Life in Extreme Heat

Total Page:16

File Type:pdf, Size:1020Kb

Life in Extreme Heat THERMOPHILES Thermophiles, or heat-loving microscopic organisms, are nourished by the extreme habitat at hydrothermal features in Yellowstone National Park. They also color hydrothermal features shown here at Clepsydra Geyser. Life in Extreme Heat The hydrothermal features of Yellowstone are enough to blister your skin. Some create layers that magnificent evidence of Earth’s volcanic activity. look like molten wax on the surface of steaming Amazingly, they are also habitats in which micro- alkaline pools. Still others, apparent to us through scopic organisms called thermophiles—“thermo” for the odors they create, exist only in murky, sulfuric heat, “phile” for lover—survive and thrive. caldrons that stink worse than rotten eggs. Grand Prismatic Spring at Midway Geyser Basin Today, many scientists study Yellowstone’s ther- is an outstanding example of this dual characteristic. mophiles. Some of these microbes are similar to the Visitors marvel at its size and brilliant colors. The boardwalk crosses a vast habitat for thermophiles. Nourished by energy and chemical building blocks Words to Know available in the hot springs, microbes construct Extremophile: A microorganism living in extreme vividly colored communities. Living with these conditions such as heat and acid, that cannot survive without these conditions. microscopic life forms are larger examples of life in extreme environments, such as mites, flies, spiders, Thermophile: Heat-loving extremophile. and plants. Microorganism: Single- or multi-celled organism of microscopic or submicroscopic size. Also called a microbe. For thousands of years, people have likely won- dered about these extreme habitats. The color of Microbes in Yellowstone: In addition to the thermophilic microorganisms, millions of other microbes thrive in Yellowstone’s superheated environments certainly Yellowstone’s soils, streams, rivers, lakes, vegetation, and caused geologist Walter Harvey Weed to pause, think, animals. Some of them are discussed in other chapters of and even question scientists who preceded him. In this book. 1889, he wrote: Bacteria (Bacterium): Single-celled microorganisms There is good reason to believe that the existence without nuclei, varying in shape, metabolism, and ability to move. of algae of other colors, particularly the pink, yel- Archaea (Archaeum): Single-celled microorganisms low and red forms so common in the Yellowstone without nuclei and with membranes different from all waters, have been overlooked or mistaken for other organisms. Once thought to be bacteria. deposits of purely mineral matter. Viruses: Non-living parasitic microorganisms consisting of However, he could not have imagined what a a piece of DNA or RNA coated by protein. fantastic world exists in these waters of brimstone. Eukarya (Eukaryote): Single- or multi-celled organisms Species, unseen to the human eye, thrive in waters whose cells contain a distinct membrane-bound nucleus. as acidic as the liquid in your car battery and hot Life in Extreme Heat 131 th Thermophiles in the Tree of Life THERMOPHILES Bacteria Archaea Eukarya Green nonsulfur Crenarchaeota Myxomycota bacteria Euryarchaeota Entamoebae Animalia Mitochondrian Fungi Gram- positive Thaumarchaeota Proteobacteria bacteria Plantae Chloroblast Ciliates Cyanobacteria Korarchaeota Nanoarchaeota Flavobacteria Flagellates Thermotoga Trichomonads Thermodesulfobacterium Microsporidia Aquifex Diplomonads DRAWING BY MARY ANN FRANKE Yellowstone’s hot springs contain branch of microorganisms not known Relevance to Yellowstone species from the circled groups on this until the 1970s—the Archaea. Among the earliest organisms to Tree of Life. Jack Farmer conceived of evolve on Earth were microorganisms Dr. Carl Woese first proposed this this version of the tree of life, which first whose descendants are found today “tree” in the 1970s. He also proposed appeared in GSA Today, July 2000 (used in extreme high-temperature, and