Haloperoxidase Mediated Quorum Quenching by Nitzschia Cf Pellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom

Total Page:16

File Type:pdf, Size:1020Kb

Haloperoxidase Mediated Quorum Quenching by Nitzschia Cf Pellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom Mar. Drugs 2014, 12, 352-367; doi:10.3390/md12010352 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Haloperoxidase Mediated Quorum Quenching by Nitzschia cf pellucida: Study of the Metabolization of N-Acyl Homoserine Lactones by a Benthic Diatom Michail Syrpas 1, Ewout Ruysbergh 1, Lander Blommaert 2, Bart Vanelslander 2, Koen Sabbe 2, Wim Vyverman 2,*, Norbert De Kimpe 1 and Sven Mangelinckx 1,* 1 Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium; E-Mails: [email protected] (M.S.); [email protected] (E.R.); [email protected] (N.D.K.) 2 Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Krijgslaan 281-S8, Ghent B-9000, Belgium; E-Mails: [email protected] (L.B.); [email protected] (B.V.); [email protected] (K.S.) * Authors to whom correspondence should be addressed; E-Mails: [email protected] (S.M.); [email protected] (W.V.); Tel.: +32-(0)9-264-59-51 (S.M.); Fax: +32-(0)9-264-62-21 (S.M.); Tel.: +32-(0)9-264-85-01 (W.V.); Fax: +32-(0)9-264-85-99 (W.V.). Received: 5 November 2013; in revised form: 16 December 2013 / Accepted: 23 December 2013 / Published: 17 January 2014 Abstract: Diatoms are known to produce a variety of halogenated compounds, which were recently shown to have a role in allelopathic interactions between competing species. The production of these compounds is linked to haloperoxidase activity. This research, has shown that this system may also be involved in diatom-bacteria interactions via the H2O2 dependent inactivation of a type of quorum sensing (QS) molecule, i.e., N-β-ketoacylated homoserine lactones (AHLs), by a natural haloperoxidase system from the benthic diatom Nitzschia cf pellucida. The AHL degradation pathway towards corresponding halogenated derivatives was elucidated via HPLC-MS analysis and the synthesis of a broad series of novel halogenated AHL analogues as reference compounds. Furthermore, their biological activity as quorum sensing modulators was directly compared and evaluated against a series of naturally occurring β-keto-AHLs. It has been demonstrated that the loss of the QS activity results from the final cleavage of the halogenated N-acyl chain of the signal molecules. Mar. Drugs 2014, 12 353 Keywords: quorum sensing; haloperoxidase; degradation pathway; AHL; reference compounds; diatom-bacteria interactions 1. Introduction Algae are known as an important source of bioactive compounds with potential agrochemical and pharmaceutical applications [1]. Some of these bioactive metabolites include halogenated compounds [2]. These types of compound often demonstrate interesting biological properties including antifungal, anti-inflammatory, antifeedant, cytotoxic, insecticidal, and antibacterial activity [3]. Biohalogenation in marine organisms usually occurs via the action of haloperoxidases [4], which are enzymes that mediate the oxidation of halides by hydrogen peroxide via various mechanisms [5]. Until now, screening for bioactive halogenated compounds in marine environments has mainly been focused on macroalgae rather than on microalgae [2]. Research on diatoms, one of the most common type of marine microalgae, is even less widespread. Many bacteria use signal molecules, i.e., autoinducers, to control the expression of specific genes important for phenotypes, such as biofilm formation, bioluminescence, virulence expression, motility, conjugation, and symbiosis and this in a population density dependent manner [6]. This interbacterial signaling is widely known as quorum sensing (QS). N-Acylated homoserine lactones (AHLs) represent a major class of these signal molecules, and are commonly produced by Gram negative bacteria [7]. The QS system in these bacteria usually consists of two components: a LuxI homologue that synthesizes the AHL autoinducer, and a LuxR homologue which is an autoinducer-dependent transcriptional activator [7]. Different bacterial species have been shown to produce different AHLs [8]. The basic structure