bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444713; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 3’HS1 CTCF binding site in human β-globin locus regulates fetal hemoglobin expression Pamela Himadewi1,8, Xue Qing David Wang1,8, Fan Feng3,8, Haley Gore1, Yushuai Liu1, Lei Yu2, Jie Liu3, Ryo Kurita4, Yukio Nakamura5,6, Gerd Pfeifer1, and Xiaotian Zhang1,7. 1. Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA 2. Cell and Development Biology, University of Michigan, Ann Arbor, MI, USA 3. Department of Computational Biology, University of Michigan, Ann Arbor, MI, USA 4. Department of Research and Development, Central Blood Institute, Japanese Red Cross Society,Tokyo,Japan. 5. Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan 6. Faculty of Medicine, University of Tsukuba, Tsukuba, Japan 7. Current Address: Department of Pathology, University of Michigan 8. These authors contributed equally to the work Correspondence should be directed to: Xiaotian Zhang
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444713; this version posted May 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Summary Mutations in the adult β-globin gene can lead to a variety of hemoglobinopathies, including sickle cell disease and β-thalassemia.