Astr 450 Assignment 5: Earth-Based Life in Extreme Environments Due Thu Feb 19, 2009

Total Page:16

File Type:pdf, Size:1020Kb

Astr 450 Assignment 5: Earth-Based Life in Extreme Environments Due Thu Feb 19, 2009 Astr 450 Assignment 5: Earth-based life in extreme environments due Thu Feb 19, 2009 An ”extremophile” is an organism that thrives in extreme environments, where ”extreme” means different from the Earth surface norms in temperature, pressure, or composition. ”Thrive” in this context means that these conditions are ideal for the organism, and in fact, most extremophiles would perish if brought to Earth-normal conditions. For each of the following categories of extremophile, identify (i) the extreme condition with numerical values, and (ii) at least one location on Earth where these extreme conditions are realized, and (iii) if in your researches you come across a type of organism that does not ultimately rely upon the Sun as its source of energy, then please make a note if it. 1. Acidophile 2. Alkalophile 3. Thermophile 4. Psychrophile 5. Piezophile (also called a barophile) 6. Lithophile (also called an endolith) 7. Halophile You must include a bibliographic entry for all sources you use. You can organize this information in chart form if you wish, but it is certainly not required. Finally, quickly skim the wikipedia article on the bacterium named “deinococcus radiodurans” and tell me the (surprising) extreme condition it can tolerate which is NOT on the list above. Ref: http://en.wikipedia.org/wiki/Deinococcus radiodurans Requirements for a good assignment • The assignment will be graded strictly, as expected for a 400-level course. The assignment is graded out of 30 points. • Have your name, SID, and a word count at the top of the paper. Use question-and-answer format when writing your assignment, do NOT hand in a run-on paragraph (50% penalty). • Be typed, double-spaced, of maximum length 300 words. Assignments longer than 300 words will receive zero credit. • Reference all sources of information you use. • Use quotations only to illustrate your point, not to make it. If you are unclear about this requirement, then speak with the instructor. • Show completeness of information, conciseness of expression, have a logical development of ideas, and evidence of thought regarding the content. • Be professional of presentation, e.g., no ragged ends, creases, or ink blobs on the paper. • In all ways, the author should show pride in his/her work..
Recommended publications
  • Appendix 1 Some Astrophysical Reminders
    Appendix 1 Some Astrophysical Reminders Marc Ollivier 1.1 A Physics and Astrophysics Overview 1.1.1 Star or Planet? Roughly speaking, we can say that the physics of stars and planets is mainly governed by their mass and thus by two effects: 1. Gravitation that tends to compress the object, thus releasing gravitational energy 2. Nuclear processes that start as the core temperature of the object increases The mass is thus a good parameter for classifying the different astrophysical objects, the adapted mass unit being the solar mass (written Ma). As the mass decreases, three categories of objects can be distinguished: ∼ 1. if M>0.08 Ma ( 80MJ where MJ is the Jupiter mass) the mass is sufficient and, as a consequence, the gravitational contraction in the core of the object is strong enough to start hydrogen fusion reactions. The object is then called a “star” and its radius is proportional to its mass. 2. If 0.013 Ma <M<0.08 Ma (13 MJ <M<80 MJ), the core temperature is not high enough for hydrogen fusion reactions, but does allow deuterium fu- sion reactions. The object is called a “brown dwarf” and its radius is inversely proportional to the cube root of its mass. 3. If M<0.013 Ma (M<13 MJ) the temperature a the center of the object does not permit any nuclear fusion reactions. The object is called a “planet”. In this category one distinguishes giant gaseous and telluric planets. This latter is not massive enough to accrete gas. The mass limit between giant and telluric planets is about 10 terrestrial masses.
    [Show full text]
  • Isotope Planetology
    Isotope Planetology Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Maxwell Marzban Thiemens aus San Diego Köln, 2018 Berichterstatter Prof. Dr. Carsten Münker (Gutachter) Dr. Dominik Hezel Tag der mündlichen Prüfung: 11.1.19 A process cannot be understood by stopping it. Understanding must move with the flow of the process, must join it and flow with it. Dune By F. Herbert 1965 Table of Contents Table of Contents .................................................................................................................................. 5 1.0 Acknowledgements .................................................................................................................. 7 2.0 Overview ................................................................................................................................... 9 2.1 Abstract ............................................................................................................................... 10 2.2 Zussamenfassung ................................................................................................................ 12 3.0 Introduction ............................................................................................................................ 15 3.1 Early Solar System Evolution .............................................................................................. 16 3.2 Lunar Genesis .....................................................................................................................
