Chapter 4: PROKARYOTIC DIVERSITY

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 4: PROKARYOTIC DIVERSITY Chapter 4: PROKARYOTIC DIVERSITY 1. Prokaryote Habitats, Relationships & Biomes 2. Proteobacteria 3. Gram-negative and Phototropic Non-Proteobacteria 4. Gram-Positive Bacteria 5. Deeply Branching Bacteria 6. Archaea 1. Prokaryote Habitats, Relationships & Biomes Important Metabolic Terminology Oxygen tolerance/usage: aerobic – requires or can use oxygen (O2) anaerobic – does not require or cannot tolerate O2 Energy usage: phototroph – uses light as an energy source • all photosynthetic organisms chemotroph – acquires energy from organic or inorganic molecules • organotrophs – get energy from organic molecules • lithotrophs – get energy from inorganic molecules …more Important Terminology Carbon Source: autotroph – uses CO2 as a carbon source • e.g., photoautotrophs or chemoautotrophs heterotroph – requires an organic carbon source • e.g., chemoheterotroph – gets energy & carbon from organic molecules Oligotrophs require few nutrients, the opposite of eutrophs or copiotrophs Facultative vs Obligate (or Strict): facultative – “able to, but not requiring” • e.g., facultative anaerobes can survive w/ or w/o O2 obligate – “absolutely requires” • e.g., obligate anaerobes cannot survive in O2 Symbiotic Relationships Symbiotic relationships (close, direct interactions) between different organisms in nature are of several types: • e.g., humans have beneficial bacteria in their digestive tracts that also benefit from the food we eat (mutualism) Microbiomes All the microorganisms that inhabit a particular organism or environment (e.g., human or soil microbiome): Classification in the Bacterial Domain We will look at important genera from a variety of bacterial groups classified largely on staining & rRNA sequences (ribotyping): Gram-negative Bacteria • Proteobacteria • Nonproteobacteria & Phototrophic Bacteria Gram-positive Bacteria • High G+C (Actinobacteria) • Low G+C (Firmicutes) Deeply Branching Bacteria 2. Proteobacteria Alphaproteobacteria Betaproteobacteria Gammaproteobacteria Deltaproteobacteria Epsilonproteobacteria Alphaproteobacteria Most are oligotrophs: Rhizobium Rhizobium • nitrogen fixation in soil Pathogenic genera: Rickettsia • intracellular pathogens • typhus, Rocky Mountain spotted fever Chlamydia R. rickettsii • C. trachomatis – most common STD Betaproteobacteria Most are eutrophs: Thiobacillus • oxidize H S to sulfate is soil 2 Pathogenic genera: • important in sulfur cycle Neisseria • gonorrhea (N. gonorrheae) • meningococcal meningitis (N. meningitidis) Bordetella • whooping cough (B. pertussis) N. meningitidis Gammaproteobacteria Largest & most diverse class of Proteobacteria, including many enteric bacteria and human pathogens: Escherichia Vibrio • E. coli • cholera (V. cholerae) Legionella • legionnaires disease (L. pneumophila) Pseudomonas • opportunistic pathogens Salmonella • typhoid fever, foodborne L. pneumophila salmonellosis Deltaproteobacteria Small class of Proteobacteria containing soil bacteria that reduce sulfate (Desulfovibrio) and the Myxobacteria that form unusual “fruiting bodies”: Myxobacteria Epsilonproteobacteria Smallest class of Proteobacteria containing microaerophilic species that are typical helical or vibrioid in shape : Pathogenic genera: Helicobacter • H. pylori – peptic ulcers Campylobacter • various species cause blood poisoning, intestinal illness (e.g., C. jejuni) H. pylori 3. Gram-Negative & Phototropic Non-Proteobacteria Spirochetes Very thin, highly coiled bacteria that are hard to see under the microscope and harder to culture: Treponema • T. pallidum – syphilis Borrelia • B. burgdorferi – Lyme disease The CFB Group Grouped based on DNA similarity