Tuber Alcaracense Fungal Planet Description Sheets 447

Total Page:16

File Type:pdf, Size:1020Kb

Tuber Alcaracense Fungal Planet Description Sheets 447 446 Persoonia – Volume 44, 2020 Tuber alcaracense Fungal Planet description sheets 447 Fungal Planet 1107 – 29 June 2020 Tuber alcaracense Ant. Rodr. & Morte, sp. nov. Etymology. Referring to Alcaraz mountain range, where the type speci- Typus. SPAIN, Albacete, Peñascosa, in calcareus soil, in Quercus ilex men was collected. subsp. ballota (Fagaceae) forest, 15 Feb. 2017, A. Rodríguez (holotype MUB Fung-971; ITS and LSU sequences GenBank MN810047 and MN953777, Classification — Tuberaceae, Pezizales, Pezizomycetes. MycoBank MB833685). Ascomata hypogeous, 1–4 cm, subglobose, covered with Additional material examined. SPAIN, Albacete, Vianos, in Quercus ilex brown-black pyramidal warts, 4–6-sided, 2–3(–4) mm across, subsp. ballota forest, 11 Jan. 2015, A. Rodríguez, MUB Fung-928; ITS sequence GenBank MN810046. 1–4 mm high, often depressed at the apex. Peridium 150–250 μm thick, pseudoparenchymatous, composed of subglobose, Notes — Tuber alcaracense is a black truffle of the aestivum angular cells, 10–20 μm diam, pale yellow and thin-walled in clade characterised by its brown-black warty peridium, brown the innermost layers, dark red-brown and with thicker walls in gleba marbled with thin white veins and reticulate-alveolate the outermost layers. Gleba firm, solid, white when immature, spores. It resembles Tuber mesentericum, but in addition to becoming dark brown at maturity, marbled with numerous, genetic differences it differs from T. mesentericum (Vittadini thin, white, meandering veins that do not change colour when 1831) by having a pleasant odour and lacking a basal cavity. exposed to the air. Pleasant odour. Asci inamyloid, 60–90 × 50–75 μm, walls thickened, 1–2 μm, ellipsoid to subglobose, with a short stalk, 10–35 × 5–7 μm, (1–)3–4(–5)-spored. Ascospores 26–47 × 22–37 μm, Q = 1.1–1.4, excluding orna- mentation, yellowish, ellipsoid to subglobose, ornamented with a coarse irregular reticulum, 3–5 µm high, sometimes bending at the top. Meshes variable, usually 3–5 across width of spore and often with incomplete secondary crests inside. Ascospores from 1-spored asci 45–47 × 35–37 μm, 2-spored asci 38–41 × 30–35 μm, 3-spored asci 32–35 × 25–30 μm, 4-spored asci MN962726 99 28–33 × 23–27 μm and 5-spored asci 26–30 × 22–23 μm. Tuber aestivum MN962727 Ecology & Distribution — Tuber alcaracense grows in Medi- 97 terranean Quercus ilex subsp. ballota forest, in limestone moun- KY081688 Tuber sinoaestivum 99 tains of the southeast of the Iberian Peninsula, 1 000–1 400 m JN896355 alt., from December to February. MK113982 99 Tuber pulchrosporum MK113980 MN962725 Tuber panniferum 100 HM485380 Tuber sp. KP686238 100 MN810246 100 Tuber alcaracense sp. nov. 100 MN810247 holotype AF516798 100 94 KY660021 81 AF516794 JQ348414 Tuber mesentericum 85 100 AF516793 MN962728 100 KP686246 MN962723 Tuber malenconii 100 MN962724 FM205629 Tuber magnatum 100 JQ925645 Tuber macrosporum AF106885 0.20 Maximum likelihood (ML) phylogenetic tree inferred from ITS sequences, using RAxML-HPC v. 8 (Stamatakis 2014) on XSEDE in the CIPRES science gateway (Miller et al. 2010). GTR + G selected as model of evolution for analysis. The sequences obtained in the present study are highlighted in Colour illustrations. Spain, Alcaraz mountain range (Albacete), Mediter- bold. Bootstrap support values (≥ 70 %) are indicated at the nodes. Tuber ranean Quercus ilex subsp. ballota forest. Ascocarps; mature ascospores. macrosporum AF106885 was used as outgroup. The scale bar indicates the Scale bar = 20 μm. expected changes per site. Antonio Rodríguez, Alfonso Navarro-Ródenas, Francisco Arenas, Angel Luigi Guarnizo & Asunción Morte, Departamento de Biología Vegetal (Botánica), Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain; e-mail: [email protected], [email protected], [email protected], [email protected] & [email protected] © 2020 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute.