of AHLs consists of a homoserine lactone ring adjoined with an N-acyl chain. The acyl chain can vary in length from four to 14 carbon atoms, as can the degree of saturation and the chain may or may not contain an oxo- or hydroxy-group at the 3-carbon position [9]. A wide variety of AHLs, including various saturated and β-keto-AHLs, are found in marine stromatolite mats but also in intertidal surfaces colonized by algae and in intertidal rock pools [10,11]. AHLs are also known to modulate the settlement rate of green alga Ulva intestinalis [12]. The AHL producing Alphaproteobacteria, which are dominant in benthic diatom biofilms, were shown to have an influence on the diatom growth and the release of extracellular polymeric substances [13]. Across different kingdoms these kinds of interactions may exert wider ecological effects [14]. In aquatic environments, bacteria interact in various ways with other organisms as pathogens, symbionts or competitors in the search for resources [14–16]. Many marine organisms have developed defense or deterrence mechanisms, which are often involved in the production of small diffusible signal molecules that can interfere with the QS systems [17,18]. A well-studied example is the production of halogenated furanones by the red alga Delisea pulchra [19,20]. In addition, QS antagonistic activity has been demonstrated in algae from Caulerpaceae (green algae), Rhodomelaceae and Galaxauraceae families (red algae) [21], red macroalga Asparagopsis taxiformis [22], green microalga Chlamydomonas reinhardtii [23], freshwater green microalga Chlorella sacharophilla [24], gorgonian corals from the Caribbean reefs [25] and the marine sponge Luffariella variabilis [26,27]. Mar. Drugs 2014, 12 354 Furthermore, another way of QS disruption in nature occurs via the action of enzymes. Enzymatic degradation of QS signal molecules by acylases and lactonases of bacterial origin has been demonstrated [28]. In another pathway, haloperoxidases from Delisea pulchra and Laminaria digitata were shown to mediate the deactivation of β-keto-AHLs by electrophilic halogenation with bromine [29,30]. Several diatoms are linked with the release of reactive bromine and iodine which is influenced by temperature, H2O2 concentration, bromide (and iodide) concentration, light, and pH [31]. The release leads to the formation of a wide range of halocarbons, formed via rapid and aspecific reactions of these reactive halogen intermediates with many organic molecules. Furthermore, this event plays a substantial role in oceanic bromoform production via the haloform reaction [32]. Interestingly, the production of volatile halocarbons by several Nitzschia species has been linked to haloperoxidase activity [33,34]. Nevertheless, not much is known about QS antagonistic compounds derived from diatoms. To the best of our knowledge there is no data which demonstrates the release of reactive bromine (or iodine) from diatoms as a possible defense mechanism against bacterial fouling. In the present study, it was envisioned that the natural haloperoxidase system from the benthic diatom N. cf pellucida, besides allelopathic interactions between competing species, may also be involved in the deactivation of bacterial QS molecules. Therefore, the goal of this study was to analyze the effect of haloperoxidase activity by the diatom N. cf pellucida on bacterial QS. During this research, the degradation pathway of the QS molecules was elucidated and a variety of halogenated AHL degradation derivatives were synthesized and evaluated for their ability to either induce or inhibit QS activity. 