and includes the following genera: Cytophaga Fusobacterium Bacteroides • most are anaerobic rods • Some are potentially pathogenic (Cytophaga, Fusobacterium), others are beneficial (Bacteroides) Bacteroides Cyanobacteria Gram-negative, oxygenic photoautotrophs + • produce vast amounts of oxygen gas via photosynthesis, fix nitrogen (N2 NH4 ) Anabaena • carry out nitrogen fixation in non-photosynthetic heterocysts Vegetative cell Sheath Heterocyst Akinete Anabaena Oscillatora Purple & Green Bacteria Obligately anaerobic, anoxygenic photoautotrophs Green and Purple non-sulfur bacteria • use organic molecules as a source of electrons (not H2O) Green and Purple sulfur bacteria • use H2S as a source of electrons • elemental sulfur is then released (green sulfur bacteria) or forms inclusions (purple sulfur bacteria) 4. Gram-Positive Bacteria Classification of Gram-Positive Bacteria Gram-positive bacteria are grouped based on DNA similarity: Low G+C Gram-positive bacteria (Firmicutes) • contains many serious pathogens High G+C Gram-positive bacteria (Actinomycetes) • characterized by branching filaments • includes some pathogens Actinobacteria (High G+C) Streptomyces • important soil bacteria, recycle nutrients • many produce antibiotics (erythromycin, tetracycline) Corynebacterium C. diphtheria • diphtheria (C. diphtheria) Mycobacterium • contain mycolic acids in cell wall (stain acid-fast) • tuberculosis (M. tuberculosis), leprosy (M. leprae) Streptomyces Bifidobacterium • significant member of beneficial gut microbiota Firmicutes (Low G+C)… Streptococcus S. pyogenes • strep throat (S. pyogenes) Staphylococcus • MRSA (S. aureus) S. aureus C. difficile *Bacillus • anthrax (B. anthracis) *Clostridium *produce • tetanus (C. tetani) endospores • botulism (C. botulinum) • colitis (C. difficile) …more Firmicutes Lactobacillus • species used in fermented food products (e.g., yogurt, buttermilk, pickles) • part of normal, healthy microbiota in human mouth, digestive tract, vagina colonies Mycoplasma • very small (less than 1 mm) • no cell wall (stain Gram-negative) • obligate intracellular pathogens Mycoplasma 5. Deeply Branching Bacteria What Are “Deeply Branching Bacteria”? Bacteria very close to the base of the phylogenetic tree: • members of the domain Bacteria that diverged very early, ~3.5 billion years ago Last Common Universal Ancestor Genera of “Deeply Branching Bacteria” Acetothermus • deepest branching bacteria known to date D. radiodurans • thermophiles and hyperthermophiles Aquifex • adapted to harshest conditions on planet (e.g., thermal oceanic vents that reach 138oC!) Deinococcus • D. radiodurans known as “Conan the Bacterium” for the extremes of heat, UV, radioactivity, etc, it can survive 6. Archaea The Domain Archaea Highly diverse group of prokaryotes first classified in 1977 by Carl Woese and George Fox: • have metabolic processes, rRNA sequences and other features more closely resembling eukaryotes • e.g., initiate translation with methionine (as do eukaryotes) rather than N-formyl methionine as do the Bacteria • cell walls made of material other than peptidoglycan • have unusual membrane lipids • much larger genomes that bacteria Two Main Phyla Sulfolobus Crenarchaeota • most are hyperthermophiles, some acidophiles Euryarchaeota • includes the methanogens, halophiles, a few thermophiles Other Phyla • Korarchaeota, Nanoarchaeota, Thaumarchaeota • based on environmental RNA **NO known archaeon causes disease in humans or animals!** Key Terms for Chapter 4 • aerobic vs anaerobic • facultative vs obligate • phototroph, chemotroph, organotroph, lithotroph • autotroph, heterotroph, oligotroph, eutroph • symbiosis: mutualism, amensalism, commensalism, neutralism, parasitism • thermophile, halophile.