    [Show full text]
  • Extreme Organisms on Earth Show Us Just How Weird Life Elsewhere Could Be. by Chris Impey Astrobiology
    Astrobiology Extreme organisms on Earth show us just how weird life elsewhere could be. by Chris Impey How life could thrive on hostile worlds Humans have left their mark all over Earth. We’re proud of our role as nature’s generalists — perhaps not as swift as the gazelle or as strong as the gorilla, but still pretty good at most things. Alone among all species, technology has given us dominion over the planet. Humans are endlessly plucky and adaptable; it seems we can do anything. Strain 121 Yet in truth, we’re frail. From our safe living rooms, we may admire the people who conquer Everest or cross deserts. But without technology, we couldn’t live beyond Earth’s temperate zones. We cannot survive for long in temperatures below freezing or above 104° Fahrenheit (40° Celsius). We can stay underwater only as long as we can hold our breath. Without water to drink we’d die in 3 days. Microbes, on the other hand, are hardy. And within the microbial world lies a band of extremists, organisms that thrive in conditions that would cook, crush, smother, and dissolve most other forms of life. Collectively, they are known as extremophiles, which means, literally, “lovers of extremes.” Extremophiles are found at temperatures above the boiling point and below the freezing point of water, in high salinity, and in strongly acidic conditions. Some can live deep inside rock, and others can go into a freeze-dried “wait state” for tens of thousands of years. Some of these microbes harvest energy from meth- ane, sulfur, and even iron.
    [Show full text]
  • Biogeographical Patterns of Endolithic Infestation in an Invasive and an Indigenous Intertidal Marine Ecosystem Engineer
    diversity Article Biogeographical Patterns of Endolithic Infestation in an Invasive and an Indigenous Intertidal Marine Ecosystem Engineer Aldwin Ndhlovu 1 , Christopher D. McQuaid 1,*, Katy Nicastro 2 , Nathalie Marquet 2 , Marcos Gektidis 3, Cristián J. Monaco 1,4 and Gerardo Zardi 1 1 Department of Zoology and Entomology, Rhodes University, Grahamstown 6140, South Africa; [email protected] (A.N.); [email protected] (C.J.M.); [email protected] (G.Z.) 2 CCMAR-CIMAR–Associated Laboratory, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; [email protected] (K.N.); [email protected] (N.M.) 3 Independent Researcher, Frankfurt, D-60325 Frankfurt, Germany; [email protected] 4 Southern Seas Ecology Laboratories, School of Biological Sciences and The Environment Institute, University of Adelaide, Adelaide 5005, Australia * Correspondence: [email protected] Received: 5 April 2019; Accepted: 23 April 2019; Published: 7 May 2019 Abstract: By altering the phenotypic properties of their hosts, endolithic parasites can modulate the engineering processes of marine ecosystem engineers. Here, we assessed the biogeographical patterns of species assemblages, prevalence and impact of endolithic parasitism in two mussel species that act as important ecosystem engineers in the southern African intertidal habitat, Perna perna and Mytilus galloprovincialis. We conducted large-scale surveys across three biogeographic regions along the South African coast: the subtropical east coast, dominated by the indigenous mussel, P. perna, the warm temperate south coast, where this species coexists with the invasive Mediterranean mussel, M. galloprovincialis, and the cool temperate west coast dominated by M. galloprovincialis. Infestation increased with mussel size, and in the case of M.