2. Results and Discussion 2.1. Nitzschia cf pellucida Deactivation of β-Keto-AHLs A first series of experiments was performed in order to determine whether the haloperoxidase system within Nitzschia cf pellucida is capable of mediating the deactivation of AHLs. In a previous study, the presence of a haloperoxidase in this benthic diatom was detected via the phenol red assay [33]. In the present study, haloperoxidase activity was verified via the formation of bromophenol blue after addition of phenol red and H2O2 (to ensure sufficient production of reactive halogen intermediates [29,30]) to the cultures (data not shown) [33]. Furthermore, the activity of N-3-oxohexanoyl homoserine lactone (OHHL) and N-hexanoyl homoserine lactone (HHL) was monitored over time with the Chromobacterium violaceum CV026 bioassay in the absence or presence of N. cf pellucida (Table 1). These compounds were selected, because OHHL is a known biofilm enhancer. For the control sample (synthetic seawater + H2O2 + OHHL) and the sample in which the N. cf pellucida culture was only supplemented with OHHL, the QS activity was retained throughout the monitoring period. The decrease in QS activity that was observed for these samples after 180 min of incubation is most probably due to pH-dependent AHL lactonolysis [35]. The addition of synthetic homoserine lactone bearing a β-keto moiety (OHHL) in combination with H2O2 to a N. cf pellucida culture resulted in the deactivation of this type of AHL which is demonstrated in Figure 1. This is in accordance with previous studies in which natural haloperoxidase systems of Laminaria digitata and Delisea pulchra mediated the deactivation of these AHLs in C. violaceum Mar. Drugs 2014, 12 355 CV026 [30] and A. tumefaciens NT1 bioassays [29]. Activity of β-keto-AHL was lost after 60
Recommended publications
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Vanadium-dependent bromoperoxidase in a marine Synechococcus / Permalink https://escholarship.org/uc/item/34x4t8rp Author Johnson, Todd Laurel Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Vanadium-dependent bromoperoxidase in a marine Synechococcus A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Marine Biology by Todd L. Johnson Committee in charge: Brian Palenik, Chair Bianca Brahamsha, Co-Chair Lihini Aluwihare James Golden Jens Mühle Bradley Moore 2013 Copyright Todd L. Johnson, 2013 All rights reserved. The dissertation of Todd L. Johnson is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ ________________________________________________________ Co-Chair ________________________________________________________ Chair University of California, San Diego 2013 iii DEDICATION To Janet, Tim, and Andrew Johnson, for unconditional love and support. iv TABLE OF CONTENTS Signature Page……………………………………………………………………………iii Dedication ………………………………………………………………………………..iv Table of Contents………………………………………………………………………….v List
    [Show full text]
  • Methods and Compositions for the Treatment of Infection and Control of Flora Using Haloperoxidase
    Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number : 0 500 387 A2 12 EUROPEAN PATENT APPLICATION (2j) Application number : 92301448.4 6i) int. ci.5: A61K 37/50 (22) Date of filing : 21.02.92 (30) Priority: 21.02.91 US 660994 (72) Inventor : Allen, Robert Charles 3215 Woodcrest San Antonio, Texas 78209 (US) (43) Date of publication of application 26.08.92 Bulletin 92/35 @) Representative : Sheard, Andrew Gregory et al Kilburn & Strode 30, John Street @ Designated Contracting States : London WC1N 2DD (GB) AT BE CH DE DK ES FR GB GR IT LI LU MC NL PT SE © Applicant : EXOXEMIS, INC. 18585 Sigma Road, Suite 100 San Antonio, Texas 78209 (US) (54) Methods and compositions for the treatment of infection and control of flora using haloperoxidase. (57) Haloperoxidases are used to selectively bind to and, in the presence of peroxide and halide, inhibit the growth of target microbes without eliminating desirable microbes or significantly damaging other components, such as host cells, in the environment of the target microbe. When a target microbe, e.g., a pathogenic microbe, has a binding capacity for haloperoxidase greater than that of a desired microbe, e.g., members of the normal flora, the target microbe selectively binds the haloperoxidase with little or no binding of the haloperoxidase by the desired microbe. In the presence of peroxide and halide, the target bound haloperoxidase catalyzes halide oxidation and facilitates the disproportionation of peroxide to singlet molecular oxygen at the surface of the target microbe. The lifetime of singlet molecular oxygen restricts damage to the surface resulting in selective killing of the target microbe with a minimum of collateral damage to the desired microbe or physiological medium.