Recommended publications
  • Consistent Responses of Soil Microbial Communities to Elevated Nutrient Inputs in Grasslands Across the Globe
    Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe Jonathan W. Leffa,b, Stuart E. Jonesc, Suzanne M. Proberd, Albert Barberána, Elizabeth T. Borere, Jennifer L. Firnf, W. Stanley Harpoleg,h,i, Sarah E. Hobbiee, Kirsten S. Hofmockelj, Johannes M. H. Knopsk, Rebecca L. McCulleyl, Kimberly La Pierrem, Anita C. Rischn, Eric W. Seabloomo, Martin Schützn, Christopher Steenbockb, Carly J. Stevensp, and Noah Fierera,b,1 aCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; bDepartment of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309; cDepartment of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556; dCommonwealth Scientific and Industrial Research Organisation Land and Water Flagship, Wembley, WA 6913, Australia; eDepartment of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108; fSchool of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia; gDepartment of Physiological Diversity, Helmholtz Center for Environmental Research UFZ, 04318 Leipzig, Germany; hGerman Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, D-04103 Leipzig, Germany; iInstitute of Biology, Martin Luther University Halle-Wittenberg, 06108 Halle (Saale), Germany; jEcology, Evolution, and Organismal Biology Department, Iowa State University, Ames, IA 50011; kSchool of Biological Sciences, University of Nebraska, Lincoln, NE 68588; lDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546; mDepartment of Integrative Biology, University of California, Berkeley, CA 94720; nCommunity Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland; oDepartment of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108; and pLancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom Edited by Peter M.
    [Show full text]
  • The Trophic-Dynamic Aspect of Ecology Author(S): Raymond L
    The Trophic-Dynamic Aspect of Ecology Author(s): Raymond L. Lindeman Reviewed work(s): Source: Ecology, Vol. 23, No. 4 (Oct., 1942), pp. 399-417 Published by: Ecological Society of America Stable URL: http://www.jstor.org/stable/1930126 . Accessed: 30/01/2012 10:50 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecology. http://www.jstor.org THE TROPHIC-DYNAMIC ASPECT OF ECOLOGY RAYMOND L. LINDEMAN OsbornZoological Laboratory,Yale University Recent progressin the studyof aquatic community. A more "bio-ecological" food-cycle relationships invites a re- species-distributionalapproach would appraisal of certain ecological tenets. recognize both the plants and animals Quantitative productivitydata provide as co-constituentsof restricted"biotic" a basis for enunciating certain trophic communities,such as "plankton com- principles, which, when applied to a munities," "benthic communities,"etc., series of successional stages, shed new in which membersof the living commu- light on the dynamics of ecological nity "co-act" with each other and "re- succession. act" with the non-livingenvironment (Clementsand Shelford,'39; Carpenter, "COMMUNITY" CONCEPTS '39, '40; T. Park, '41).
    [Show full text]
  • Aerobic Respiration
    Life is based on redox • All energy generation in biological systems is due to redox (reduction-oxidation) reactions Aerobic Respiration: + - C6H12O6 + 6 H2O ==> 6 CO2 + 24 H +24 e oxidation electron donor (aka energy source) + - (O2+ 4H + 4e ==> 2H2O) x6 reduction electron acceptor --------------------------------------- C6H12O6 + 6 O2 ==> 6 CO2 + 6 H2O overall reaction (24 electrons) Types of bacterial metabolisms • While eukaryotes only reduce O2 and oxidize organic compounds, prokaryotes can use a variety of electron donors and acceptors, organic and inorganic. - • Aerobic respiration: e acceptor is O2 - • Anaerobic respiration: e acceptor is not O2 • Fermentation: e- donor and acceptor are organic molecules • Chemolithotrophy: e- donor and acceptor are inorganic molecules • Phototrophy: e- donor is light and e- acceptor is either organic or inorganic all microorganisms energy source? chemical light chemotroph phototroph carbon source? carbon source? organic organic CO CO compound 2 compound 2 chemoheterotroph chemoautotroph photoheterotroph photoautotroph e- acceptor? Nitrifying and sulfur- use H O to reduce CO ? oxidizing bacteria 2 2 green non-sulfur and O Other than O 2 2 purple non-sulfur bacteria anoxygenic oxygenic photosynthesis: photosynthesis: green sulfur and most bacteria Organic Inorganic cyanobacteria compound compound purple sulfur bacteria fermentative organism anaerobic respiration: nitrate, sulfate, Fe(III) Aerobic or anaerobic respiration Chemolithotrophy Important molecules Redox Electron Carrier: for example the