Recommended publications
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Current Status of Truffle Cultivation: Recent Results and Future Perspectives ______Alessandra Zambonelli1, Mirco Iotti1, Ian Hall2
    A. Zambonelli, M. Iotti, I. Hall Micologia Italiana vol. 44 (2015) ISSN 2465-311X DOI: 10.6092/issn.2465-311X/5593 Current status of truffle cultivation: recent results and future perspectives ________________________________________________________________________________ Alessandra Zambonelli1, Mirco Iotti1, Ian Hall2 1Department of Agricultural Science, Bologna University, viale Fanin 46, 40127 Bologna Italy 2 Truffles & Mushrooms (Consulting) Ltd, P.O. Box 268, Dunedin, New Zealand Correspondig Author M. Iotti e-mail: [email protected] Abstract In this review the current status of truffle cultivation in Europe and outside Europe is reported. While the cultivation of Tuber melanosporum (Périgord black truffle), Tuber aestivum (summer or Burgundy truffle) and Tuber borchii (bianchetto truffle) gave good results, only the Italian white truffle (Tuber magnatum), which is the most expensive, has yet to be successfully cultivated. In future a revolutionary approach to truffle cultivation would be the application of mycelial inoculation techniques for producing Tuber infected plants which will allow to select the fungal strains adapted to specific climatic, edaphic conditions and hosts. The new insights which will be gained by the extensive Tuber genome sequencing programme will also help to improve truffle cultivation techniques. Keywords: Tuber melanosporum; Tuber magnatum; Tuber borchii; Tuber aestivum; cultivation; mycelial inoculation Riassunto I tartufi sono funghi ascomiceti appartenenti all’ordine delle Pezizales anche se molti ricercatori considerano “veri tartufi” solo le specie apparteneti al genere Tuber, che comprende le specie di maggiore interesse gastronomico e commerciale quali Tuber melanosporum (tartufo nero pregiato), Tuber magnatum (tartufo bianco pregiato), Tuber aestivum (tartufo estivo o uncinato) e Tuber borchii (tartufo bianchetto). L’elevato valore economico di questi tartufi ha suscitato grande interesse riguardo la loro coltivazione fin dal lontano rinascimento.