    [Show full text]
  • Bacterialdye-Decolorizingperoxidases
    DE GRUYTER Physical Sciences Reviews. 2016; 20160051 Chao Chen / Tao Li Bacterial dye-decolorizing peroxidases: Biochemical properties and biotechnological opportunities DOI: 10.1515/psr-2016-0051 1 Introduction In biorefineries, processing biomass begins with separating lignin fromcellulose and hemicellulose. Thelatter two are depolymerized to give monosaccharides (e.g. glucose and xylose), which can be converted to fuels or chemicals. In contrast, lignin presents a challenging target for further processing due to its inherent heterogene- ity and recalcitrance. Therefore it has only been used in low-value applications. For example, lignin is burnt to recover energy in cellulosic ethanol production. Valorization of lignin is critical for biorefineries as it may generate high revenue. Lignin is the obvious candidate to provide renewable aromatic chemicals [1, 2]. As long as it can be depolymerized, the phenylpropane units can be converted into useful phenolic chemicals, which are currently derived from fossil fuels. In nature, lignin is efficiently depolymerized by rot fungi that secrete heme- and copper-containing oxidative enzymes [3]. Although lignin valorization is an important objective, industrial depolymerization by fungal enzymes would be difficult, largely due to difficulties in protein expression and genetic manipulation infungi. In recent years, however, there is a growing interest in identifying ligninolytic bacteria that contain lignin- degrading enzymes. So far, several bacteria have been characterized to be lignin degraders [4, 5]. These bacteria, including actinobacteria and proteobacteria, have a unique class of dye-decolorizing peroxidases (DyPs, EC 1.11.1.19, PF04261) [6, 7]. These enzymes are equivalent to the fungal oxidases in lignin degradation, but they are much easier to manipulate as their functional expression does not involve post translational modification.
    [Show full text]
  • An Antioxidant Nanozyme That Uncovers the Cytoprotective Potential of Vanadia Nanowires
    ARTICLE Received 22 Oct 2013 | Accepted 18 Sep 2014 | Published 21 Nov 2014 DOI: 10.1038/ncomms6301 An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires Amit A. Vernekar1,*, Devanjan Sinha2,*, Shubhi Srivastava2, Prasath U. Paramasivam1, Patrick D’Silva2 & Govindasamy Mugesh1 Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease. 1 Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India. 2 Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to P.D. (email: [email protected]) or to G.M. (email: [email protected]). NATURE COMMUNICATIONS | 5:5301 | DOI: 10.1038/ncomms6301 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited.
    [Show full text]
  • Halogenation Enzymes in Bacteria Associated with the Red-Banded Acorn Worm, Ptychodera Jamaicensis" (2011)
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2011 Halogenation Enzymes in Bacteria Associated with the Red- banded Acorn Worm, Ptychodera jamaicensis Milena May Lilles San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Lilles, Milena May, "Halogenation Enzymes in Bacteria Associated with the Red-banded Acorn Worm, Ptychodera jamaicensis" (2011). Master's Theses. 4099. DOI: https://doi.org/10.31979/etd.snbx-gv6x https://scholarworks.sjsu.edu/etd_theses/4099 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS A Thesis Presented to The Faculty of the Department of Biology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Milena M. Lilles December 2011 © 2011 Milena M. Lilles ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS by Milena M. Lilles APPROVED FOR THE DEPARTMENT OF BIOLOGY SAN JOSÉ STATE UNIVERSITY December 2011 Dr. Sabine Rech Department of Biology Dr. Brandon White Department of Biology Dr. Roy Okuda Department of Chemistry ABSTRACT HALOGENATION ENZYMES IN BACTERIA ASSOCIATED WITH THE RED- BANDED ACORN WORM, PTYCHODERA JAMAICENSIS by Milena M. Lilles Organohalogens have diverse biological functions in the environment.
    [Show full text]
  • LABORATORY EVOLUTION of CYTOCHROME P450 PEROXYGENASE ACTIVITY Thesis by Patrick C. Cirino in Partial Fulfillment of the Requirem
    LABORATORY EVOLUTION OF CYTOCHROME P450 PEROXYGENASE ACTIVITY Thesis by Patrick C. Cirino In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2004 (Defended June 2, 2003) ii © 2004 Patrick C. Cirino All Rights Reserved iii ACKNOWLEDGEMENTS My tenure at Caltech has been a wonderful and rewarding experience. I leave this chapter of my life feeling enlightened because of what I have learned, and charmed because of the people that I have had the fortune to spend time with. I am forever indebted to these people for their contributions to my scientific and personal growth over the years. I wish to thank my advisor Frances Arnold. I thank her for having confidence in me and for giving me the opportunity to work in her lab. I thank her for her constant encouragement, support, and guidance. She has been incredibly patient and has given me the time to grow professionally and mature personally. My respect and admiration for Frances continues to grow, and she has become a source of inspiration as I begin my own academic career. I could not have had a better advisor and I will never be able to thank her enough for all that she has given me. I wish to acknowledge the entire Division of Chemistry and Chemical Engineering for their resources, their courses, and for providing such a supportive and inspiring work environment. In particular, the following faculty members have been extremely helpful: I thank Dave Tirrell for all his generosity. As Division Chair, Dave has provided invaluable services which I have been able to take advantage of.
