camcorder .............................................. 3 1.4.1 Front view ................................................... 3 1.4.2 Top view ..................................................... 3 1.4.3 Bottom view ............................................... 4 1.4.4 Right view ................................................... 4 1.4.5 Left view ..................................................... 5 1.4.6 Back view .................................................... 5 1.4.7 Adjusting the LCD display ....................... 6 1.4.8 About the LEDs ........................................ 10 2 Getting started ........................................... 11 2.1 Inserting an SD card ............................................ 11 2.2 Inserting the battery ............................................. 13 2.3 Charging the battery ........................................... -
MSP430 Flash Memory Characteristics (Rev. B)
Application Report SLAA334B–September 2006–Revised August 2018 MSP430 Flash Memory Characteristics ........................................................................................................................ MSP430 Applications ABSTRACT Flash memory is a widely used, reliable, and flexible nonvolatile memory to store software code and data in a microcontroller. Failing to handle the flash according to data-sheet specifications can result in unreliable operation of the application. This application report explains the physics behind these specifications and also gives recommendations for the correct management of flash memory on MSP430™ microcontrollers (MCUs). All examples are based on the flash memory used in the MSP430F1xx, MSP430F2xx, and MSP430F4xx microcontroller families. Contents 1 Flash Memory ................................................................................................................ 2 2 Simplified Flash Memory Cell .............................................................................................. 2 3 Flash Memory Parameters ................................................................................................. 3 3.1 Data Retention ...................................................................................................... 3 3.2 Flash Endurance.................................................................................................... 5 3.3 Cumulative Program Time......................................................................................... 5 4 -
GFR209 Datasheet
GFR209 12-in-1 Pocket Card Reader/Writer IOGEAR's 12-in-1 Pocket Card Reader / Writer is an ideal solution for hi-speed, bi-directional image and data file transfer between your computer and multimedia devices. Images and data can be downloaded directly to your PC or Mac from your memory cards without using additional adapters. It works with 12 popular memory card formats such as SD, SDXC, microSD, microSDXC, Mini SD, MMC, Memory Stick, and MS Duo. With direct USB 2.0 high-speed file transfer (up to 480Mbps) from memory cards used in your cell phone, MP3 player, or digital camera, you can save time and conserve power on devices. It instantly transfers your slotMusic™ songs to your PC or Mac. No matter where you go, IOGEAR's 12-in-1 Pocket Card Reader / Writer helps you to easily bring your digital images and data with you. 3-Slot,(Max) Suport memory card SDHC (32GB) / Mini SDHC (4GB) / SDXC (64GB) / MMC(4GB) Micro SDXC (64GB) / M2 (16GB / need adapter) MS (16GB) Compliant with USB 2.0 specification Backward compatible with USB 1.1 specification Supports SDXC (Secure Digital High Capacity) and microSDXC cards Plug-n-Play, Hot swappable, and Hot pluggable up to 64GB Reads / Writes microSD / microSDXC / T-Flash, SD/SDXC, mini SD, Fast data transfer - up to 480 Mbps, between your cell phone / MMC, MMC Plus, RS-MMC, MMC Mobile, MS, MS Pro, MS Duo, MS smartphone / PDA and computers Pro Duo Requirements Package Contents For PC Users 1 x Card Reader/Writer • Windows XP, Windows Vista, Windows 7, Windows 8/8.1, 10 1 x Quick Start Guide • Available USB 2.0 port • Chrome Book • Linux®, Unix and other USB supported systems* *Additional drivers and support may be needed For MAC Users • Mac 8.6 or greater.