Patch Test Allergens

Total Page:16

File Type:pdf, Size:1020Kb

Patch Test Allergens Patch Test Allergens No. COMPOUND CONC EXPOSURE No. COMPOUND CONC EXPOSURE No. COMPOUND CONC EXPOSURE Mixed dialkyl Rubber accelerator, Group B steroids: 1 Benzocaine 5.0% Local ester anesthetic 24 1.0% fluocinonide, TAC, thiourea assoc. w/ neoprene. 45 Budesonide 0.01% desonide. Also Rubber accelerator, Cl+Me- 2 Mercaptobenzothiazole 1.0% isothiazolinone Preservative in Group D. cutting oils, antifreeze 25 .01% In cosmetics, waxes, (Kathon CG, cosmetics, shampoos. Compositae mix 5.0% Compositae flowers. 3 Colophony 20.0% 46 adhesives. “Rosin.” 100ppm) Group D steroids: In hair dyes, Preservative in topical Hydrocortisone-17- 47 1% Temovate, 4 Paraphenylenediamine 1.0% photographic 26 Paraben mix 12% agents, cosmetics, butyrate Diprosone. chemicals foods. Methyldibromoglutar Preservative against Dimethylol In permanent press 27 0.5% 48 4.5% Imidazolidinyl urea Preservative, onitrile (MDBGN) bacteria and fungi dihydroxyethylene urea clothing. 5 2.0% (Germall 115) formaldehyde releaser Cocamidopropyl In hair and bath 28 Fragrance mix 1 8.0% In cosmetics, foods. 1% 49 ibetaine products. Cinnamic aldehyde 6 1.0% Fragrance. flavoring Disinfectant on (Cinnamyl) Group B steroids: 29 Glutaraldehyde 0.5% medical and dental 50 Triamcinolone acetonide 1.0% fluocinonide, TAC, 7 Amerchol L 101 50.0% Emulsifiers, Emollients equipment desonide. 2-Bromo-2- Preservative, Topical amide Rubber accelerator, 51 Lidocaine 15.0% 8 Carba mix 3.0% 30 nitropropane-l,3-diol 0.5% formaldehyde anesthetic. Adhesive (Bronopol) releaser. Topical amide Neomycin sulfate 20.0% Topical antibiotic. Sesquiterpene 52 Dibucaine hydrochloride 2.5% 9 0.1% Compositae flowers. anesthetic. 31 lactone Mix 10 Thiuram mix 1.0% Rubber accelerator Cosmetics, scents and Lauryl glucoside 3.0% surfactant Fragrance Mix II 14.0% 53 32 flavorings In leather, rubber, Clobetasol-17- plastics, disinfectants, Vehicle for cosmetics, 54 1.0% Group B steroids Formaldehyde 1.0% propionate 11 permanent press 33 Propylene glycol 30.0% topical medications. clothing, cosmetics 55 Amidoamin 0.1% Base for cosmetics 2-Hydroxy-4- Ultraviolet absorber, Ethylene Diamine Steroid creams, ruber 34 methoxybenzopheno 10.0% HEMA (2-Hydroxyethyl Inks, adhesives and 12 1.0% color preserver 56 2.0% dihydrochloride latex, cooling fluids ne (Eusolex 4360) methacrylate) lacquers 4-Chloro-3,5-xylenol Preservative in topical 35 1.0% 13 Epoxy resin 1.0% In glues, plastics. (PCMX) medications 57 Desoximethasone 1.0% Topical steriods Quaternium-15 Cosmetics, medicated Finishing agent in 2.0% Ethyleneurea, Lyral (Alfa-Hexyl Preservative in 14 (Dowicil 200) creams textiles or leather, 58 5.0% 36 melamine 5.0% cinnamal) cosmetics adhesives, 4-tert butylphenol In leather and formaldehyde mix Photographic 15 1.0% insecticides formaldehyde resin adhesives, rubbers development, Idopropynyl butyl Fungicide and 59 Benzyl alcohol 10.0% 37 0.2% perfumes, food Mercapto mix 1.0% Rubber accelerator. carbamate bactericide 16 industry, cosmetics Disperse Blue N-Isopropyl-N- 38 0.5 % Clothing dye. Antioxidant in 106/124 Mix 60 dL Alpha Tocopherol 100.0% 17 phenyl—4- 0.1% In tires, rubber boots. pharmaceuticals Adhesive in artifical phenylenediamine Ethyl acrylate 0.1% 39 nails. In costume jewelry, 61 Propolis cera 10.0% Perfume Glyceryl Permanent wave 18 Potassium dichromate 0.25% other metals, leather 40 monothioglycolate 1.0% products, hair Fusidic Acid Sodium Treatment of products. 