    [Show full text]
  • The Crystal Structure of the C45S Mutant of Annelid Arenicola Marina
    JOBNAME: PROSCI 17#4 2008 PAGE: 1 OUTPUT: Wednesday March 5 15:35:56 2008 csh/PROSCI/152302/ps0733993 The crystal structure of the C45S mutant of annelid Arenicola marina peroxiredoxin 6 supports its assignment to the mechanistically typical 2-Cys subfamily without any formation of toroid-shaped decamers AUDE SMEETS,1 ELE´ ONORE LOUMAYE,2 ANDRE´ CLIPPE,2 JEAN-FRANCxOIS REES,2 2 1 BERNARD KNOOPS, AND JEAN-PAUL DECLERCQ 1Unit of Structural Chemistry (CSTR), Universite´ catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium 2Laboratory of Cell Biology, Institut des Sciences de la Vie, Universite´ catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium (RECEIVED December 10, 2007; FINAL REVISION January 24, 2008; ACCEPTED January 28, 2008) Abstract The peroxiredoxins (PRDXs) define a superfamily of thiol-dependent peroxidases able to reduce hydrogen peroxide, alkyl hydroperoxides, and peroxynitrite. Besides their cytoprotective antioxidant function, PRDXs have been implicated in redox signaling and chaperone activity, the latter depending on the formation of decameric high-molecular-weight structures. PRDXs have been mechanistically divided into three major subfamilies, namely typical 2-Cys, atypical 2-Cys, and 1-Cys PRDXs, based on the number and position of cysteines involved in the catalysis. We report the structure of the C45S mutant of annelid worm Arenicola marina PRDX6 in three different crystal forms determined at 1.6, 2.0, and 2.4 A˚ resolution. Although A. marina PRDX6 was cloned during the search of annelid homo- logs of mammalian 1-Cys PRDX6s, the crystal structures support its assignment to the mechanistically typical 2-Cys PRDX subfamily.
    [Show full text]
  • Haloperoxidase Zur Behandlung Von Infektionen Und Kontrolle Der Flora
    Title (en) Haloperoxidase for the treatment of infection and control of flora Title (de) Haloperoxidase zur Behandlung von Infektionen und Kontrolle der Flora Title (fr) Haloperoxidase pour le traitement des infections et le contrôle de la flore Publication EP 0923939 B1 20070620 (EN) Application EP 98122809 A 19920221 Priority • EP 92301448 A 19920221 • US 66099491 A 19910221 Abstract (en) [origin: EP0500387A2] Haloperoxidases are used to selectively bind to and, in the presence of peroxide and halide, inhibit the growth of target microbes without eliminating desirable microbes or significantly damaging other components, such as host cells, in the environment of the target microbe. When a target microbe, e.g., a pathogenic microbe, has a binding capacity for haloperoxidase greater than that of a desired microbe, e.g., members of the normal flora, the target microbe selectively binds the haloperoxidase with little or no binding of the haloperoxidase by the desired microbe. In the presence of peroxide and halide, the target bound haloperoxidase catalyzes halide oxidation and facilitates the disproportionation of peroxide to singlet molecular oxygen at the surface of the target microbe. The lifetime of singlet molecular oxygen restricts damage to the surface resulting in selective killing of the target microbe with a minimum of collateral damage to the desired microbe or physiological medium. The methods and compositions of the invention are highly useful in the therapeutic or prophylactic antiseptic treatment of human or animal subjects, since their use can be designed to be highly effective in combatting bacterial or fungal infections without significant damage to normal flora or host cells.