    [Show full text]
  • Supplementary Material 16S Rrna Clone Library
    Kip et al. Biogeosciences (bg-2011-334) Supplementary Material 16S rRNA clone library To investigate the total bacterial community a clone library based on the 16S rRNA gene was performed of the pool Sphagnum mosses from Andorra peat, next to S. magellanicum some S. falcatulum was present in this pool and both these species were analysed. Both 16S clone libraries showed the presence of Alphaproteobacteria (17%), Verrucomicrobia (13%) and Gammaproteobacteria (2%) and since the distribution of bacterial genera among the two species was comparable an average was made. In total a 180 clones were sequenced and analyzed for the phylogenetic trees see Fig. A1 and A2 The 16S clone libraries showed a very diverse set of bacteria to be present inside or on Sphagnum mosses. Compared to other studies the microbial community in Sphagnum peat soils (Dedysh et al., 2006; Kulichevskaya et al., 2007a; Opelt and Berg, 2004) is comparable to the microbial community found here, inside and attached on the Sphagnum mosses of the Patagonian peatlands. Most of the clones showed sequence similarity to isolates or environmental samples originating from peat ecosystems, of which most of them originate from Siberian acidic peat bogs. This indicated that similar bacterial communities can be found in peatlands in the Northern and Southern hemisphere implying there is no big geographical difference in microbial diversity in peat bogs. Four out of five classes of Proteobacteria were present in the 16S rRNA clone library; Alfa-, Beta-, Gamma and Deltaproteobacteria. 42 % of the clones belonging to the Alphaproteobacteria showed a 96-97% to Acidophaera rubrifaciens, a member of the Rhodospirullales an acidophilic bacteriochlorophyll-producing bacterium isolated from acidic hotsprings and mine drainage (Hiraishi et al., 2000).
    [Show full text]
  • A Korarchaeal Genome Reveals Insights Into the Evolution of the Archaea
    A korarchaeal genome reveals insights into the evolution of the Archaea James G. Elkinsa,b, Mircea Podarc, David E. Grahamd, Kira S. Makarovae, Yuri Wolfe, Lennart Randauf, Brian P. Hedlundg, Ce´ line Brochier-Armaneth, Victor Kunini, Iain Andersoni, Alla Lapidusi, Eugene Goltsmani, Kerrie Barryi, Eugene V. Koonine, Phil Hugenholtzi, Nikos Kyrpidesi, Gerhard Wannerj, Paul Richardsoni, Martin Kellerc, and Karl O. Stettera,k,l aLehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, D-93053 Regensburg, Germany; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dDepartment of Chemistry and Biochemistry, University of Texas, Austin, TX 78712; eNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; gSchool of Life Sciences, University of Nevada, Las Vegas, NV 89154; hLaboratoire de Chimie Bacte´rienne, Unite´ Propre de Recherche 9043, Centre National de la Recherche Scientifique, Universite´de Provence Aix-Marseille I, 13331 Marseille Cedex 3, France; iU.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; jInstitute of Botany, Ludwig Maximilians University of Munich, D-80638 Munich, Germany; and kInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, April 2, 2008 (received for review January 7, 2008) The candidate division Korarchaeota comprises a group of uncul- and sediment samples from Obsidian Pool as an inoculum. The tivated microorganisms that, by their small subunit rRNA phylog- cultivation system supported the stable growth of a mixed commu- eny, may have diverged early from the major archaeal phyla nity of hyperthermophilic bacteria and archaea including an or- Crenarchaeota and Euryarchaeota.