    [Show full text]
  • Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome
    Review Applying Genome-Resolved Metagenomics to Deconvolute the Halophilic Microbiome Gherman Uritskiy and Jocelyne DiRuggiero * Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA; [email protected] * Correspondence to: [email protected] Received: 15 February 2019; Accepted: 11 March 2019; Published: 14 March 2019 Abstract: In the past decades, the study of microbial life through shotgun metagenomic sequencing has rapidly expanded our understanding of environmental, synthetic, and clinical microbial communities. Here, we review how shotgun metagenomics has affected the field of halophilic microbial ecology, including functional potential reconstruction, virus–host interactions, pathway selection, strain dispersal, and novel genome discoveries. However, there still remain pitfalls and limitations from conventional metagenomic analysis being applied to halophilic microbial communities. Deconvolution of halophilic metagenomes has been difficult due to the high G + C content of these microbiomes and their high intraspecific diversity, which has made both metagenomic assembly and binning a challenge. Halophiles are also underrepresented in public genome databases, which in turn slows progress. With this in mind, this review proposes experimental and analytical strategies to overcome the challenges specific to the halophilic microbiome, from experimental designs to data acquisition and the computational analysis of metagenomic sequences. Finally, we speculate about the potential applications of other next- generation
    [Show full text]
  • A Multi-Scaled Habitat Analysis of Lichen Communities on Granite Rock in the Huron Mountains, Marquette County, Michigan
    Northern Michigan University NMU Commons All NMU Master's Theses Student Works 2010 A MULTI-SCALED HABITAT ANALYSIS OF LICHEN COMMUNITIES ON GRANITE ROCK IN THE HURON MOUNTAINS, MARQUETTE OC UNTY, MICHIGAN Ryne Douglas Rutherford Northern Michigan University Follow this and additional works at: https://commons.nmu.edu/theses Recommended Citation Rutherford, Ryne Douglas, "A MULTI-SCALED HABITAT ANALYSIS OF LICHEN COMMUNITIES ON GRANITE ROCK IN THE HURON MOUNTAINS, MARQUETTE OUNC TY, MICHIGAN" (2010). All NMU Master's Theses. 495. https://commons.nmu.edu/theses/495 This Open Access is brought to you for free and open access by the Student Works at NMU Commons. It has been accepted for inclusion in All NMU Master's Theses by an authorized administrator of NMU Commons. For more information, please contact [email protected],[email protected]. A MULTI-SCALED HABITAT ANALYSIS OF LICHEN COMMUNITIES ON GRANITE ROCK IN THE HURON MOUNTAINS, MARQUETTE COUNTY, MICHIGAN By Ryne Douglas Rutherford THESIS Submitted to Northern Michigan University In partial fulfillment of the requirements For the degree of MASTERS OF SCIENCE Graduate Studies office 2010 SIGNATURE APPROVAL FORM This thesis by Ryne Douglas Rutherford is recommended for approval by the student's thesis committee in the Department of Biology and by the Dean of Graduate Studies. ________________________________________________________ Committee Chair: Dr. Alan Rebertus Date ________________________________________________________ First Reader: Dr. Roger M. Strand Date ________________________________________________________
    [Show full text]
  • Exobiology in the Solar System & the Search for Life on Mars
    SP-1231 SP-1231 October 1999 Exobiology in the Solar System & The Search for Life on Mars for The Search Exobiology in the Solar System & Exobiology in the Solar System & The Search for Life on Mars Report from the ESA Exobiology Team Study 1997-1998 Contact: ESA Publications Division c/o ESTEC, PO Box 299, 2200 AG Noordwijk, The Netherlands Tel. (31) 71 565 3400 - Fax (31) 71 565 5433 SP-1231 October 1999 EXOBIOLOGY IN THE SOLAR SYSTEM AND THE SEARCH FOR LIFE ON MARS Report from the ESA Exobiology Team Study 1997-1998 Cover Fossil coccoid bacteria, 1 µm in diameter, found in sediment 3.3-3.5 Gyr old from the Early Archean of South Africa. See pages 160-161. Background: a portion of the meandering canyons of the Nanedi Valles system viewed by Mars Global Surveyor. The valley is about 2.5 km wide; the scene covers 9.8 km by 27.9 km centred