Extreme Organisms on Earth Show Us Just How Weird Life Elsewhere Could Be. by Chris Impey Astrobiology

Total Page:16

File Type:pdf, Size:1020Kb

Extreme Organisms on Earth Show Us Just How Weird Life Elsewhere Could Be. by Chris Impey Astrobiology Astrobiology Extreme organisms on Earth show us just how weird life elsewhere could be. by Chris Impey How life could thrive on hostile worlds Humans have left their mark all over Earth. We’re proud of our role as nature’s generalists — perhaps not as swift as the gazelle or as strong as the gorilla, but still pretty good at most things. Alone among all species, technology has given us dominion over the planet. Humans are endlessly plucky and adaptable; it seems we can do anything. Strain 121 Yet in truth, we’re frail. From our safe living rooms, we may admire the people who conquer Everest or cross deserts. But without technology, we couldn’t live beyond Earth’s temperate zones. We cannot survive for long in temperatures below freezing or above 104° Fahrenheit (40° Celsius). We can stay underwater only as long as we can hold our breath. Without water to drink we’d die in 3 days. Microbes, on the other hand, are hardy. And within the microbial world lies a band of extremists, organisms that thrive in conditions that would cook, crush, smother, and dissolve most other forms of life. Collectively, they are known as extremophiles, which means, literally, “lovers of extremes.” Extremophiles are found at temperatures above the boiling point and below the freezing point of water, in high salinity, and in strongly acidic conditions. Some can live deep inside rock, and others can go into a freeze-dried “wait state” for tens of thousands of years. Some of these microbes harvest energy from meth- ane, sulfur, and even iron. The study of extremophiles has taught scientists that life has evolved on Earth to colonize even the most inhospitable environments. And if they can do it here, why can’t they do it out there — in the extremes of cold, In the steaming hydrothermal waters of Yellowstone National Park’s Grand Pris- pressure, and radiation beyond Earth? matic Spring, scientists found Strain 121 As NASA prepares to spend bil- (inset), the first known extremophile. This lions on the search for life in the solar heat-tolerant bacterium can survive at system, it’s worth recalling the exotic temperatures up to 250° Fahrenheit (121° and weird life right under our noses. Celsius). The orange fringes around the pool are mats of algae and bacteria living We have much to learn from extremo- on energy and minerals in the water. Silica minerals coat bacterial filaments in a philes that could assist and inform the Jim Peaco (NPS)/Inset: Derek R. Lovley sample from the Grand Prismatic Spring in search for life elsewhere. Yellowstone National Park. Scientists hunt- ing for martian microorganisms could search for similar structures in fossilized hot Extreme origins spring deposits. Arizona State University/Jack Farmer Earth is a microbial planet, and the common ancestor of all life on Earth Background montage Astronomy: Kellie Jaeger © 2010 Kalmbach Publishing Co. This material may not be reproduced in any form • 54 Astronomy Decemberwithout 08 permission from the publisher. www.Astronomy.com www.Astronomy.com 55 chlorophyll breaks down, making pho- tosynthesis impossible. Above 212° F (100° C) — the boiling point of water at sea level — cells normally can’t control the flow of molecules in and out. At the boiling point, DNA and proteins unfold and no longer function. With certain extremophiles, high temperatures are less of a challenge. The reigning champion thermophile, dubbed Strain 121, continues to grow when it’s as hot as 250° F (121° C). Extremophiles near deep-sea hydro- thermal vents might even withstand superheated water over 390° F (200° C), although this is still unconfirmed. The deep-sea tube worms in this image live on hydrothermal vents along the Pacific Ocean’s Thermophiles survive by reaching Flat pinkish “ice worms” (inset) colonize mounds of yellow-orange methane ice on the floor of Galápagos Rift. The worms live symbiotically with bacteria in their guts: The bacteria use hydro- deep into the chemical toolbox for the Gulf of Mexico. Methane seeping from deep sources forms ice-like “hydrate” deposits under gen sulfide gas spewing from the vents as a source of energy and, in the process, make carbohy- adaptive strategies. For example, they high pressure. Ice worms do not consume the hydrate themselves. Instead, they appear to graze drates for the worms. Woods Hole Oceanographic Institution on bacteria living off the methane. Pennsylvania State University/Inset: Ian MacDonald (TAMU) use only the sturdiest enzymes, they ingest salts that shield the DNA double was probably a heat-loving extremo- The names of extremophile catego- helix, and they incorporate saturated We think water is essential for life, In 1977, Alvin’s crew discovered hydro- But salt-loving microbes make their