62 2.0% (GMTG) products Salt bacterial infections In fragrances, topical 19 Balsam of Peru 25.0% Toluenesulfonamide Nail polish, adhesive mediations, flavorings 10.0% 63 Coconut diethanolamide 0.5% cosmetics 41 formaldehyde resin primer Nickel sulfate In costume jewelry, 20 2.5% Adhesive, bones Topical alternative hexahydrate other metals. Tea tree oil 5.0% 42 Methyl methacrylate 2.0% cements in ortopaedic 64 medications. Diazolidinylurea Preservative, 21 1.0% surgeries (Germall II) formaldehyde releaser. 65 Ylang-ylang oil 2.0% In cosmetics. Preservative, Cobalt chloride In tattoos, cement, DMDM hydantion 1.0% 43 1.0% Natural rubbers 22 formaldehyde releaser. hexahydrate metals, adhesives. Black rubber mix 0.6% 66 Electronics, Tixocortol-21- Group A steroids: HC, 67 Gold sodium thiosulfate 0.5% 23 Bacitracin 20.0% Topical antibiotic. 44 0.1% ceramics, jewelry pivalate HC acetate. Thimerosal 68 0.1% Surfactant (Merthiolate) C:\bin\projects\Somerset Skin Centre\somersetskincentre.com\docs\patch_test_ allergens_table.doc Patch Test Allergens C:\bin\projects\Somerset Skin Centre\somersetskincentre.com\docs\patch_test_ allergens_table.doc .
Recommended publications
  • AHFS Pharmacologic-Therapeutic Classification System
    AHFS Pharmacologic-Therapeutic Classification System Abacavir 48:24 - Mucolytic Agents - 382638 8:18.08.20 - HIV Nucleoside and Nucleotide Reverse Acitretin 84:92 - Skin and Mucous Membrane Agents, Abaloparatide 68:24.08 - Parathyroid Agents - 317036 Aclidinium Abatacept 12:08.08 - Antimuscarinics/Antispasmodics - 313022 92:36 - Disease-modifying Antirheumatic Drugs - Acrivastine 92:20 - Immunomodulatory Agents - 306003 4:08 - Second Generation Antihistamines - 394040 Abciximab 48:04.08 - Second Generation Antihistamines - 394040 20:12.18 - Platelet-aggregation Inhibitors - 395014 Acyclovir Abemaciclib 8:18.32 - Nucleosides and Nucleotides - 381045 10:00 - Antineoplastic Agents - 317058 84:04.06 - Antivirals - 381036 Abiraterone Adalimumab; -adaz 10:00 - Antineoplastic Agents - 311027 92:36 - Disease-modifying Antirheumatic Drugs - AbobotulinumtoxinA 56:92 - GI Drugs, Miscellaneous - 302046 92:20 - Immunomodulatory Agents - 302046 92:92 - Other Miscellaneous Therapeutic Agents - 12:20.92 - Skeletal Muscle Relaxants, Miscellaneous - Adapalene 84:92 - Skin and Mucous Membrane Agents, Acalabrutinib 10:00 - Antineoplastic Agents - 317059 Adefovir Acamprosate 8:18.32 - Nucleosides and Nucleotides - 302036 28:92 - Central Nervous System Agents, Adenosine 24:04.04.24 - Class IV Antiarrhythmics - 304010 Acarbose Adenovirus Vaccine Live Oral 68:20.02 - alpha-Glucosidase Inhibitors - 396015 80:12 - Vaccines - 315016 Acebutolol Ado-Trastuzumab 24:24 - beta-Adrenergic Blocking Agents - 387003 10:00 - Antineoplastic Agents - 313041 12:16.08.08 - Selective
    [Show full text]
  • Determination of Iodate in Iodised Salt by Redox Titration