in the new branch, Archaea, which with permission). some cases acidic, environments, such includes many microorganisms formerly as those in Yellowstone. Their history In the last few decades, microbial considered bacteria. The red line links exhibits principles of ecology and ways research has led to a revised tree of the earliest organisms that evolved in which geologic processes might have life, far different from the one taught from a common ancestor. These are influenced biological evolution. before. The new tree combines animal, all hyperthermophiles, which thrive in plant, and fungi in one branch. The water above 176°F (80°C), indicating other two branches consist solely of life may have arisen in hot environments microorganisms, including an entire on the young Earth. first life forms capable of photosynthesis—the process Regardless of scientific advances, visitors and of using sunlight to convert water and carbon dioxide explorers in Yellowstone can still relate to something to oxygen, sugars, and other by-products. These life else Weed wrote about Yellowstone, more than a forms, called cyanobacteria, began to create an at- century ago: mosphere that would eventually support human life. The vegetation of the acid waters is seldom a Cyanobacteria are found in some of the colorful mats conspicuous feature of the springs. But in the and streamers of Yellowstone’s hot springs. alkaline waters that characterize the geyser basins, and in the carbonated, calcareous waters About Microbes of the Mammoth Hot Springs, the case is other- Other life forms—the Archaea—predated cyanobac- wise, and the red and yellow tinges of the algae teria and other photosynthesizers. Archaea can live combine with the weird whiteness of the sinter in the hottest, most acidic conditions in Yellowstone; and the varied blue and green of the hot water their relatives are considered among the very earliest to form a scene that is, without doubt, one of life forms on Earth. the most beautiful as well as one of the strangest Yellowstone’s thermophiles and their environments sights in the world. provide a living laboratory for scientists, who continue to explore these extraordinary organisms. Researchers know that many mysteries of Yellowstone’s extreme environments remain to be revealed. 132 Yellowstone Resources and Issues Handbook, 2019 THERMOPHILES thermoacidophilic eukaryotic alga. Proceedings of the More Information National Academy of Sciences of the United States of American Society for Microbiology: www.microbeworld.org America. 106 (13): 5213. Allen, E. T., Arthur L. Day, and H.E. Merwin. 1935. Hot Reysenbach, A.L., and Shock, E. L. 2002 . Merging Genomes springs of the Yellowstone National Park. [Washington]: with Geochemistry in Hydrothermal Ecosystems. Carnegie institution of Washington. Science. 296: 1077-1082. Brock, T.D. 1994. Life at High Temperatures. Yellowstone Sheehan, K.B. et al. 2005. Seen and unseen: discovering the Association/Mammoth, WY. microbes of Yellowstone. Guilford, Conn: Falcon. Brock, Thomas D. 1995. The road to Yellowstone and be- Snyder, J.C. et. al. 2013. Functional interplay between a yond. Annual Review of Microbiology. 49 virus and the ESCRT machinery in Archaea. Proceedings Dyer, B.D. 2003. A field guide to bacteria. Ithaca, NY: of the National Academy of Sciences. 110 (26) Cornell University Press. 10783-10787. Franke, M.A, et. al. 2013. Genetic Diversity in Yellowstone Spear, J. R. et. al. 2005. Hydrogen and bioenergetics in the Lake: The Hot and Cold Spots. Yellowstone Science 21 Yellowstone geothermal ecosystem. Proceedings of the (1): 6-22. National Academy of Sciences. 102 (7) 2555-2560. Fouke. B.W. 2011 . Hot-spring Systems Geobiology: abi- Steunou A.S., et. al. 2008. Regulation of nif gene expression otic and biotic influences on travertine formation at and the energetics of N2 fixation over the diel cycle in a Mammoth Hot Springs, Yellowstone National Park, hot spring microbial mat. ISME Journal. (4):364-78. USA. Sedimentology. 