    [Show full text]
  • CBD First National Report
    FIRST NATIONAL REPORT OF THE REPUBLIC OF SERBIA TO THE UNITED NATIONS CONVENTION ON BIOLOGICAL DIVERSITY July 2010 ACRONYMS AND ABBREVIATIONS .................................................................................... 3 1. EXECUTIVE SUMMARY ........................................................................................... 4 2. INTRODUCTION ....................................................................................................... 5 2.1 Geographic Profile .......................................................................................... 5 2.2 Climate Profile ...................................................................................................... 5 2.3 Population Profile ................................................................................................. 7 2.4 Economic Profile .................................................................................................. 7 3 THE BIODIVERSITY OF SERBIA .............................................................................. 8 3.1 Overview......................................................................................................... 8 3.2 Ecosystem and Habitat Diversity .................................................................... 8 3.3 Species Diversity ............................................................................................ 9 3.4 Genetic Diversity ............................................................................................. 9 3.5 Protected Areas .............................................................................................10
    [Show full text]
  • Caloscyphaceae, a New Family of the Pezizales
    27 Karstenia 42: 27- 28, 2002 Caloscyphaceae, a new family of the Pezizales HARRl HARMAJA HARMAJA, H. 2002: Caloscyphaceae, a new family of the Pezizales. - Karstenia 42: 27- 28 . Helsinki. ISSN 0453-3402. The new family Caloscyphaceae Harmaja is described for Caloscypha Boud. (Asco­ mycetes, Pezizales). The genus is monotypic, only comprising C. jiilgens (Pers. : Fr.) Boud. Characters belie ed to be diagnostic of the new family are treated, some of them being cited from the literature, others having been studied personally. Key words: ascospore wall , Caloscypha, carotenoids, chemotaxonomy, Geniculoden­ dron pyriforme, phylogeny, seed parasite Harri Harmaja, Botanical Museum, Finnish Museum ofN atural History, PO. Box 47, FIN-00014 University of Helsinki, Finland www.helsinki.fi/people/harri.hannaja/ The genus Caloscypha Boud., with its only spe­ void of carotenoid pigments, and the spores are cies C. fulgens (Pers. : Fr.) Boud., has usually multinucleate. The genus clearly deserves a fam­ been included in the family Pyronemataceae (Pe­ ily of its own. zizales). However, since a rather long time the Below, the new family Caloscyphaceae is de­ genus been considered taxonomically isolated scribed. The characters that appear to be diag­ without having close relatives (see e.g. Korf nostic at the family le el are given in the English 1972). This status was strengthened as the description; these are partly a matter of personal spores of C. fulgens were reported to belong to judgement. Detailed features of the genus Calo­ an infrequent kind as to their wall structure (Har­ scypha and its only species have been described maja 1974). As I also observed that the ascus wall e.g.
    [Show full text]
  • Truffle Farming in North America
    Examples of Truffle Cultivation Working with Riparian Habitat Restoration and Preservation Charles K. Lefevre, Ph.D. New World Truffieres, Inc. Oregon Truffle Festival, LLC What Are Truffles? • Mushrooms that “fruit” underground and depend on animals to disperse their spores • Celebrated delicacies for millennia • They are among the world’s most expensive foods • Most originate in the wild, but three valuable European species are domesticated and are grown on farms throughout the world What Is Their Appeal? • The likelihood of their reproductive success is a function of their ability to entice animals to locate and consume them • Produce strong, attractive aromas to capture attention of passing animals • Androstenol and other musky compounds French Truffle Production Trend 1900-2000 Driving Forces: • Phylloxera • Urbanization Current Annual U.S. Import volume: 15-20 tons Price Trend:1960-2000 The Human-Truffle Connection • Truffles are among those organisms that thrive in human- created environments • Urban migration and industrialization have caused the decline of truffles not by destroying truffle habitat directly, but by eliminating forms of traditional agriculture that created new truffle habitat • Truffles are the kind of disturbance-loving organisms that we can grow Ectomycorrhizae: Beneficial Symbiosis Between the Truffle Fungus and Host Tree Roots Inoculated Seedlings • Produced by five companies in the U.S. and Canada planting ~200 acres annually • ~3000 acres planted per year globally • Cultivated black truffle production now
    [Show full text]
  • Systematic Study of Fungi in the Genera Underwoodia and Gymnohydnotrya (Pezizales) with the Description of Three New South American Species
    Persoonia 44, 2020: 98–112 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2020.44.04 Resurrecting the genus Geomorium: Systematic study of fungi in the genera Underwoodia and Gymnohydnotrya (Pezizales) with the description of three new South American species N. Kraisitudomsook1, R.A. Healy1, D.H. Pfister2, C. Truong3, E. Nouhra4, F. Kuhar4, A.B. Mujic1,5, J.M. Trappe6,7, M.E. Smith1,* Key words Abstract Molecular phylogenetic analyses have addressed the systematic position of several major Northern Hemisphere lineages of Pezizales but the taxa of the Southern Hemisphere remain understudied. This study focuses Geomoriaceae on the molecular systematics and taxonomy of Southern Hemisphere species currently treated in the genera Under­ Helvellaceae woodia and Gymnohydnotrya. Species in these genera have been identified as the monophyletic /gymnohydno trya Patagonia lineage, but no further research has been conducted to determine the evolutionary origin of this lineage or its relation- South American fungi ship with other Pezizales lineages. Here, we present a phylogenetic study of fungal species previously described truffle systematics in Underwoodia and Gymnohydnotrya, with sampling of all but one described species. We revise the taxonomy of Tuberaceae this lineage and describe three new species from the Patagonian region of South America. Our results show that none of these Southern Hemisphere species are closely related to Underwoodia columnaris, the type species of the genus Underwoodia. Accordingly, we recognize the genus Geomorium described by Spegazzini in 1922 for G. fuegianum. We propose the new family, Geomoriaceae fam. nov., to accommodate this phylogenetically and morphologically unique Southern Hemisphere lineage.