    College of Science Determination of Iodate in Iodised Salt by Redox Titration Safety • 0.6 M potassium iodide solution (10 g solid KI made up to 100 mL with distilled water) • 0.5% starch indicator solution Lab coats, safety glasses and enclosed footwear must (see below for preparation) be worn at all times in the laboratory. • 250 mL volumetric flask Introduction • 50 mL pipette (or 20 and 10 mL pipettes) • 250 mL conical flasks New Zealand soil is low in iodine and hence New Zealand food is low in iodine. Until iodised salt was • 10 mL measuring cylinder commonly used (starting in 1924), a large proportion • burette and stand of school children were reported as being affected • distilled water by iodine deficiency – as high as 60% in Canterbury schools, and averaging 20 − 40% overall. In the worst cases this deficiency can lead to disorders such as Method goitre, and impaired physical and mental development. 1. Preparation of 0.002 mol L−1 sodium thiosulfate In earlier times salt was “iodised” by the addition of solution: Accurately weigh about 2.5 g of solid potassium iodide; however, nowadays iodine is more sodium thiosulfate (NaS2O3•5H2O) and dissolve in commonly added in the form of potassium iodate 100 mL of distilled water in a volumetric flask. (This gives a 0.1 mol L−1 solution). Then use a pipette to (KIO3). The Australia New Zealand Food Standards Code specifies that iodised salt must contain: “equivalent to transfer 10 mL of this solution to a 500 mL volumetric no less than 25 mg/kg of iodine; and no more than 65 flask and dilute by adding distilled water up to the mg/kg of iodine”.
    [Show full text]
  • Formaldehyde Test Kit Utility
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Cutan Ocul Manuscript Author Toxicol. Author Manuscript Author manuscript; available in PMC 2019 June 01. Published in final edited form as: Cutan Ocul Toxicol. 2019 June ; 38(2): 112–117. doi:10.1080/15569527.2018.1471485. Undeclared Formaldehyde Levels in Patient Consumer Products: Formaldehyde Test Kit Utility Jason E. Ham1, Paul Siegel1,*, and Howard Maibach2 1Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA 2Department of Dermatology, School of Medicine, University of California-San Francisco, San Francisco, CA, USA Abstract Formaldehyde allergic contact dermatitis (ACD) may be due to products with free formaldehyde or formaldehyde-releasing agents, however, assessment of formaldehyde levels in such products is infrequently conducted. The present study quantifies total releasable formaldehyde from “in-use” products associated with formaldehyde ACD and tests the utility of commercially available formaldehyde spot test kits. Personal care products from 2 patients with ACD to formaldehyde were initially screened at the clinic for formaldehyde using a formaldehyde spot test kit. Formaldehyde positive products were sent to the laboratory for confirmation by gas chromatography-mass spectrometry. In addition, 4 formaldehyde spot test kits were evaluated for potential utility in a clinical setting. Nine of the 10 formaldehyde spot test kit positive products obtained from formaldehyde allergic patients had formaldehyde with total releasable formaldehyde levels ranging from 5.4 to 269.4 μg/g. Of these, only 2 shampoos tested listed a formaldehyde-releasing agent in the ingredients or product literature. Subsequently, commercially available formaldehyde spot test kits were evaluated in the laboratory for ability to identify formaldehyde in personal care products.
