Analysis of the Role of the Bel and Bet Open Reading Frames of Human Foamy Virus by Using a New Quantitative Assay SHUYUARN F

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Role of the Bel and Bet Open Reading Frames of Human Foamy Virus by Using a New Quantitative Assay SHUYUARN F JOURNAL OF VIROLOGY, Nov. 1993, p. 6618-6624 Vol. 67, No. 11 0022-538X/93/1 16618-07$02.00/0 Copyright C 1993, American Society for Microbiology Analysis of the Role of the bel and bet Open Reading Frames of Human Foamy Virus by Using a New Quantitative Assay SHUYUARN F. YU AND MAXINE L. LINIAL* Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1124 Columbia Street, Seattle, Washington 98104-2092 Received 6 July 1993/Accepted 5 August 1993 We have constructed a BHK-21-derived indicator cell line containing a single integrated copy of the f-galactosidase (P-Gal) gene under control of the human foamy virus (HFV) long terminal repeat promoter (from -533 to +20). These foamy virus-activated ,8-Gal expression (FAB) cells can be used in a quantitative assay to measure the infectious titer of HFV. Our results show that the FAB assay is 50 times more sensitive than determination of the virus titer by the end-point dilution method. Using the FAB assay, we have found that HFV can productively replicate in several erythroblastoid cell lines as well as in the Jurkat T-cell line. We have also examined the roles of bel2, bet, and beI3 in viral replication by constructing proviral HFV clones in which the reading frame of Bel2, Bet, or Bel3 is disrupted by placement of translation stop codons. Analysis of these mutants reveals that while the beI3 gene is not required for viral replication in vitro, mutations in the beI2 or bet gene decrease cell-free viral transmission approximately 10-fold. The prototype spumavirus, human foamy virus (HFV) or activate gene expression directed by the HIV type 1 LTR, human spumaretrovirus, was originally isolated from a patient through a target site different from that of HIV Tat (16, 20). In with nasopharyngeal carcinoma (1). In culture, spumavirus is contrast to bell, the roles of bel2, bet, and bel3 in HFV highly cytopathic, inducing multinucleated syncytia with a replication remain unknown. characteristic vacuolated appearance in the cytoplasm. Al- Titers of foamy virus stocks have routinely been determined though it has been shown that in vitro HFV replicates produc- by examination of cytopathic effects (CPE) by the end-point tively in fibroblastic diploid cells but poorly in epithelium-like dilution method. Here, we present a quantitative method for cells (23, 24), viral replication in other cell types is still unclear. titration of HFV using an indicator cell line in which expres- There have been numerous searches for diseases associated sion of 3-galactosidase (,B-Gal) can be activated by HFV with HFV infection (37). The finding of both virus-related infection. This foamy virus-activated 1-gal expression (FAB) sequences and antigens in patients with Graves' disease sug- assay exploits the requirement for trans activation of the HFV gests an association with this autoimmune disease (19, 38). It LTR promoter by the viral Bell protein. It provides a simple has also been reported that expression of spumaviral genes in and rapid method for titration of HFV, which can be com- neurons and brain cells in transgenic mice is correlated with pleted in 2 days and is 50-fold more sensitive than titration of neurological disorders (2, 3, 5). virus by the end-point dilution method. Using this assay, we The genome of HFV contains gag, pol, and env, as well as have reexamined the spectrum of HFV cell tropism. We also several other genes, located between env and the 3' long report results of mutational analyses of the bel2, bet, and bel3 terminal repeat (LTR) (10, 25). At least four open reading genes and conclude that while bel3 is dispensable for viral frames (ORFs) are predicted to exist, including bell, bel2, bet, replication, the bel2 or bet gene is required for optimal cell-free and bel3, which result from singly and/or multiply spliced viral transmission in vitro. mRNAs (28). Analysis of viral proteins in infected cells has shown that while Bell accumulates in the nucleus, Bel2 is found in the cytoplasm (11, 21). Bet, an abundant viral protein in the cytoplasm, is encoded by a multiply spliced mRNA in MATERIALS AND METHODS which the N-terminal portion of Bell is spliced in frame with the Bel2 ORF. Thus far, expression of the Bel3 ORF has not Cells. Human embryonic lung (HEL) cells (ATCC CCL been reported, although bel3 transcripts have been found in 137) and human foreskin primary fibroblastic cells (obtained infected cells (28). from Adam Geballe, Fred Hutchinson Cancer Research Cen- The bell gene, like human immunodeficiency virus (HIV) tat ter) were grown in Dulbecco's modified Eagle medium sup- and