    [Show full text]
  • The Two-Domain Tree of Life Is Linked to a New Root for the Archaea
    The two-domain tree of life is linked to a new root for the Archaea Kasie Raymanna, Céline Brochier-Armanetb, and Simonetta Gribaldoa,1 aInstitut Pasteur, Department of Microbiology, Unit Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and bUniversité de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved April 17, 2015 (received for review November 02, 2014) One of the most fundamental questions in evolutionary biology is restricted taxonomic sampling, notably for the outgroup, may also the origin of the lineage leading to eukaryotes. Recent phyloge- generate or mask potential tree reconstruction artifacts (16). All nomic analyses have indicated an emergence of eukaryotes from these considerations emphasize that we have not yet found a way within the radiation of modern Archaea and specifically from a group out of the phylogenomic impasse caused by the use of universal comprising Thaumarchaeota/“Aigarchaeota” (candidate phylum)/ trees to investigate the relationships among Archaea and eu- Crenarchaeota/Korarchaeota (TACK). Despite their major im- karyotes (12). plications, these studies were all based on the reconstruction of Here, we have applied an original two-step strategy that we universal trees and left the exact placement of eukaryotes with re- proposed a few years ago which involves separately analyzing the spect to the TACK lineage unclear. Here we have applied an original markers shared between Archaea and eukaryotes and between two-step approach that involves the separate analysis of markers Archaea and Bacteria (12). This strategy allowed us to use a larger shared between Archaea and eukaryotes and between Archaea and taxonomic sampling, more markers and thus more positions, have Bacteria.
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • Archaea and the Origin of Eukaryotes
    REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative.
    [Show full text]
  • Obecné Znaky Metabolismu + Bioenergetika
    Metabolism • General concept of metabolism + Bioenergetics • Cellular respiration (glykolysis + CKC + oxidative phosphorylation) • Sacharide metabolism + photosynthesis • Lipid metabolism • Metabolism of nitrous compounds Obecné znaky metabolismu + bioenergetika BUNĚČNÁ TEORIE Robert Hook (1667) "buňka" 1. Buňky tvoří veškerou živou hmotu (x viry). 2. Veškeré buňky pocházejí z jiných buněk (x samoplození). 3. Informace se předávají z generace na generaci. 4. V buňkách látky podléhají chemickým přeměnám. 5. Buňky reagují na vnější podněty. Otevřené systémy: tok látek, energie a informací dovnitř a ven dynamická rovnováha → ustálený stav Pravá rovnováha → smrt organismu Metabolic types (trofika, trofé = výživa): Energy source: light→ phototroph chemical reaction(redox) → chemotrophs Proton/electron donor acceptor Anorganic Organic Oxygen Other lithotrophs organotrophs aerobic anaerobic (líthos = stone) Fermentace: „disproporcionace“ Např.: C6H12O6 2 CH3-CH(OH)-COOH C6H12O6 2 CH3-CH2-OH + 2CO2 To be continued…….. Carbon source: anorganic → autotrophs organic → heterotrophs Common metabolic types METABOLISM Carbon source Proton source Proton example acceptor photolithotrophs CO2 H2O CO2 Green parts of (autotrophic) plant photolithotrophs Organic comp H2O (CO2) Some (heterotrophic) photosynthetic bacteria Photoorganotrophs Organic comp. Organic comp CO2 Some algae nad (heterotrophic) bacteria chemoorganotrophs Organic comp Organic comp O2 Animals, aerobic aerobic MO 2- Chemoorganotrophs Organic comp Organic comp SO4 Soil anaerobic - Anaerobic
    [Show full text]
  • Life in Extreme Heat
    THERMOPHILES Thermophiles, or heat-loving microscopic organisms, are nourished by the extreme habitat at hydrothermal features in Yellowstone National Park. They also color hydrothermal features shown here at Clepsydra Geyser. Life in Extreme Heat The hydrothermal features of Yellowstone are enough to blister your skin. Some create layers that magnificent evidence of Earth’s volcanic activity. look like molten wax on the surface of steaming Amazingly, they are also habitats in which micro- alkaline pools. Still others, apparent to us through scopic organisms called thermophiles—“thermo” for the odors they create, exist only in murky, sulfuric heat, “phile” for lover—survive and thrive. caldrons that stink worse than rotten eggs. Grand Prismatic Spring at Midway Geyser Basin Today, many scientists study Yellowstone’s ther- is an outstanding example of this dual characteristic. mophiles. Some of these microbes are similar to the Visitors marvel at its size and brilliant colors. The boardwalk crosses a vast habitat for thermophiles. Nourished by energy and chemical building blocks Words to Know available in the hot springs, microbes construct Extremophile: A microorganism living in extreme vividly colored communities. Living with these conditions such as heat and acid, that cannot survive without these conditions. microscopic life forms are larger examples of life in extreme environments, such as mites, flies, spiders, Thermophile: Heat-loving extremophile. and plants. Microorganism: Single- or multi-celled organism of microscopic or submicroscopic size. Also called a microbe. For thousands of years, people have likely won- dered about these extreme habitats. The color of Microbes in Yellowstone: In addition to the thermophilic microorganisms, millions of other microbes thrive in Yellowstone’s superheated environments certainly Yellowstone’s soils, streams, rivers, lakes, vegetation, and caused geologist Walter Harvey Weed to pause, think, animals.