    [Show full text]
  • WHO Model List of Essential Medicines
    WHO Model List of Essential Medicines 15th list, March 2007 Status of this document This is a reprint of the text on the WHO Medicines web site http://www.who.int/medicines/publications/essentialmedicines/en/index.html 15th edition Essential Medicines WHO Model List (revised March 2007) Explanatory Notes The core list presents a list of minimum medicine needs for a basic health care system, listing the most efficacious, safe and cost‐effective medicines for priority conditions. Priority conditions are selected on the basis of current and estimated future public health relevance, and potential for safe and cost‐effective treatment. The complementary list presents essential medicines for priority diseases, for which specialized diagnostic or monitoring facilities, and/or specialist medical care, and/or specialist training are needed. In case of doubt medicines may also be listed as complementary on the basis of consistent higher costs or less attractive cost‐effectiveness in a variety of settings. The square box symbol () is primarily intended to indicate similar clinical performance within a pharmacological class. The listed medicine should be the example of the class for which there is the best evidence for effectiveness and safety. In some cases, this may be the first medicine that is licensed for marketing; in other instances, subsequently licensed compounds may be safer or more effective. Where there is no difference in terms of efficacy and safety data, the listed medicine should be the one that is generally available at the lowest price, based on international drug price information sources. Therapeutic equivalence is only indicated on the basis of reviews of efficacy and safety and when consistent with WHO clinical guidelines.
    [Show full text]
  • United States Patent Office Patented Apr
    3,505,222 United States Patent Office Patented Apr. 7, 1970 1. 2 3,505,222 product of a mercaptain with sulfur trioxide. Their metal LUBRICANT COMPOSITIONS salts are represented by the formula: Leonard M. Niebylski, Birmingham, Mich, assignor to O Ethyl Corporation, New York, N.Y., a corporation of Virginia (R-S-S-0--M No Drawing. Filed Mar. 29, 1967, Ser. No. 626,701 5 s (I) Int. C. C10m 5/14, 3/18, 7/36 wherein R is a hydrocarbon radical containing from 1 U.S. C. 252-17 2 Claims to about 30 carbon atoms, M is a metal, and n is the valence of metal M. For example, when M is the monova 0. lent sodium ion, n is 1. ABSTRACT OF THE DISCLOSURE The radical R can be an alkyl, cycloalkyl, aralkyl, The extreme pressure wear properties of base lubri alkaryl, or aryl radical. The radicals may contain other cants including water, hydrocarbons, polyesters, silicones, nonhydrocarbon substituents such as chloro, bromo, iodo, polyethers and halocarbons is enhanced by the addition fluoro, nitro, hydroxyl, nitrile, isocyanate, carboxyl, car of a synergistic mixture of a thiosulfate compound and 15 bonyl, and the like. a lead compound. The useful metals are all those capable of forming Bunte salts. Preferred metals are those previously listed as suitable for forming metal thiosulfates. Of these, the Background more preferred metals are sodium and lead, and lead is 20 the most preferred metal in the Bunte salts. This invention relates to improved lubricant composi Examples of useful Bunte salts include: tions.
    [Show full text]
  • Sodium Nitrite and Sodium Thiosulfate
    PATIENT & CAREGIVER EDUCATION Sodium Nitrite and Sodium Thiosulfate This information from Lexicomp® explains what you need to know about this medication, including what it’s used for, how to take it, its side effects, and when to call your healthcare provider. Brand Names: US Nithiodote Warning This drug may cause low blood pressure and a red blood cell problem called methemoglobinemia. These may be life-threatening. This drug is only for use when cyanide poisoning is life-threatening. This drug must be used with care if it is not known if cyanide poisoning has happened. Talk with the doctor. Tell the doctor if your child has inhaled a lot of smoke or if your child has any of these health problems: Anemia, heart problems, lack of a certain enzyme called congenital methemoglobin reductase deficiency, or lung problems. What is this drug used for? It is used to treat cyanide poisoning. What do I need to tell the doctor BEFORE my child takes this drug? If your child is allergic to this drug; any part of this drug; or any other drugs, foods, or substances. Tell the doctor about the allergy and what signs your child had. Sodium Nitrite and Sodium Thiosulfate 1/6 If your child is breast-feeding a baby: Be sure your child does not breast-feed a baby while taking this drug. This drug may interact with other drugs or health problems. Tell the doctor and pharmacist about all of your child’s drugs (prescription or OTC, natural products, vitamins) and health problems. You must check to make sure that it is safe to give this drug with all of your child’s other drugs and health problems.