phile. When scientists resurrected pro- ries convey their particular characteris- fats to bolster their cell membranes. yet some organisms survive with sur- thermal vents off the Galápagos Islands homes in salt flats, inland seas, and teins from these ancestral bacteria for tics, so they’re not quite as catchy as the Heat tolerance is a legacy of the prisingly little of it. Chile’s Atacama at a depth of 1.6 miles (2.5 kilometers). briny pools on the seafloor. They use study in the lab, the organisms per- names of comic superheroes. There’s conditions on early Earth. These deep- Desert and Antarctica’s high valleys are The crew was amazed to find a charged molecules (ions) and simple formed best at a sizzling temperature of Thermophile, who emerges from the sea survivors may have ridden out the so dry they’re a perfect lab for scientists thriving ecosystem that lived without sugars to protect their cell functions. 150° F (65° C). boiling inferno unscathed. There’s Psy- heavy meteorite bombardment that who test equipment and experiments solar energy. Three hundred species Algae called Dunaliella salina handle Early Earth was as hostile and inhos- chrophile, who shrugs off extreme cold. wreaked havoc with surface dwellers intended for Mars. Yet a small variety of congregated near superheated water salinity 10 times that of seawater. pitable as Dante’s hell. Visualize light- There’s Endolith, who does his best early in Earth’s history. lichens and insects survive in these arid from “black smoker” vents. The crea- Beyond this concentration, salt actually ning, steam, a rain of meteorites, and a work encased in rock. There’s Acido- environments, where it may not rain for tures ranged from bacteria and irides- precipitates out of solution. surface covered with magma and sulfur. phile, who energizes by bathing in bat- The big chill decades at a stretch. cent shrimp to giant clams and Extremophiles also push the edges of This doesn’t exactly bring to mind Dar- tery acid. And there’s Barophile, who At low temperatures, chemical reac- Making do with little is one thing, 6-foot-long (2 meters) red-tipped the 14-point pH scale, which describes win’s “warm little pond.” withstands pressures that would bring tions slow down and life gets sluggish. but there’s another strategy when the worms. The base of this ecosystem con- the concentration of hydrogen ions in a Think of extremophiles as stout- lesser superheroes to their knees. When water freezes, it expands by 10 drying is total. Rather than just giving sists of bacteria living off hydrogen sul- solution. This is important for biologi- hearted little biological superheroes, Extremophiles were first discovered percent and causes cells to rupture. Yet up, organisms maintain a breezy opti- fide gas spewing from the vents. cal processes because hydrogen ions’ doing heroic jobs under nearly impos- in the hot springs of Yellowstone there is a type of nematode — tiny, mism by going into hibernation. Some Recent discoveries add the impor- electrical charge drives chemical reac- sible conditions. If it helps, imagine National Park just over 40 years ago. wormlike creatures — that can survive spores and cysts appear to be able to tant information that not all life on the tions. The pH of pure water is 7, and them clad in tiny masks and capes and Yellowstone is still the prototypical site even being frozen. survive for a million years in suspended deep seafloor requires hydrothermal our cells can’t stray far from this with- booties, though in practice most of for the study of microbes with resis- Organisms ranging from microbial animation, and bacteria manage the heat. For example, pink “ice worms” out serious dysfunction. A substance them are nearly spherical and unex- tance to high temperature and acidity. colonies to the tiny insect called a same trick when they’re trapped in salt burrow into mounds of ice-like meth- with a pH below 7 is an acid; a sub- ceptional in appearance. As the temperature of water rises, Himalayan midge remain active down crystals. To reanimate, just add water! ane hydrate on the floor of the Gulf of stance with a pH above 7 is a base. most life gets into trouble. At 104° F to –0.4 F° (–18° C). Some organisms do Mexico, possibly feeding on methane- (40° C), oxygen won’t dissolve well it by insulating themselves from the Living under pressure metabolizing bacteria. Acid test in water, so organisms like fish external environment with fat-soluble Pressure is also no problem for crea- Miners first worked the The Iron will die. Above 167° F (75° C), molecules called lipids. Others take in tures that have adapted to it. Finding Titans of toxicity Mountain mine near Mount Shasta in salts that act like antifreeze. Many cell life in the deep sea has strongly influ- Extremophiles can also tolerate lethal Northern California in the 1860s gold Tardigrades, a group of tiny lines remain viable but inactive in liq- enced thinking about extremophiles chemical conditions.