    [Show full text]
  • Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage
    OPEN @ACCESS Freely available online ·.@"-PLOS.. IONE Historical Biogeography and Diversification of Truffles in the Tuberaceae and Their Newly Identified Southern Hemisphere Sister Lineage 1 14 13 2 3 Gregory Bonito *, Matthew E. Smith , Michael Nowak , Rosanne A. Healy , Gonzalo Guevara , 4 1 5 5 6 Efren Cazares , Akihiko Kinoshita \ Eduardo R. Nouhra , Laura S. Dominguez , Leho Tedersoo , 8 9 10 11 Claude Murae, Yun Wang , Baldomero Arroyo Moreno , Donald H. Pfister , Kazuhide Nara , 12 4 1 Alessandra Zambonelli , James M. Trappe , Rytas Vilgalys 1 Deparment of Biology, Duke University, Durham, North Carolina, United States of America, 2 University of Minnesota, Department of Plant Biology, St. Paul, Minnesota, United States of America, 31nstituto Tecnologico de Ciudad Victoria, Tamaulipas, Mexico, 4 Department of Forest Ecosystems and Society, Oregon State University, Corvallis, Oregon, United States of America, Slnstituto Multidisciplinario de Biologfa Vegetal, Cordoba, Argentina, 61nstitute of Ecology and Earth Sciences and the Natural History Museum of Tartu University, Tartu, Estonia, 71nstitute National de Ia Recherche Agronomique et Nancy University, Champenoux, France, 8 New Zealand Institute for Plant & Food Research Ltd, Christchurch, New Zealand, 9 Department of Plant Biology, University of Cordoba, Cordoba, Spain, 10 Farlow Herbarium, Harvard University, Cambridge, Massachusetts, United States of America, 11 Department of Natural Environmental Studies, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan, 12 Dipartimento di Science Agrarie, Universita di Bologna, Bologna, Italy, 131nstitute of Systematic Botany, University of Zurich, Zurich, Switzerland, 14 Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America Citation: Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, et al.