    [Show full text]
  • Assessing the in Situ Efficacy of Tea Tree Oil As a Topical Antiseptic
    Novasel Australia Pty Ltd Assessing the in situ efficacy of tea tree oil as a topical antiseptic A report for the Rural Industries Research and Development Corporation by S. Messager, K.A. Hammer & T.V. Riley August 2005 RIRDC Publication No 05/113 RIRDC Project No UWA-72A © 2005 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 176 3 ISSN 1440-6845 Assessing the in situ efficacy of tea tree oil as a topical antiseptic Publication No. 05/113 Project No. UWA-72A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable industries. The information should not be relied upon for the purpose of a particular matter. Specialist and/or appropriate legal advice should be obtained before any action or decision is taken on the basis of any material in this document. The Commonwealth of Australia, Rural Industries Research and Development Corporation, the authors or contributors do not assume liability of any kind whatsoever resulting from any person's use or reliance upon the content of this document. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Researcher Contact Details Prof. T. V. Riley University of Western Australia School of Biomedical and Chemical Sciences Microbiology (M502) 35 Stirling Hwy CRAWLEY WA 6009 Phone: (08) 9346 3690 Fax: (08) 9346 2912 Email: [email protected] In submitting this report, the researcher has agreed to RIRDC publishing this material in its edited form.
    [Show full text]
  • Chemical %Concentration CAS
    Sebozole Shampoo Page 1of 5 Sebozole Shampoo SAFETY DATA SHEET (1) IDENTIFICATION Name: Sebozole Shampoo Use: veterinary skin care Supplier: Vetoquinol USA (Tomlyn Products) 4250 N. Sylvania Ave Fort Worth, TX 76137 Tel: ( 817)529-7500 Fax: (817)529-7506 (2) HAZARD(S) IDENTIFICATION Hazard Classification: Non Hazardous as defined by 29CFR Part 1910.1200 (3) COMPOSITION/INFORMATION ON INGREDIENTS Common Name: Sebozole Shampoo Composition: A blend of proprietary ingredients which make a veterinary dermatologic care product. Chemical %Concentration CAS Sodium Thiosulfate 3.13 10102-17-7 Miconazole Nitrate 2.0 22916-47-8 Salicylic Acid 2.0 69-72-7 Chloroxylenol 1.0 88-04-0 Sodium Olefin Sulfonate 25 6843-57-6 PEG 150 Pentaerythrityl Tetratstearate 5 130249-48-8 Lauramide DEA 5 92680-75-6 Propylene Glycol 5 57-55-6 Ultrez 21 1 9003-39-8 Sodium Hydroxide 1 1310-73-2 Fragrance 0.5 Kathon CG 0.1 6118-96-6 FD&C yellow #5 0.0013 84842-94-4 FD&C Blue #1 0.0013 3844-45-9 Purified Water 49 7732-18-5 Sebozole Shampoo Page 2 of 5 (4) First Aid Measures Ingestion • In case of ingestion call a physician and poison control. EYE • If product enters eye, rinse thouroughly with cool fresh water for 10 to 15 minutes. If irritation persists, seek medical attention. • a burning sensation, excessive tears, sensitivity to light, swelling and redness of the conjunctiva and increasedblinking. • Limited evidence or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals.Prolonged eye contact may cause inflammation characterized by a redness of the conjunctiva (similar to windburn SKIN • none INHALED • None (5) FIRE-FIGHTING MEASURES Suitable Extinguisher: FOAM, DRY POWDER, WATER, CO2 Special Precautions: None Special Protective Equipment: None (6) ACCIDENTAL RELEASE PROCEDURES Personal Precautions: None.