    [Show full text]
  • Marine Haloperoxidases
    chem. Rev. 1998, 93, 1937-1944 Marine Haloperoxidases Alison Butler’ and J. V. Walker oepemnmt of ~%~II/SIIY. (~vasllyof cawom$. anta &&am. CaBlanh, 93106 Reodved A@ 20, 1993 (Revlsed Manusmt Racslved May 20, 1993) Contents I. Introduction 1937 A. Halogenated Compounds in the Marine 1937 Envlronment p: ? E. Marine Habperoxidases 1938 6 1. Types of Marine Haioperoxidases 1938 8. 2. Standard Assay of Habperoxidase 1939 Activity 11. Vanadium Bromoperoxidase 1939 A. Characterlstics of V-ErPO 1939 1. Isoiatlon and Purlflcation of VgrpO 1939 2. The Vanadium Sne 1939 .... .. ...:.;.. .. E. Reactivity Of V-ErpO 1940 . :. .. :. [.. 1. Halogenation and HalldeAssisted 1940 AII~~utler received her &A. from Reed College in 1977 and her Disproportionation of Hydrogen P~.D.from the University of California. San Diego. in 1962. Alter Peroxide pwMoaaal stays at UC Los Angeles and Caitech. she joked the 2. Specific Activltles 1941 faculty at UC Santa Barbara in 1986. She is a recent reciplent of an American Cancer Society. Junior Faculty Research Award, 1941 3. Enzyme Kinetics an Alfred P. Sbn Foundatlon Fellowship, and the UCSE PIOUS 4. Peroxide Selectivity 1941 TeacherlSchoiar Award. Her research interestsarein bioinaganic 5. Mechanistic Considerations 1941 chemistry and metalloblochemistry. including that of the marlne environment. C. Stability of V-ErPO 1942 D. Comment on the Putative Non-i-bma Iron 1942 Eromoperoxidases 111. Fell“ Bromoperoxidase 1942 A. Characteristics of FeHeme 1942 Eromoperoxbse E. Reactivity of FeHeme Bromoperoxidase 1942 1. Biosynthetic Investigations 1943 2. Other FeHema Haloperoxidases 1943 1V. Future Directions 1944 I. Introductlon A. Halogenated Compounds in the Msrlne Environment Jenylalne Vanessa Walker was born in St.
    [Show full text]
  • Master Thesis the Haloperoxidase-DABCO System
    UNIVERSITY OF COPENH AGEN FACULTY OF SCIENCE Master Thesis Valentin Waschulin The Haloperoxidase-DABCO System Exploring a Novel Method of Enzymatic Pulp Bleaching Name of department: Department of Geosciences and Natural Resource Management, Forest, Nature and Biomass Author: Valentin Waschulin Title / Subtitle: The Haloperoxidase-DABCO System: Exploring a Novel Method of Enzymatic Pulp Bleaching Academic advisor: Prof. Claus Felby Industrial advisors: Pedro Loureiro Submitted: 18. September 2016 2/79 Acknowledgements I want to express my thanks to Prof. Claus Felby for the opportunity of performing my Master Thesis at his chair, and Henrik Lund for providing me with the possibility of performing the thesis work at the Technical Industries department at Novozymes A/S, Denmark. I want to thank Pedro Loureiro for providing supervision, detailed expertise and great scientific discussions throughout the time of the thesis. I also want to thank all the scientists and associates at the department for discussion, advice and hands-on help in the laboratory; in particular Owik Herold-Majumdar for guidance and discussion concerning the model compound work. Finally, I want to thank my parents Susanne and Georg and my sister Laura for supporting me throughout my studies in Denmark. 3/79 Abstract A novel approach for cellulosic pulp bleaching and hexenuronic acid (HexA) removal using a haloperoxidase (Hap) and a tertiary amine catalyst (DABCO) was tested on oxygen-delignified eucalypt kraft pulp. In a buffered system (pH 4,5, 60°C), high brightness gain, good response to peroxide-reinforced alkaline extraction and more than 80% HexA removal were achieved, while preserving cellulose integrity. In an optimized, but non-buffered system, Hap/DABCO was compared to the non-enzymatic HOCl treatment and an inferior performance of the former was found.