    [Show full text]
  • Effect of Earthworms on Mycorrhization, Root Morphology
    www.nature.com/scientificreports OPEN Efect of earthworms on mycorrhization, root morphology and biomass of silver fr seedlings inoculated with black summer trufe (Tuber aestivum Vittad.) Tina Unuk Nahberger 1, Gian Maria Niccolò Benucci 2, Hojka Kraigher 1 & Tine Grebenc 1* Species of the genus Tuber have gained a lot of attention in recent decades due to their aromatic hypogenous fruitbodies, which can bring high prices on the market. The tendency in trufe production is to infect oak, hazel, beech, etc. in greenhouse conditions. We aimed to show whether silver fr (Abies alba Mill.) can be an appropriate host partner for commercial mycorrhization with trufes, and how earthworms in the inoculation substrate would afect the mycorrhization dynamics. Silver fr seedlings inoculated with Tuber. aestivum were analyzed for root system parameters and mycorrhization, how earthworms afect the bare root system, and if mycorrhization parameters change when earthworms are added to the inoculation substrate. Seedlings were analyzed 6 and 12 months after spore inoculation. Mycorrhization with or without earthworms revealed contrasting efects on fne root biomass and morphology of silver fr seedlings. Only a few of the assessed fne root parameters showed statistically signifcant response, namely higher fne root biomass and fne root tip density in inoculated seedlings without earthworms 6 months after inoculation, lower fne root tip density when earthworms were added, the specifc root tip density increased in inoculated seedlings without earthworms 12 months after inoculation, and general negative efect of earthworm on branching density. Silver fr was confrmed as a suitable host partner for commercial mycorrhization with trufes, with 6% and 35% mycorrhization 6 months after inoculation and between 36% and 55% mycorrhization 12 months after inoculation.
    [Show full text]
  • Unit-1 Introduction to the Art of Cookery
    Advance Food Production HM-102 UNIT-1 INTRODUCTION TO THE ART OF COOKERY STRUCTURE 1.1 Introduction 1.2 Objective 1.3 Culinary history 1.3.1 Culinary history of India 1.3.2 History of cooking 1.4 Modern haute kitchen 1.5 Nouvelle cuisine 1.6 Indian regional cuisine Check your progress-I 1.7 Popular international cuisine 1.7.1 French cuisine 1.7.2 Italian cuisine 1.7.3 Chinese cuisine 1.8 Aims and objectives of cooking 1.9 Principles of balanced diet 1.9.1 Food groups 1.10 Action of heat on food 1.10.1 Effects of cooking on different types of ingredients Check your progress-II 1.11 Summary 1.12 Glossary 1.13 Check your progress-1 answers 1.14 Check your progress-2 answers 1.15 Reference/bibliography 1.16 Terminal questions 1.1 INTRODUCTION Cookery is defined as a ―chemical process‖ the mixing of ingredients; the application and withdrawal of heat to raw ingredients to make it more easily digestible, palatable and safe for human consumption. Cookery is considered to be both an art and science. The art of cooking is ancient. The first cook was a primitive man, who had put a chunk of meat close to the fire, which he had lit to warm himself. He discovered that the meat heated in this way was not only tasty but it was also much easier to masticate. From this moment, in unrecorded past, cooking has evolved to reach the present level of sophistication. Humankind in the beginning ate to survive.
    [Show full text]
  • Fungi from the Owyhee Region
    FUNGI FROM THE OWYHEE REGION OF SOUTHERN IDAHO AND EASTERN OREGON bY Marcia C. Wicklow-Howard and Julie Kaltenecker Boise State University Boise, Idaho Prepared for: Eastside Ecosystem Management Project October 1994 THE OWYHEE REGION The Owyhee Region is south of the Snake River and covers Owyhee County, Idaho, Malheur County, Oregon, and a part of northern Nevada. It extends approximately from 115” to 118” West longitude and is bounded by parallels 41” to 44”. Owyhee County includes 7,662 square miles, Malheur County has 9,861 square miles, and the part of northern Nevada which is in the Owyhee River watershed is about 2,900 square miles. The elevations in the region range from about 660 m in the Snake River Plains and adjoining Owyhee Uplands to 2522 m at Hayden Peak in the Owyhee Mountains. Where the Snake River Plain area is mostly sediment-covered basalt, the area south of the Snake River known as the Owyhee Uplands, includes rolling hills, sharply dissected by basaltic plateaus. The Owyhee Mountains have a complex geology, with steep slopes of both basalt and granite. In the northern areas of the Owyhee Mountains, the steep hills, mountains, and escarpments consist of basalt. In other areas of the mountains the steep slopes are of granitic or rhyolitic origin. The mountains are surrounded by broad expanses of sagebrush covered plateaus. The soils of the Snake River Plains are generally non-calcareous and alkaline. Most are well-drained, with common soil textures of silt loam, loam and fine sand loam. In the Uplands and Mountains, the soils are often coarse textured on the surface, while the subsoils are loamy and non-calcareous.