58: 170-219. Takacs-Vesbach, C., et al. 2013. Metagenome sequence Hamilton, T.L. et. al. 2012. Environmental constraints defin- analysis of filamentous microbial communities obtained ing the distribution, composition, and evolution of from geochemically distinct geothermal channels reveals chlorophototrophs in thermal features of Yellowstone specialization of three aquificales lineages. Frontiers National Park. Geobiology. (10) 3: 236-249. Research Foundation. Inskeep WP , et. al. 2013. The YNP metagenome project: Thermal Biology Institute of Montana State University: www. environmental parameters responsible for microbial tbi.montana.edu distribution in Yellowstone. Frontiers in Microbiology. Ward, D.M., Castenholz, D.W., and Miller, S.R. 2012. 00067. Cyanobacteria in Geothermal Habitats. In Brian A. Klatt, C. G., et. al. 2011. Community ecology of hot spring Whitton, ed. Ecology of cyanobacteria II: their diversity cyanobacterial mats: predominant populations and their in space and time. Dordrecht: Springer functional potential. ISME Journal. 5(8): 1262–1278. Marquez, Luis et al. 2007. A virus in a fungus in a plant: Reviewers 3-way symbiosis required for thermal tolerance. Science Dr. Eric Boyd, Montana State University Department of 315 (5811): 513–515. Microbiology and Immunology Qin, J., C.R. Lehr, C. Yuan, X. C. Le, T. R. McDermott, and B. Annie Carlson, Research Permit Coordinator P. Rosen. Biotransformation of arsenic by a Yellowstone Life in Extreme Heat 133 THERMOPHILES The travertine terraces in Mammoth Hot Springs host thermophilic cyanobacteria. Thermophilic Bacteria sulfur,
Recommended publications
  • Where Less May Be More: How the Rare Biosphere Pulls Ecosystems Strings
    The ISME Journal (2017) 11, 853–862 OPEN © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej MINI REVIEW Where less may be more: how the rare biosphere pulls ecosystems strings Alexandre Jousset1, Christina Bienhold2,3, Antonis Chatzinotas4,5, Laure Gallien6,7, Angélique Gobet8, Viola Kurm9, Kirsten Küsel10,5, Matthias C Rillig11,12, Damian W Rivett13, Joana F Salles14, Marcel GA van der Heijden15,16,17, Noha H Youssef18, Xiaowei Zhang19, Zhong Wei20 and WH Gera Hol9 1Utrecht University, Department of Biology, Institute of Environmental Biology, Ecology and Biodiversity Group, Utrecht, The Netherlands; 2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; 3Max Planck Institute for Marine Microbiology, Bremen, Germany; 4Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany; 5German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany; 6Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; 7Center for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, South Africa; 8Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688, Roscoff Cedex, France; 9Netherlands Institute of Ecology, Department of Terrestrial Ecology, Wageningen, The Netherlands; 10Friedrich Schiller University Jena, Institute of Ecology, Jena, Germany; 11Freie Universtät Berlin,
    [Show full text]
  • Experimental and Statistical Analysis of Nutritional Requirements for the Growth of the Extremophile Deinococcus Geothermalis DSM 11300
    Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300 Julie Bornot, Cesar Arturo Aceves-Lara, Carole Molina-Jouve, Jean-Louis Uribelarrea, Nathalie Gorret To cite this version: Julie Bornot, Cesar Arturo Aceves-Lara, Carole Molina-Jouve, Jean-Louis Uribelarrea, Nathalie Gor- ret. Experimental and statistical analysis of nutritional requirements for the growth of the ex- tremophile Deinococcus geothermalis DSM 11300. Extremophiles, Springer Verlag, 2014, 18 (6), pp.1009-1021. 10.1007/s00792-014-0671-8. hal-01268947 HAL Id: hal-01268947 https://hal.archives-ouvertes.fr/hal-01268947 Submitted on 11 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/22999 Official URL: https://doi.org/10.1007/s00792-014-0671-8 To cite this version: Bornot, Julie and Aceves-Lara, César-Arturo and Molina-Jouve, Carole and Uribelarrea, Jean-Louis and Gorret, Nathalie Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300.