    [Show full text]
  • Peracetic Acid
    Peracetic Acid Handling/Processing 1 2 Identification of Petitioned Substance 3 Chemical Names: CAS Numbers: 4 Peracetic acid; Ethaneperoxoic acid (IUPAC 79-21-0 5 name); Acetic peroxide; Monoperacetic acid; 89370-71-8 (historic) 6 Peroxoacetic acid; Acetyl hydroperoxide. 7 Other Codes: 8 Other Name: EC Number 201-186-8; ICSC Number 1031; 9 Peroxyacetic acid; PAA NIOSH Registry Number SD8750000; UN/ID 10 Number 3105; No INS number or E number 11 Trade Names: since peracetic acid is a sanitizer (not an 12 BioSide, Blitz, CitroBio, FreshFx, Inspexx, intentional food additive). 13 NicroBlast, Oxicure, Oxylleaf, Perasafe, 14 Peracsan, Peraclean, Per-Ox, SaniDate, Stor-Ox, 15 Tsunami, Vigor-Ox, Estosteril; Desoxone 1; 16 Dialax; Caswell no. 644, Caswell no. 644. 17 18 Summary of Petitioned Use 19 20 Peracetic acid (PAA) is currently allowed under the National Organic Program (NOP) regulations for use in 21 organic crop production, organic livestock production, and in organic food handling. This report addresses the 22 use of peracetic acid in organic processing and handling, including post-harvest handling of organically 23 produced plant and animal foods. Peracetic acid is currently allowed for use in organic handling in wash water 24 and rinse water, including during post-harvest handling, to disinfect organically produced agricultural 25 products according to FDA limitations, and to sanitize food contact surfaces, including dairy-processing 26 equipment and food-processing equipment and utensils. 27 28 29 Characterization of Petitioned Substance 30 31 Composition of the Substance: 32 Chemically, the term “peracetic acid” describes two substances. “Pure” peracetic acid, described in the Merck 33 Index (Budavari 1996), has the chemical formula C2H4O3 (alternatively written CH3CO3H).
    [Show full text]
  • (ESI) for Inorganic Chemistry Frontiers
    Electronic Supplementary Material (ESI) for Inorganic Chemistry Frontiers. This journal is © the Partner Organisations 2015 Table S1. Timeline for the development of natural and artificial enzymes. Year Events Reference 1877 The term “enzyme” was coined by Wilhelm Kuhne. 1926 The enzyme urease was crystallized and determined to be a protein by 1, 2 James B. Sumner. 1946 James B. Sumner won Nobel Prize in Chemistry "for his discovery that enzymes can be crystallized". 1965 Cyclodextrin inclusion compounds were used to imitate enzymes. 3, 4 1967-1968 The idea of an RNA molecule with enzymatic properties was proposed 5-7 by Carl R. Woese, Francis H. C. Crick and Leslie E. Orgel. 1970 The term “artificial enzyme” was coined by Ronald Breslow. 8 1971 Polymer with enzyme-like activity (synzyme) was reported by Irving M. 9 Klotz. 1972 Molecularly imprinted polymers were invented by Günter Wulff and 10, 11 Irving M. Klotz. 1982 The term “ribozyme” was coined by Thomas R. Cech. 12 1982-1983 The ribozymes were discovered by Sidney Altman and Thomas R. Cech. 12, 13 1986 Catalytic antibodies were invented by Peter G. Schultz and Richard A. 14, 15 Lerner. 1989 Sidney Altman and Thomas R. Cech won Nobel Prize in Chemistry "for their discovery of catalytic properties of RNA". 1992 The first artificial RNAzyme was selected. 16 1993 DNA cleavage induced by fullerene derivatives. 17 1994 The first DNAzyme was selected. 18 1996-1997 Fullerene derivatives as superoxide dismutase (SOD) mimic. 19, 20 2004 Nano gold as RNase mimic. 21 The term “nanozyme” was coined. 2004 Nano gold as oxidase mimic 22 2005 Nano ceria as SOD mimic.
    [Show full text]