Recommended publications
  • Where Less May Be More: How the Rare Biosphere Pulls Ecosystems Strings
    The ISME Journal (2017) 11, 853–862 OPEN © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej MINI REVIEW Where less may be more: how the rare biosphere pulls ecosystems strings Alexandre Jousset1, Christina Bienhold2,3, Antonis Chatzinotas4,5, Laure Gallien6,7, Angélique Gobet8, Viola Kurm9, Kirsten Küsel10,5, Matthias C Rillig11,12, Damian W Rivett13, Joana F Salles14, Marcel GA van der Heijden15,16,17, Noha H Youssef18, Xiaowei Zhang19, Zhong Wei20 and WH Gera Hol9 1Utrecht University, Department of Biology, Institute of Environmental Biology, Ecology and Biodiversity Group, Utrecht, The Netherlands; 2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; 3Max Planck Institute for Marine Microbiology, Bremen, Germany; 4Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany; 5German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany; 6Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; 7Center for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, South Africa; 8Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688, Roscoff Cedex, France; 9Netherlands Institute of Ecology, Department of Terrestrial Ecology, Wageningen, The Netherlands; 10Friedrich Schiller University Jena, Institute of Ecology, Jena, Germany; 11Freie Universtät Berlin,
    [Show full text]
  • Experimental and Statistical Analysis of Nutritional Requirements for the Growth of the Extremophile Deinococcus Geothermalis DSM 11300
    Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300 Julie Bornot, Cesar Arturo Aceves-Lara, Carole Molina-Jouve, Jean-Louis Uribelarrea, Nathalie Gorret To cite this version: Julie Bornot, Cesar Arturo Aceves-Lara, Carole Molina-Jouve, Jean-Louis Uribelarrea, Nathalie Gor- ret. Experimental and statistical analysis of nutritional requirements for the growth of the ex- tremophile Deinococcus geothermalis DSM 11300. Extremophiles, Springer Verlag, 2014, 18 (6), pp.1009-1021. 10.1007/s00792-014-0671-8. hal-01268947 HAL Id: hal-01268947 https://hal.archives-ouvertes.fr/hal-01268947 Submitted on 11 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible This is an author’s version published in: http://oatao.univ-toulouse.fr/22999 Official URL: https://doi.org/10.1007/s00792-014-0671-8 To cite this version: Bornot, Julie and Aceves-Lara, César-Arturo and Molina-Jouve, Carole and Uribelarrea, Jean-Louis and Gorret, Nathalie Experimental and statistical analysis of nutritional requirements for the growth of the extremophile Deinococcus geothermalis DSM 11300.
    [Show full text]
  • Science and Innovation: the Under-Fueled Engine of Prosperity
    Science and Innovation: The Under-Fueled Engine of Prosperity JULY 14, 2021 AUTHOR Benjamin F. Jones* ABSTRACT Science and innovation are central to human progress and national economic success. Currently, the United States invests 2.8% of GDP in research and development, which is supported by a range of public policies. This paper asks whether the United States invests enough. To answer that question, the conceptual case for government intervention and skepticism about that case are reviewed. The paper then turns to systematic evidence, including the very latest evidence, regarding the operation of the science and innovation system and its social returns. This evidence suggests a clear answer: We massively underinvest in science and innovation, with implications for our standards of living, health, national competitiveness, and capacity to respond to crisis. * Kellogg School of Management and National Bureau of Economic Research. Email: [email protected]. 1. Introduction Scientific and technological advances have long been recognized as engines of economic growth and rising prosperity. The fruits of these advances—instantaneous global communications, vaccines, airplanes, heart surgery, computers, skyscrapers, industrial robots, on-demand entertainment, to name a few—might seem almost magical to our ancestors from not-too-many generations ago. The power of this progress has been broadly evident since the Industrial Revolution and was recognized at the time, including by political leaders. As the British Prime Minister Benjamin Disraeli noted in 1873, “How much has happened in these fifty years … I am thinking of those revolutions of science which … have changed the position and prospects of mankind more than all the conquests and all the codes and all the legislators that ever lived.” Disraeli was talking of things like the steam engine, the telegraph, and textile manufacturing.