    [Show full text]
  • Analysis of a Multicomponent Thermostable DNA Polymerase III Replicase from an Extreme Thermophile*
    THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 277, No. 19, Issue of May 10, pp. 17334–17348, 2002 © 2002 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Analysis of a Multicomponent Thermostable DNA Polymerase III Replicase from an Extreme Thermophile* Received for publication, October 23, 2001, and in revised form, February 18, 2002 Published, JBC Papers in Press, February 21, 2002, DOI 10.1074/jbc.M110198200 Irina Bruck‡, Alexander Yuzhakov§¶, Olga Yurieva§, David Jeruzalmi§, Maija Skangalis‡§, John Kuriyan‡§, and Mike O’Donnell‡§ʈ From §The Rockefeller University and ‡Howard Hughes Medical Institute, New York, New York 10021 This report takes a proteomic/genomic approach to polymerase III (pol III) structure and function has been ob- characterize the DNA polymerase III replication appa- tained from studies of the Escherichia coli replicase, DNA ratus of the extreme thermophile, Aquifex aeolicus. polymerase III holoenzyme (reviewed in Ref. 6). Therefore, a Genes (dnaX, holA, and holB) encoding the subunits re- brief overview of its structure and function is instructive for the ␶ ␦ ␦؅ quired for clamp loading activity ( , , and ) were iden- comparisons to be made in this report. In E. coli, the catalytic Downloaded from tified. The dnaX gene produces only the full-length subunit of DNA polymerase III is the ␣ subunit (129.9 kDa) ␶ product, , and therefore differs from Escherichia coli encoded by dnaE; it lacks a proofreading exonuclease (7). The dnaX that produces two proteins (␥ and ␶). Nonetheless, Ј Ј ⑀ ␶␦␦؅ proofreading 3 –5 -exonuclease activity is contained in the the A. aeolicus proteins form a complex. The dnaN ␣ ,␶␦␦؅ (27.5 kDa) subunit (dnaQ) that forms a 1:1 complex with (8 ␤ gene encoding the clamp was identified, and the ␣Ϫ⑀ ␤ 9).
    [Show full text]
  • Science and Innovation: the Under-Fueled Engine of Prosperity
    Science and Innovation: The Under-Fueled Engine of Prosperity JULY 14, 2021 AUTHOR Benjamin F. Jones* ABSTRACT Science and innovation are central to human progress and national economic success. Currently, the United States invests 2.8% of GDP in research and development, which is supported by a range of public policies. This paper asks whether the United States invests enough. To answer that question, the conceptual case for government intervention and skepticism about that case are reviewed. The paper then turns to systematic evidence, including the very latest evidence, regarding the operation of the science and innovation system and its social returns. This evidence suggests a clear answer: We massively underinvest in science and innovation, with implications for our standards of living, health, national competitiveness, and capacity to respond to crisis. * Kellogg School of Management and National Bureau of Economic Research. Email: [email protected]. 1. Introduction Scientific and technological advances have long been recognized as engines of economic growth and rising prosperity. The fruits of these advances—instantaneous global communications, vaccines, airplanes, heart surgery, computers, skyscrapers, industrial robots, on-demand entertainment, to name a few—might seem almost magical to our ancestors from not-too-many generations ago. The power of this progress has been broadly evident since the Industrial Revolution and was recognized at the time, including by political leaders. As the British Prime Minister Benjamin Disraeli noted in 1873, “How much has happened in these fifty years … I am thinking of those revolutions of science which … have changed the position and prospects of mankind more than all the conquests and all the codes and all the legislators that ever lived.” Disraeli was talking of things like the steam engine, the telegraph, and textile manufacturing.
    [Show full text]
  • Arxiv.Org | Cornell University Library, July, 2019. 1
    arXiv.org | Cornell University Library, July, 2019. Extremophiles: a special or general case in the search for extra-terrestrial life? Ian von Hegner Aarhus University Abstract Since time immemorial life has been viewed as fragile, yet over the past few decades it has been found that many extreme environments are inhabited by organisms known as extremophiles. Knowledge of their emergence, adaptability, and limitations seems to provide a guideline for the search of extra-terrestrial life, since some extremophiles presumably can survive in extreme environments such as Mars, Europa, and Enceladus. Due to physico-chemical constraints, the first life necessarily came into existence at the lower limit of it‟s conceivable complexity. Thus, the first life could not have been an extremophile, furthermore, since biological evolution occurs over time, then the dual knowledge regarding what specific extremophiles are capable of, and to the analogue environment on extreme worlds, will not be sufficient as a search criterion. This is because, even though an extremophile can live in an extreme environment here-and-now, its ancestor however could not live in that very same environment in the past, which means that no contemporary extremophiles exist in that environment. Furthermore, a theoretical framework should be able to predict whether extremophiles can be considered a special or general case in the galaxy. Thus, a question is raised: does Earth‟s continuous habitability represent an extreme or average value for planets? Thus, dependent on whether it is difficult or easy for worlds to maintain the habitability, the search for extra- terrestrial life with a focus on extremophiles will either represent a search for dying worlds, or a search for special life on living worlds, focusing too narrowly on extreme values.