human T-cell leukemia virus tax, encodes a potent tran- plemented with 10% fetal bovine serum (FBS). BHK-21 (baby scriptional transactivator of its own LTR promoter (17, 32). hamster kidney cells, ATCC CCL 10) and FAB cells were Deletion of bell completely abolishes the infectivity of HFV grown in Dulbecco's modified Eagle medium with 5% FBS. (21). The primary target sequence for Bell within the HFV Human cell lines, including B/N (an Epstein-Barr virus-trans- LTR has been mapped to -130 bp 5' to the cap site (36). A formed B lymphocytic cell line obtained from Mark Groudine, second region located -400 bp 5' to the cap site also contrib- Fred Hutchinson Cancer Research Center), 174xCEM (a T-B utes to optimal reactivity to Bell (27). Bell can also trans lymphoblastic hybrid cell line, NIH AIDS Reagent Program catalog no. 272), Jurkat (a CD4+ T-cell line, ATCC TIB 152), U937 (a histiocytic lymphoblastoid cell line, ATCC CRL 1593), K562 (an erythroblastoid cell line, ATCC CCL 243), * Corresponding author. and H92.1.7 (an erythroblastoid cell line originally called 6618 Vot-. 67, 1993 QUANTITATIVE ASSAY OF THE ROLE OF HFV bel AND bet ORFs 6619 HEL92.1.7, ATCC TIB 180), were grown in RPMI medium ance of CPE. In cocultivation experiments, HEL cells were first supplemented with 5% FBS. infected with HFV at a multiplicity of infection (MOI) of 3. Preparation of virus stocks. Virus stocks were originally Three days later, the cells were treated with 10 ,ug of mitomy- obtained by transfection of BHK-21 or HEL cells with the cin per ml for 2 h to inhibit cell division. After extensive full-length HFV proviral DNA. By the modified calcium washes, the treated HEL monolayers were trypsinized and phosphate method (6), the transfection efficiency of BHK-21 cocultivated with different hematopoietic suspension cells at a cells was much higher than that of HEL cells (data not shown). ratio of 1 to 20. The suspension cells were maintained in RPMI Transfected cells were then scraped from culture dishes and medium containing 5% FBS and subcultured every 3 to 5 days. removed along with the culture medium, and virus was re- After the second passage, adherent HEL cells would no longer leased by three cycles of freezing and thawing. These total cell be observed in the cultures. The virus titer in the culture lysates were then added to BHK-21 or HEL cells to obtain medium was periodically monitored by the FAB assay. high-titer virus stocks. Since the virus titer obtained from Site-directed mutagenesis. Translation stop codons were propagation of HFV in HEL cells was usually slightly higher introduced into the reading frame of bel2, bet, or bel3 without than in BHK-21 cells, HEL cells were used in all the infection affecting the coding sequence of the other overlapping genes experiments. To prepare cell-free virus stocks, culture super- (see Fig. 3), by using an oligonucleotide-directed mutagenesis natants were cleared by low-speed centrifugation (4,000 x g kit (Amersham) according to the manufacturer's protocol. The for 10 min) and filtered through a 0.2-,um-pore-size filter single-stranded DNA template derived from pHSRVAGPE membrane. was used in the mutagenesis reaction. A 21-mer, 5'-AGGGCT Plasmids. The infectious molecular clone of HFV, ACTAGAAGAGTCCAG-3', was used to create the Abel2 pHSRV13, and plasmids pdbell and pBCbell have been mutant, in which the Leu codon (TTG) at residue 34 was described previously (21) and were kindly provided by M. replaced with TAG. For the iXbel2C mutant, the Arg (AGA) Lochelt and R. Flugel (German Cancer Research Center, and Gln (CAG) codons at residues 246 and 248 were converted Heidelberg, Germany). Plasmid pdbell is derived from to TGA and TAG by a 30-mer, 5'-TGGAATGTCACTQGA pHSRV13 but contains a 208-bp deletion in the bell gene. AACTAGGGAAAACAA-3'. A 22-mer, 5'-CATAGAACCA Plasmid pBCbell is a eukaryotic bell expression vector using TAATGGCAGACT-3', was used to generate the Aibel3 mu- an immediate-early promoter from cytomegalovirus. Plasmid tant, in which the Leu codon (TTA) at residue 90 was replaced pHSRVAGPE was constructed by inserting the 2,488-bp ClaI with TAA. The Ser codon (TCA) at residue 130 was changed fragment of pHSRV13 into the 2,958-bp ClaI-digested frag- to TAA in the Abel3C mutant with a 23-mer, 5'-GGTGGAAT ment of phagemid pBluescriptll SK+ (Stratagene). Plasmid GTAACTAGAAACCAG-3'. After confirmation by DNA se- pCMVhph, as described previously (4), encodes resistance to quencing, each mutation was introduced into the full-length hygromycin B driven by the cytomegalovirus promoter. proviral cDNA by inserting the 2,488-bp ClaI fragment from Plasmid pEQJK was constructed by ligating a 2,065-bp each mutagenized pHSRVAGPE into the 12,919-bp ClaI HindlII-SacI fragment of pEQ3 (33), a promoterless [3-Gal fragment of pHSRV13. vector, with the 5,057-bp HindIII-SacI fragment of pJK2.