on 5.1°N/48.26°W. The valley floor at top right exhibits a 200 m-wide channel covered by dunes and debris. This channel suggests that the valley might have been carved by water flowing through the system over a long period, in a manner similar to rivers on Earth. (Malin Space Science Systems/NASA) SP-1231 ‘Exobiology in the Solar System and The Search for Life on Mars’, ISBN 92-9092-520-5 Scientific Coordinators: André Brack, Brian Fitton and François Raulin Edited by: Andrew Wilson ESA Publications Division Published by: ESA Publications Division ESTEC, Noordwijk, The Netherlands Price: 70 Dutch Guilders/ EUR32 Copyright: © 1999 European Space Agency Contents Foreword 7 I An Exobiological View of the
    [Show full text]
  • Science of the Springs Answer
    SCIENCE OF THE SPRINGS Reading Guide ANSWER KEY battery acid pH 0 pH 1 Amethyst Geyser, Norris pH 2 Black Dragon’s Caldron Mud Volcano pH 3 pH 4 Emerald Spring, Norris black coffee pH 5 pH 6 water pH 7 pH 8 Arrowhead Spring, Upper Geyser Basin pH 9 pH 10 Heart Lak Geyser Basin pH 11 bleach pH 12 pH 13 liquid drain cleaner pH 14 Astrobiology Biogeocatalysis Research Center The Astrobiology Biogeocatalysis Research Center at Montana State University Our team supports the work of the NASA Astrobiology opportunities. Life in the extreme environments of Institute (NAI), a multidisciplinary umbrella for Yellowstone’s thermal features is thought to resemble conducting research on the origin and evolution of life conditions of early Earth. Yellowstone’s abundant and on Earth and elsewhere in the universe. unique thermal features give researchers insights into the origin, evolution and future of life. The origin of life, sustainable energy, and global climate change are intimately linked, and the answers we seek Whether you are a potential MSU student, a research to solve our energy needs of the future are etched into investigator, a teacher or a citizen, we welcome you Earth’s history. ABRC’s work supports NASA’s missions, to the world of astrobiology. ABRC is committed to such as Mars exploration and possibilities of habitation sharing our work and its impact with the people of of other worlds. Our research also focuses on the future Montana and beyond, through formal and informal of life on Earth. These efforts support the fundamental education; public outreach; and communications to groundwork for Goal 3 (Origins of Life) of the NASA many different audiences.
    [Show full text]
  • On Biogenicity Criteria for Endolithic Microborings on Early Earth and Beyond
    ASTROBIOLOGY Volume 7, Number 1, 2007 © Mary Ann Liebert, Inc. DOI: 10.1089/ast.2006.0122 Research Paper On Biogenicity Criteria for Endolithic Microborings on Early Earth and Beyond NICOLA MCLOUGHLIN,1,2 MARTIN D. BRASIER,1 DAVID WACEY,1 OWEN R. GREEN,1 and RANDALL S. PERRY1,3 ABSTRACT Micron-sized cavities created by the actions of rock-etching microorganisms known as euen- doliths are explored as a biosignature for life on early Earth and perhaps Mars. Rock-dwelling organisms can tolerate extreme environmental stresses and are excellent candidates for the colonization of early Earth and planetary surfaces. Here, we give a brief overview of the fos- sil record of euendoliths in both sedimentary and volcanic rocks. We then review the current understanding of the controls upon the distribution of euendolithic microborings and use these to propose three lines of approach for testing their biogenicity: first, a geological set- ting that demonstrates a syngenetic origin for the euendolithic microborings; second, micro- boring morphologies and distributions that are suggestive of biogenic behavior and distinct from ambient inclusion trails; and third, elemental and isotopic evidence suggestive of bio- logical processing. We use these criteria and the fossil record of terrestrial euendoliths to out- line potential environments and techniques to search for endolithic microborings on Mars. Key Words: Euendoliths—Microborings—Etch pits—Early life—Biosignatures—Extreme en- vironments—Mars. Astrobiology 7(1), 10–26. INTRODUCTION doliths that inhabit fissures and cracks in rocks are known as chasmoendoliths, those that dwell NDOLITHS ARE macro- and microorganisms within pore spaces as cryptoendoliths, and those Ethat live within rocks.