    [Show full text]
  • Extremely Thermophilic Microorganisms As Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals
    REVIEW published: 05 November 2015 doi: 10.3389/fmicb.2015.01209 Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals Benjamin M. Zeldes 1, Matthew W. Keller 2, Andrew J. Loder 1, Christopher T. Straub 1, Michael W. W. Adams 2 and Robert M. Kelly 1* 1 Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA, 2 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point Edited by: that the use of these microorganisms as metabolic engineering platforms has become Bettina Siebers, University of Duisburg-Essen, possible. While in its early days, complex metabolic pathways have been altered or Germany engineered into recombinant extreme thermophiles, such that the production of fuels and Reviewed by: chemicals at elevated temperatures has become possible. Not only does this expand the Haruyuki Atomi, thermal range for industrial biotechnology, it also potentially provides biodiverse options Kyoto University, Japan Phillip Craig Wright, for specific biotransformations unique to these microorganisms. The list of extreme University of Sheffield, UK thermophiles growing optimally between 70 and 100◦C with genetic toolkits currently *Correspondence: available includes archaea and bacteria, aerobes and anaerobes, coming from genera Robert M.
    [Show full text]
  • Extreme Organisms on Earth Show Us Just How Weird Life Elsewhere Could Be. by Chris Impey Astrobiology
    Astrobiology Extreme organisms on Earth show us just how weird life elsewhere could be. by Chris Impey How life could thrive on hostile worlds Humans have left their mark all over Earth. We’re proud of our role as nature’s generalists — perhaps not as swift as the gazelle or as strong as the gorilla, but still pretty good at most things. Alone among all species, technology has given us dominion over the planet. Humans are endlessly plucky and adaptable; it seems we can do anything. Strain 121 Yet in truth, we’re frail. From our safe living rooms, we may admire the people who conquer Everest or cross deserts. But without technology, we couldn’t live beyond Earth’s temperate zones. We cannot survive for long in temperatures below freezing or above 104° Fahrenheit (40° Celsius). We can stay underwater only as long as we can hold our breath. Without water to drink we’d die in 3 days. Microbes, on the other hand, are hardy. And within the microbial world lies a band of extremists, organisms that thrive in conditions that would cook, crush, smother, and dissolve most other forms of life. Collectively, they are known as extremophiles, which means, literally, “lovers of extremes.” Extremophiles are found at temperatures above the boiling point and below the freezing point of water, in high salinity, and in strongly acidic conditions. Some can live deep inside rock, and others can go into a freeze-dried “wait state” for tens of thousands of years. Some of these microbes harvest energy from meth- ane, sulfur, and even iron.
    [Show full text]
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • A Korarchaeal Genome Reveals Insights Into the Evolution of the Archaea
    A korarchaeal genome reveals insights into the evolution of the Archaea James G. Elkinsa,b, Mircea Podarc, David E. Grahamd, Kira S. Makarovae, Yuri Wolfe, Lennart Randauf, Brian P. Hedlundg, Ce´ line Brochier-Armaneth, Victor Kunini, Iain Andersoni, Alla Lapidusi, Eugene Goltsmani, Kerrie Barryi, Eugene V. Koonine, Phil Hugenholtzi, Nikos Kyrpidesi, Gerhard Wannerj, Paul Richardsoni, Martin Kellerc, and Karl O. Stettera,k,l aLehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, D-93053 Regensburg, Germany; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dDepartment of Chemistry and Biochemistry, University of Texas, Austin, TX 78712; eNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; gSchool of Life Sciences, University of Nevada, Las Vegas, NV 89154; hLaboratoire de Chimie Bacte´rienne, Unite´ Propre de Recherche 9043, Centre National de la Recherche Scientifique, Universite´de Provence Aix-Marseille I, 13331 Marseille Cedex 3, France; iU.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; jInstitute of Botany, Ludwig Maximilians University of Munich, D-80638 Munich, Germany; and kInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, April 2, 2008 (received for review January 7, 2008) The candidate division Korarchaeota comprises a group of uncul- and sediment samples from Obsidian Pool as an inoculum. The tivated microorganisms that, by their small subunit rRNA phylog- cultivation system supported the stable growth of a mixed commu- eny, may have diverged early from the major archaeal phyla nity of hyperthermophilic bacteria and archaea including an or- Crenarchaeota and Euryarchaeota.