    [Show full text]
  • Pindara Revisited – Evolution and Generic Limits in Helvellaceae
    Persoonia 42, 2019: 186–204 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2019.42.07 Pindara revisited – evolution and generic limits in Helvellaceae K. Hansen1, T. Schumacher2, I. Skrede2, S. Huhtinen3, X.-H. Wang1,4 Key words Abstract The Helvellaceae encompasses taxa that produce some of the most elaborate apothecial forms, as well as hypogeous ascomata, in the class Pezizomycetes (Ascomycota). While the circumscription of the Helvella­ ascus croziers ceae is clarified, evolutionary relationships and generic limits within the family are debatable. A robust phylogeny Balsamia of the Helvellaceae, using an increased number of molecular characters from the LSU rDNA, RPB2 and EF-1α Barssia gene regions (4 299 bp) and a wide representative sampling, is presented here. Helvella s.lat. was shown to be Helvella aestivalis polyphyletic, because Helvella aestivalis formed a distant monophyletic group with hypogeous species of Balsamia Midotis and Barssia. All other species of Helvella formed a large group with the enigmatic Pindara (/Helvella) terrestris Pezizomycetes nested within it. The ear-shaped Wynnella constitutes an independent lineage and is recognised with the earlier name Midotis. The clade of the hypogeous Balsamia and Barssia, and H. aestivalis is coherent in the three-gene phylogeny, and considering the lack of phenotypic characters to distinguish Barssia from Balsamia we combine species of Barssia, along with H. aestivalis, in Balsamia. The closed/tuberiform, sparassoid H. astieri is shown to be a synonym of H. lactea; it is merely an incidental folded form of the saddle-shaped H. lactea. Pindara is a sister group to a restricted Helvella, i.e., excluding the /leucomelaena lineage, on a notably long branch.
    [Show full text]
  • Spatial Distribution and Ecological Variation of Re-Discovered German Truffle Habitats
    fungal ecology 5 (2012) 591e599 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/funeco Spatial distribution and ecological variation of re-discovered German truffle habitats a, € b,c a d b Ulrich STOBBE *, Ulf BUNTGEN , Ludger SPROLL , Willy TEGEL , Simon EGLI , Siegfried FINKa aInstitute of Forest Botany and Tree Physiology, Albert-Ludwigs-University of Freiburg, 79085 Freiburg, Germany bSwiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland cOeschger Centre for Climate Change Research, 3013 Bern, Switzerland dInstitute for Forest Growth IWW, Albert-Ludwigs-University of Freiburg, 79085 Freiburg, Germany article info abstract Article history: Several truffle species (Tuber spp.) are highly prized by chefs and gourmets with some À Received 22 July 2011 commanding prices of up to V9.000 kg 1 on international markets. Their ecological drivers Revision received 5 December 2011 and geographical patterns, however, often remain a puzzle. Truffle species in Germany are Accepted 24 January 2012 classified as Very Rare or even Extinct on the national Red Lists, while historical literature Available online 28 March 2012 described their sporadic existence. Here we present evidence of seven Tuber species Corresponding editor: (T. aestivum, T. brumale, T. excavatum, T. fulgens, T. macrosporum, T. mesentericum, T. rufum), Anne Pringle discovered at 121 sites in Southwest Germany. The valuable Burgundy truffle (T. aestivum) occurred at 116 sites. An unexpected abundance of Tuber spp. associated with 13 potential Keywords: host plants along wide ecological gradients in a region far outside the traditional Mediter- Climate change ranean truffle foci in France, Italy and Spain, is likely indicative of possible responses to Cultivation potential climate change, and also suggests ample truffle cultivation potential north of the Alpine arc.
    [Show full text]