    [Show full text]
  • Arxiv.Org | Cornell University Library, July, 2019. 1
    arXiv.org | Cornell University Library, July, 2019. Extremophiles: a special or general case in the search for extra-terrestrial life? Ian von Hegner Aarhus University Abstract Since time immemorial life has been viewed as fragile, yet over the past few decades it has been found that many extreme environments are inhabited by organisms known as extremophiles. Knowledge of their emergence, adaptability, and limitations seems to provide a guideline for the search of extra-terrestrial life, since some extremophiles presumably can survive in extreme environments such as Mars, Europa, and Enceladus. Due to physico-chemical constraints, the first life necessarily came into existence at the lower limit of it‟s conceivable complexity. Thus, the first life could not have been an extremophile, furthermore, since biological evolution occurs over time, then the dual knowledge regarding what specific extremophiles are capable of, and to the analogue environment on extreme worlds, will not be sufficient as a search criterion. This is because, even though an extremophile can live in an extreme environment here-and-now, its ancestor however could not live in that very same environment in the past, which means that no contemporary extremophiles exist in that environment. Furthermore, a theoretical framework should be able to predict whether extremophiles can be considered a special or general case in the galaxy. Thus, a question is raised: does Earth‟s continuous habitability represent an extreme or average value for planets? Thus, dependent on whether it is difficult or easy for worlds to maintain the habitability, the search for extra- terrestrial life with a focus on extremophiles will either represent a search for dying worlds, or a search for special life on living worlds, focusing too narrowly on extreme values.
    [Show full text]
  • Extremely Thermophilic Microorganisms As Metabolic Engineering Platforms for Production of Fuels and Industrial Chemicals
    REVIEW published: 05 November 2015 doi: 10.3389/fmicb.2015.01209 Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals Benjamin M. Zeldes 1, Matthew W. Keller 2, Andrew J. Loder 1, Christopher T. Straub 1, Michael W. W. Adams 2 and Robert M. Kelly 1* 1 Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA, 2 Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point Edited by: that the use of these microorganisms as metabolic engineering platforms has become Bettina Siebers, University of Duisburg-Essen, possible. While in its early days, complex metabolic pathways have been altered or Germany engineered into recombinant extreme thermophiles, such that the production of fuels and Reviewed by: chemicals at elevated temperatures has become possible. Not only does this expand the Haruyuki Atomi, thermal range for industrial biotechnology, it also potentially provides biodiverse options Kyoto University, Japan Phillip Craig Wright, for specific biotransformations unique to these microorganisms. The list of extreme University of Sheffield, UK thermophiles growing optimally between 70 and 100◦C with genetic toolkits currently *Correspondence: available includes archaea and bacteria, aerobes and anaerobes, coming from genera Robert M.
    [Show full text]
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • The Resolved Mystery of Tardigrades
    Journal of Investigative Genomics Mini review Open Access The resolved mystery of tardigrades Abstract Volume 4 Issue 2 - 2017 Tardigrades, also known as ‘Water bears’ or ‘Space Bears’ are famous for their ability to survive in extreme environmental conditions. With incredible ability to survive at a range Oisorjo Chakraborty, Pranab Roy Department of Biotechnology, Haldia Institute of Technology, of temperature between -272˚C to 150˚C, these small eight legged animals are considered India as one of the toughest organisms of the world. There are several records of survival of these animals under high pressure, UV exposure and even in space under cosmic radiation. For Correspondence: Pranab Roy, Department of Biotechnology, decades it remained a mystery how tardigrades can tolerate the extreme environmental Haldia Institute of Technology, India, Tel 9933037099, conditions. Afteryears of research, it was found that tardigrades dry out and turn their entire Email [email protected] body into a glass like structure at very low temperature, termed as “Bio-glass” to shut Oisorjo Chakraborty, Department of Biotechnology, Haldia down all their metabolic processes. Later by rehydrating, the creatures bring back life in Institute of Technology, India, Email [email protected] them. Finally researchers have identified the key protein in tardigrades which helps them to survive at extreme low temperature. The genome of several tardigrades species has been Received: April 21, 2017 | Published: May 19, 2017 sequenced like ‘Ramazzottius varieornatus’, ‘Hypsibius dujardini’. The sequenced genome provides evidences of expression of tolerance related genes and horizontal gene transfer in the animals helping them to survive in extreme environmental conditions with these key genes.