    [Show full text]
  • The Resolved Mystery of Tardigrades
    Journal of Investigative Genomics Mini review Open Access The resolved mystery of tardigrades Abstract Volume 4 Issue 2 - 2017 Tardigrades, also known as ‘Water bears’ or ‘Space Bears’ are famous for their ability to survive in extreme environmental conditions. With incredible ability to survive at a range Oisorjo Chakraborty, Pranab Roy Department of Biotechnology, Haldia Institute of Technology, of temperature between -272˚C to 150˚C, these small eight legged animals are considered India as one of the toughest organisms of the world. There are several records of survival of these animals under high pressure, UV exposure and even in space under cosmic radiation. For Correspondence: Pranab Roy, Department of Biotechnology, decades it remained a mystery how tardigrades can tolerate the extreme environmental Haldia Institute of Technology, India, Tel 9933037099, conditions. Afteryears of research, it was found that tardigrades dry out and turn their entire Email [email protected] body into a glass like structure at very low temperature, termed as “Bio-glass” to shut Oisorjo Chakraborty, Department of Biotechnology, Haldia down all their metabolic processes. Later by rehydrating, the creatures bring back life in Institute of Technology, India, Email [email protected] them. Finally researchers have identified the key protein in tardigrades which helps them to survive at extreme low temperature. The genome of several tardigrades species has been Received: April 21, 2017 | Published: May 19, 2017 sequenced like ‘Ramazzottius varieornatus’, ‘Hypsibius dujardini’. The sequenced genome provides evidences of expression of tolerance related genes and horizontal gene transfer in the animals helping them to survive in extreme environmental conditions with these key genes.
    [Show full text]
  • The Two-Domain Tree of Life Is Linked to a New Root for the Archaea
    The two-domain tree of life is linked to a new root for the Archaea Kasie Raymanna, Céline Brochier-Armanetb, and Simonetta Gribaldoa,1 aInstitut Pasteur, Department of Microbiology, Unit Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris, France; and bUniversité de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved April 17, 2015 (received for review November 02, 2014) One of the most fundamental questions in evolutionary biology is restricted taxonomic sampling, notably for the outgroup, may also the origin of the lineage leading to eukaryotes. Recent phyloge- generate or mask potential tree reconstruction artifacts (16). All nomic analyses have indicated an emergence of eukaryotes from these considerations emphasize that we have not yet found a way within the radiation of modern Archaea and specifically from a group out of the phylogenomic impasse caused by the use of universal comprising Thaumarchaeota/“Aigarchaeota” (candidate phylum)/ trees to investigate the relationships among Archaea and eu- Crenarchaeota/Korarchaeota (TACK). Despite their major im- karyotes (12). plications, these studies were all based on the reconstruction of Here, we have applied an original two-step strategy that we universal trees and left the exact placement of eukaryotes with re- proposed a few years ago which involves separately analyzing the spect to the TACK lineage unclear. Here we have applied an original markers shared between Archaea and eukaryotes and between two-step approach that involves the separate analysis of markers Archaea and Bacteria (12). This strategy allowed us to use a larger shared between Archaea and eukaryotes and between Archaea and taxonomic sampling, more markers and thus more positions, have Bacteria.
    [Show full text]
  • Archaea and the Origin of Eukaryotes
    REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative.
    [Show full text]