    [Show full text]
  • Exploration Geomicrobiology – Developing Bio-Indicator Technology for Mineral Exploration
    ____________________________________________________ Exploration Geomicrobiology – Developing bio-indicator technology for mineral exploration ____________________________________________________ Rebecca Pohrib Department of Geology and Geophysics School of Earth and Environmental Sciences University of Adelaide, South Australia [email protected] 25 October, 2010 Supervised by Dr. Frank Reith 1 Abstract Geomicrobiology is a relatively new approach for mineral exploration research; it shows promise as a means of enabling researchers to cheaply and quickly categorising microbes based on specific factors (geochemistry, underlying geology, regolith landforms, land-use, sample depth, geophysics (magnetic survey) and mineralisation). The research site is located at the Hillside IOCG-style deposit, Yorke Peninsula in South Australia. Above the zone of mineralisation and from background areas, DNA was extracted from the surface (0.03 m) and sub-surface (0.03 – 0.5 m) soils. Terminal restriction fragment length polymorphism (tRFLP) and multivariate statistical methods (nmMDS, CAP, Permanova, RELATE) were employed to analyse the relative similarities between soil communities of bacteria, fungi and archaea. The results of the experiment demonstrate that microbial community composition of the Hillside site can be linked to site relevant factors such as geochemistry, underlying geology, regolith landforms, land-use, sample depth, geophysics and mineralisation. Primarily, land-use and depth stand out as being the major factors driving microbial communities of bacteria and fungi (P < 0.05), with archaea showing no significant effect. Genetic richness was highest in bacteria and fungi surface soil samples. Significant differences (P < 0.05) were found in microbial communities between the different factors. Geochemistry and biological data sets can be linked together (RELATE). Non-metric multidimensional scaling was not sufficient to elucidate difference in factors between populations.
    [Show full text]
  • Characterization of Bacterial Communities in Lithobionts and Soil Niches from Victoria Valley, Antarctica Marc W
    FEMS Microbiology Ecology, 92, 2016, fiw051 doi: 10.1093/femsec/fiw051 Advance Access Publication Date: 4 March 2016 Research Article RESEARCH ARTICLE Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica Marc W. Van Goethem1, Thulani P. Makhalanyane1,†, Angel Valverde1, Stephen C. Cary2 and Don A. Cowan1,∗ 1Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Lynwood Road, Pretoria 0028, South Africa and 2Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3120, New Zealand ∗Corresponding author: Department of Genetics, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, 0028, South Africa. Tel: +27-12-420-5873; E-mail: [email protected] One sentence summary: Characterization of general bacterial and cyanobacterial populations from soil and lithibiontic microbial communities (hypoliths and endoliths) of Victoria Valley, Antarctica. Editor: Dirk Wagner †Thulani P. Makhalanyane, http://orcid.org/0000-0002-8173-1678 ABSTRACT Here we provide the first exploration of microbial diversity from three distinct Victoria Valley edaphic habitats, namely lithobionts (hypoliths, endoliths) and surface soils. Using a combination of terminal restriction fragment length polymorphism (T-RFLP) analysis and 16S rRNA gene amplicon pyrosequencing we assess community structure and diversity patterns, respectively. Our analysis revealed that habitat type (endolithic versus hypolithic versus surface soils) significantly influenced bacterial community composition, even though dominant phyla such as Actinobacteria (41%of total reads) were common to all samples. Consistent with previous surveys in other Dry Valley ecosystems, we found that lithobionts were colonized by a few highly dominant phylotypes (such as Gemmatimonas and Leptolyngbya). Our analyses also show that soil bacteria were more diverse and evenly distributed than initially expected based on previous evidence.
    [Show full text]
  • AST 248, Lecture 12
    AST 248, Lecture 12 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University October 19, 2018 The Search for Intelligent Life in the Universe [email protected] James Lattimer AST 248, Lecture 12 Unity of Life I All lifeforms on Earth have a common system. Examples: I universal usage of DNA to store genetic information I the ribosome technique of protein synthesis I proteins serve as enzymes and catalysts I the same 20 amino acids are always used, and only left-handed ones I a universal genetic code I DNA triplets coding for same amino acid I the use of proteins and lipids to make membranes I the use of the ATP-ADP cycle for chemical energy. I The subsystems of life are highly interlocked. Proteins are needed to make enzymes, yet enzymes are needed to make proteins. Nucleic acids are needed to make proteins, yet proteins are needed to make nucleic acids. I The common system is very complex. It must have been the result of an extended evolution. In evolutionary terms, it is very far from the original organisms. I It is possible to construct detailed phylogenetic trees based either on morphology or molecular (genetic) data. Conclusion: It must be that all organisms on Earth are descended from a single common ancestor. James Lattimer AST 248, Lecture 12 Phylogeny and the Nature of the Common Ancestor I Evolutionary distance = fractional genetic difference between organisms I Phylogenetic tree = map of evolutionary diversification I Three primary groupings or domains: I Archaea I Bacteria I Eucarya I Most deeply diverging lineages in Bacteria and Archaea are thermophiles, suggesting that the common ancestor of all life was also.
    [Show full text]