    [Show full text]
  • Astr 450 Assignment 5: Earth-Based Life in Extreme Environments Due Thu Feb 19, 2009
    Astr 450 Assignment 5: Earth-based life in extreme environments due Thu Feb 19, 2009 An ”extremophile” is an organism that thrives in extreme environments, where ”extreme” means different from the Earth surface norms in temperature, pressure, or composition. ”Thrive” in this context means that these conditions are ideal for the organism, and in fact, most extremophiles would perish if brought to Earth-normal conditions. For each of the following categories of extremophile, identify (i) the extreme condition with numerical values, and (ii) at least one location on Earth where these extreme conditions are realized, and (iii) if in your researches you come across a type of organism that does not ultimately rely upon the Sun as its source of energy, then please make a note if it. 1. Acidophile 2. Alkalophile 3. Thermophile 4. Psychrophile 5. Piezophile (also called a barophile) 6. Lithophile (also called an endolith) 7. Halophile You must include a bibliographic entry for all sources you use. You can organize this information in chart form if you wish, but it is certainly not required. Finally, quickly skim the wikipedia article on the bacterium named “deinococcus radiodurans” and tell me the (surprising) extreme condition it can tolerate which is NOT on the list above. Ref: http://en.wikipedia.org/wiki/Deinococcus radiodurans Requirements for a good assignment • The assignment will be graded strictly, as expected for a 400-level course. The assignment is graded out of 30 points. • Have your name, SID, and a word count at the top of the paper. Use question-and-answer format when writing your assignment, do NOT hand in a run-on paragraph (50% penalty).
    [Show full text]
  • The Thermal Limits to Life on Earth
    International Journal of Astrobiology 13 (2): 141–154 (2014) doi:10.1017/S1473550413000438 © Cambridge University Press 2014. The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence http://creativecommons.org/licenses/by/3.0/. The thermal limits to life on Earth Andrew Clarke1,2 1British Antarctic Survey, Cambridge, UK 2School of Environmental Sciences, University of East Anglia, Norwich, UK e-mail: [email protected] Abstract: Living organisms on Earth are characterized by three necessary features: a set of internal instructions encoded in DNA (software), a suite of proteins and associated macromolecules providing a boundary and internal structure (hardware), and a flux of energy. In addition, they replicate themselves through reproduction, a process that renders evolutionary change inevitable in a resource-limited world. Temperature has a profound effect on all of these features, and yet life is sufficiently adaptable to be found almost everywhere water is liquid. The thermal limits to survival are well documented for many types of organisms, but the thermal limits to completion of the life cycle are much more difficult to establish, especially for organisms that inhabit thermally variable environments. Current data suggest that the thermal limits to completion of the life cycle differ between the three major domains of life, bacteria, archaea and eukaryotes. At the very highest temperatures only archaea are found with the current high-temperature limit for growth being 122 °C. Bacteria can grow up to 100 °C, but no eukaryote appears to be able to complete its life cycle above *60 °C and most not above 40 °C.