    [Show full text]
  • Stanford Storage Groups
    STANFORD STORAGE Ethylene Glycol G Sigmacote L GROUPS Ficoll G Silver Nitrate E Formaldehyde w/ methanol L Sodium Acetate G CHEMICAL GRP Formaldehyde <37%, G Sodium Azide X 1-Butanol or 2- L 20% NBF Formalin Sodium Bicarbonate G 1-Propanol L Formamide L Sodium Bisulfite G 2-Mercaptoethanol L Formic Acid D Sodium Borate (borax) G Acetic Acid, Glacial D Glutaraldehyde D Sodium Carbonate G Acetic Anhydride L Glycerol L Sodium Chloride G Acetone L Glycine G Sodium Citrate, Dihydrate G Acrolein L Guanidine Hydrochloride G Sodium Hydroxide C Acrylamide G Guanidine Thiocyanate C Sodium Hypochlorite E Agarose G Gluconic Acid G (Bleach) Ammonium Acetate G HEPES D Sodium Per(anything) E Ammonium Chloride G Hydrochloric Acid F Sodium Phosphate G Ammonium Hydroxide C Hydrogen Peroxide, 30% E Sodium Sulfide, Anhydrous X Ammonium Molybdate G Imidazole A Sodium Thiosulfate G Ammonium Nitrate E Iodine E Succinic Acid G Ammonium Persulfate E Isoamyl or isobutyl alcohol L Sucrose G Ammonium Sulfate G Isopropanol L Sulfuric Acid F Ammonium Sulfide L Magnesium Chloride G Tannic Acid D Ascorbic Acid G Magnesium Sulfate G TEMED A BIS & BIS-Acrylamide G Maleic Acid D TES free acid G BIS TRIS A Mercaptoethanol L Tetracycline G Boric Acid G MES G Trichloroacetic Acid D Calcium Chloride G Methanol L Tricine G Cesium Chloride G N-Methyl-2-Pyrrolidone A Toluene L Cesium Fluoride F Mineral Oil L Triethanolamine A Cesium Hydroxide C Nitric Acid E TRIS, base A CHAPS G Oxalic Acid D TRIS Hydrochloride G Chloroform G Paraformaldehyde A Triton X-100 G Chromerge E Perchloric
    [Show full text]
  • Formaldehyde May Be Found in Cosmetic Products Even When Unlabelled
    Open Med. 2015; 10: 323-328 Research Article Open Access Laura Malinauskiene*, Audra Blaziene, Anzelika Chomiciene, Marléne Isaksson Formaldehyde may be found in cosmetic products even when unlabelled Abstract: Concomitant contact allergy to formaldehyde reliable method for detecting formaldehyde presence in and formaldehyde-releasers remains common among cosmetic products. patients with allergic contact dermatitis. Concentration of free formaldehyde in cosmetic products within allowed Keywords: chromotropic acid; formaldehyde; formalde- limits have been shown to induce dermatitis from short- hyde-releaser; high-performance liquid chromatography term use on normal skin. DOI 10.1515/med-2015-0047 The aim of this study was to investigate the formalde- Received: February 2, 2015; accepted: May 28, 2015 hyde content of cosmetic products made in Lithuania. 42 samples were analysed with the chromotropic acid (CA) method for semi-quantitative formaldehyde deter- mination. These included 24 leave-on (e.g., creams, 1 Introduction lotions) and 18 rinse-off (e.g., shampoos, soaps) products. Formaldehyde is a well-documented contact allergen. Formaldehyde releasers were declared on the labels of 10 Over recent decades, the prevalence of contact allergy to products. No formaldehyde releaser was declared on the formaldehyde has been found to be 8-9% in the USA and label of the only face cream investigated, but levels of free 2-3% in European countries [1]. formaldehyde with the CA method was >40 mg/ml and Formaldehyde as such is very seldomly used in cosmetic when analysed with a high-performance liquid chromato- products anymore, but preservatives releasing formalde- graphic method – 532 ppm. According to the EU Cosmetic hyde in the presence of water are widely used in many directive, if the concentration of formaldehyde is above cosmetic products (e.g., shampoos, creams, etc.), topical 0.05% a cosmetic product must be labelled “contains medications and household products (e.g., dishwashing formaldehyde“.