    [Show full text]
  • Glossary Animal Physiology
    Limnology 1 Weisse - WS99/00 Glossary Limnology 1 Biological Zonation of a lentic System: Most organisms can be classified on the basis of their typical habitat. Benthos: The community of plants and animals that live permanently in or on the sea bottom. Littoral (intertidal zone): The trophogenic zone along the shore till the compensation depth where NPP occurs. It is rich in species diversity and number - especially algae and higher plants. • Epilittoral: Sedentary organisms of the shoreline; e.g. macrophytes, diatoms, etc. • Profundal: Depths of 180m and deeper. Limnion: Temperature related zonation of the open water body of lentic systems; i.e. summer stratification due to solar radiation produces several trophic zones - see also ecological aspects - depth zones. • Epilimnion: The upper warm and illuminated surface layer of a lake; narrower than the trophogenic zone. • Metalimnion: The transitional zone between epi- and hypolimnion; i.e. the zone of the thermocline. • Hypolimnion: The cool and poorly illuminated bottom layer of a lake, below the thermocline. Nekton: Pelagic animals that are active swimmers; i.e. most of the adult fishes. Pelagial: The environment of the open water of a lake, away from the bottom, and not in close proximity to the shoreline. It is Lower in species number and diversity than the benthos. The pelagial of rivers exhibits a directed and continuos flux (spatial relocation = amountH2O/cross-surface area). Plankton: Passively drifting or weakly swimming organisms in fresh waters; i.e. microscopic plants, eggs, larval stages of the nekton and benthos (such as phyto-plankton, zoo-plankton). • Neuston: The epipelagic zone few centimeters below the waterline; i.e.
    [Show full text]
  • Spatial Ecology of Territorial Populations
    Spatial ecology of territorial populations Benjamin G. Weinera, Anna Posfaib, and Ned S. Wingreenc,1 aDepartment of Physics, Princeton University, Princeton, NJ 08544; bSimons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; and cLewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544 Edited by Nigel Goldenfeld, University of Illinois at Urbana–Champaign, Urbana, IL, and approved July 30, 2019 (received for review July 9, 2019) Many ecosystems, from vegetation to biofilms, are composed of and penalize niche overlap (25), but did not otherwise struc- territorial populations that compete for both nutrients and phys- ture the spatial interactions. All these models allow coexistence ical space. What are the implications of such spatial organization when the combination of spatial segregation and local interac- for biodiversity? To address this question, we developed and ana- tions weakens interspecific competition relative to intraspecifc lyzed a model of territorial resource competition. In the model, competition. However, it remains unclear how such interactions all species obey trade-offs inspired by biophysical constraints on relate to concrete biophysical processes. metabolism; the species occupy nonoverlapping territories, while Here, we study biodiversity in a model where species interact nutrients diffuse in space. We find that the nutrient diffusion through spatial resource competition. We specifically consider time is an important control parameter for both biodiversity and surface-associated populations which exclude each other as they the timescale of population dynamics. Interestingly, fast nutri- compete for territory. This is an appropriate description for ent diffusion allows the populations of some species to fluctuate biofilms, vegetation, and marine ecosystems like mussels (28) or to zero, leading to extinctions.
    [Show full text]