    [Show full text]
  • Biogeographical Patterns of Endolithic Infestation in an Invasive and an Indigenous Intertidal Marine Ecosystem Engineer
    diversity Article Biogeographical Patterns of Endolithic Infestation in an Invasive and an Indigenous Intertidal Marine Ecosystem Engineer Aldwin Ndhlovu 1 , Christopher D. McQuaid 1,*, Katy Nicastro 2 , Nathalie Marquet 2 , Marcos Gektidis 3, Cristián J. Monaco 1,4 and Gerardo Zardi 1 1 Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; [email protected] (A.N.); [email protected] (C.J.M.); [email protected] (G.Z.) 2 CCMAR-CIMAR–Associated Laboratory, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; [email protected] (K.N.); [email protected] (N.M.) 3 Independent Researcher, Frankfurt, D-60325 Frankfurt, Germany; [email protected] 4 Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, University of Adelaide, Adelaide 5005, Australia * Correspondence: [email protected] Received: 5 April 2019; Accepted: 23 April 2019; Published: 7 May 2019 Abstract: By altering the phenotypic properties of their hosts, endolithic parasites can modulate the engineering processes of marine ecosystem engineers. Here, we assessed the biogeographical patterns of species assemblages, prevalence and impact of endolithic parasitism in two mussel species that act as important ecosystem engineers in the southern African intertidal habitat, Perna perna and Mytilus galloprovincialis. We conducted large-scale surveys across three biogeographic regions along the South African coast: the subtropical east coast, dominated by the indigenous mussel, P. perna, the warm temperate south coast, where this species coexists with the invasive Mediterranean mussel, M. galloprovincialis, and the cool temperate west coast dominated by M. galloprovincialis. Infestation increased with mussel size, and in the case of M.
    [Show full text]
  • Microbial Extremophiles in Aspect of Limits of Life. Elena V. ~Ikuta
    Source of Acquisition NASA Marshall Space Flight Centel Microbial extremophiles in aspect of limits of life. Elena V. ~ikuta',Richard B. ~oover*,and Jane an^.^ IT LF " '-~ationalSpace Sciences and Technology CenterINASA, VP-62, 320 Sparkman Dr., Astrobiology Laboratory, Huntsville, AL 35805, USA. 3- Noblis, 3 150 Fairview Park Drive South, Falls Church, VA 22042, USA. Introduction. During Earth's evolution accompanied by geophysical and climatic changes a number of ecosystems have been formed. These ecosystems differ by the broad variety of physicochemical and biological factors composing our environment. Traditionally, pH and salinity are considered as geochemical extremes, as opposed to the temperature, pressure and radiation that are referred to as physical extremes (Van den Burg, 2003). Life inhabits all possible places on Earth interacting with the environment and within itself (cross species relations). In nature it is very rare when an ecotope is inhabited by a single species. As a rule, most ecosystems contain the functionally related and evolutionarily adjusted communities (consortia and populations). In contrast to the multicellular structure of eukaryotes (tissues, organs, systems of organs, whole organism), the highest organized form of prokaryotic life in nature is the benthic colonization in biofilms and microbial mats. In these complex structures all microbial cells of different species are distributed in space and time according to their functions and to physicochemical gradients that allow more effective system support, self- protection, and energy distribution. In vitro, of course, the most primitive organized structure for bacterial and archaeal cultures is the colony, the size, shape, color, consistency, and other characteristics of which could carry varies specifics on species or subspecies levels.
    [Show full text]
  • Post-Genomic Characterization of Metabolic Pathways in Sulfolobus Solfataricus
    Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus Jasper Walther Thesis committee Thesis supervisors Prof. dr. J. van der Oost Personal chair at the laboratory of Microbiology Wageningen University Prof. dr. W. M. de Vos Professor of Microbiology Wageningen University Other members Prof. dr. W.J.H. van Berkel Wageningen University Prof. dr. V.A.F. Martins dos Santos Wageningen University Dr. T.J.G. Ettema Uppsala University, Sweden Dr. S.V. Albers Max Planck Institute for Terrestrial Microbiology, Marburg, Germany This research was conducted under the auspices of the Graduate School VLAG Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus Jasper Walther Thesis Submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 23 January 2012 at 11 a.m. in the Aula. Jasper Walther Post-Genomic Characterization of Metabolic Pathways in Sulfolobus solfataricus, 164 pages. Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-203-3 Table of contents Chapter 1 Introduction 1 Chapter 2 Hot Transcriptomics 17 Chapter 3 Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis 45 Chapter 4 Identification of the Missing
    [Show full text]