    [Show full text]
  • Allergic Contact Dermatitis from Formaldehyde Exposure
    DOI: 10.5272/jimab.2012184.255 Journal of IMAB - Annual Proceeding (Scientific Papers) 2012, vol. 18, book 4 ALLERGIC CONTACT DERMATITIS FROM FORMALDEHYDE EXPOSURE Maya Lyapina1, Angelina Kisselova-Yaneva 2, Assya Krasteva2, Mariana Tzekova -Yaneva2, Maria Dencheva-Garova2 1) Department of Hygiene, Medical Ecology and Nutrition, Medical Faculty, 2) Department of Oral and Image Diagnostic, Faculty of Dental Medicine, Medical University, Sofia,Bulgaria ABSTRACT atmospheric air, tobacco smoke, use of cosmetic products Formaldehyde is a ubiquitous chemical agent, a part and detergents, and in less extend – water and food of our outdoor and indoor working and residential consumption (11, 81). It is released into the atmosphere environment. Healthcare workers in difficult occupations are through fumes from automobile exhausts without catalytic among the most affected by formaldehyde exposure. convertors and by manufacturing facilities that burn fossil Formaldehyde is an ingredient of some dental materials. fuels in usual concentration about 1-10 ppb. Uncontrolled Formaldehyde is well-known mucous membrane irritant and forest fires and the open burning of waste also give off a primary skin sensitizing agent associated with both contact formaldehyde. It is believed that the daily exposure from dermatitis (Type IV allergy), and immediate, anaphylactic atmospheric air is up to 0.1 mg (35, 43, 44). reactions (Type I allergy). Inhalation exposure to According to the WHO industrial emissions could formaldehyde was identified as a potential cause of asthma. appear at each step of production, use, transportation, or Quite a few investigations are available concerning health deposition of formaldehyde-containing products. issues for dental students following formaldehyde exposure. Formaldehyde emissions are detected from various Such studies would be beneficial for early diagnosis of industries – energy industry, wood and paper product hypersensitivity, adequate prophylactic, risk assessment and industries, textile production and finishing, chemical management of their work.
    [Show full text]
  • Nomination Background: N-(3-Chloroallyl)Hexaminium Chloride
    • NATIONAL TOXICOLOGY PROGRAM EXECUTIVE SUMMARY OF SAFETY AND TOXICITY INFORMATION N-(3-CHLOROALLYL)HEXAMINIUM CHLORIDE CAS Number 4080-31-3 July 16, 1991 Submitted to: NATIONAL TOXICOLOGY PROGRAM Submitted by: Arthur D. Little, Inc. Chemical Evaluation Committee Draft Report • • TABLE OF CONTENTS Page L NOMINATION HISTORY AND REVIEW .................... 1 II. CHEMICAL AND PHYSICAL DATA ....................... 3 III. PRODUCTION/USE ................................... 5 IV. EXPOSURE/REGULATORY STATUS...................... .10 V. TOXICOLOGICAL EFFECTS ........................... .11 VI. STRUCTURE ACTIVITY RELATIONSHIPS ..................48 VII. REFERENCES ..................................... : . ......... 49 APPENDIX I, ON-LINE DATA BASES SEARCHED ............ .53 APPENDIX II, SAFETY INFORMATION.................... .54 1 ,, .• • • OVERVJEWl Nomination History: N-(3-Chloroallyl)hexaminium chloride was originally nominated for carcinogenicity testing by the National Cancer Institute (NCI) in 1980 with moderate priority. In March 1980, the Chemical Evaluation Committee (CEC) recommended carcinogenicity testing. Due to budgetary cutbacks in 1982, this compound was reevaluated and recommended for in vitro cytogenetics and chemical disposition testing by the CEC, and was selected for chemical disposition testing by the Executive Committee. The renomination of this chemical in 1984 by the NCI was based on potentialfor significant human exposure and concern that it may be carcinogenic due to structural considerations. This recent nomination was
    [Show full text]