Recommended publications
  • Feline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model
    Viruses 2013, 5, 1702-1718; doi:10.3390/v5071702 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Feline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model †,‡ † Weibin Liu , Janet Lei , Yang Liu, Dragana Slavkovic Lukic, Ann-Mareen Räthe, # Qiuying Bao, Timo Kehl, Anne Bleiholder, Torsten Hechler and Martin Löchelt * Department of Genome Modifications, Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; E-Mails: [email protected] (W.L.); [email protected] (J.L.); [email protected] (Y.L.); [email protected] (D.S.L.); [email protected] (A.-M.R.); [email protected] (Q.B.); [email protected] (T.K.); [email protected] (T.H.) † These authors contributed equally to this work. ‡ Current address: Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. # Current address: Department of Biochemistry, Heidelberg Pharma GmbH, Schriesheimer Str. 101, 68526 Ladenburg, Germany. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-6221-424933; Fax: +49-6221-424932. Received: 1 March 2013; in revised form: 13 June 2013 / Accepted: 25 June 2013 / Published: 12 July 2013 Abstract: New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV).
    [Show full text]
  • Study of Chikungunya Virus Entry and Host Response to Infection Marie Cresson
    Study of chikungunya virus entry and host response to infection Marie Cresson To cite this version: Marie Cresson. Study of chikungunya virus entry and host response to infection. Virology. Uni- versité de Lyon; Institut Pasteur of Shanghai. Chinese Academy of Sciences, 2019. English. NNT : 2019LYSE1050. tel-03270900 HAL Id: tel-03270900 https://tel.archives-ouvertes.fr/tel-03270900 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2019LYSE1050 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale N° 341 – E2M2 Evolution, Ecosystèmes, Microbiologie, Modélisation Spécialité de doctorat : Biologie Discipline : Virologie Soutenue publiquement le 15/04/2019, par : Marie Cresson Study of chikungunya virus entry and host response to infection Devant le jury composé de : Choumet Valérie - Chargée de recherche - Institut Pasteur Paris Rapporteure Meng Guangxun - Professeur - Institut Pasteur Shanghai Rapporteur Lozach Pierre-Yves - Chargé de recherche - CHU d'Heidelberg Rapporteur Kretz Carole - Professeure - Université Claude Bernard Lyon 1 Examinatrice Roques Pierre - Directeur de recherche - CEA Fontenay-aux-Roses Examinateur Maisse-Paradisi Carine - Chargée de recherche - INRA Directrice de thèse Lavillette Dimitri - Professeur - Institut Pasteur Shanghai Co-directeur de thèse 2 UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M.
    [Show full text]
  • Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates Pileatus (Pileated Gibbon) Reveals Ancient Co-Evolution with Lesser Apes
    viruses Article Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes Anupama Shankar 1, Samuel D. Sibley 2, Tony L. Goldberg 2 and William M. Switzer 1,* 1 Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA 2 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA * Correspondence: [email protected]; Tel.: +1-404-639-2019 Received: 1 April 2019; Accepted: 30 June 2019; Published: 3 July 2019 Abstract: Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp).
    [Show full text]
  • An Endogenous Foamy-Like Viral Element in the Coelacanth Genome
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central An Endogenous Foamy-like Viral Element in the Coelacanth Genome Guan-Zhu Han*, Michael Worobey* Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America Abstract Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts’ genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate ‘coelacanth endogenous foamy-like virus’ (CoeEFV), within the genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology. Citation: Han G-Z, Worobey M (2012) An Endogenous Foamy-like Viral Element in the Coelacanth Genome. PLoS Pathog 8(6): e1002790. doi:10.1371/ journal.ppat.1002790 Editor: Michael Emerman, Fred Hutchinson Cancer Research Center, United States of America Received February 29, 2012; Accepted May 22, 2012; Published June 28, 2012 Copyright: ß 2012 Han, Worobey.
    [Show full text]
  • Between Retroviruses and Pararetroviruses
    Virology 271, 1–8 (2000) doi:10.1006/viro.2000.0216, available online at http://www.idealibrary.com on MINIREVIEW Foamy Viruses: Between Retroviruses and Pararetroviruses Charles-Henri Lecellier and Ali Saı¨b 1 CNRS UPR9051, Universite´Paris 7, Hoˆpital Saint-Louis, 75475 Paris Cedex 10, France Received November 18, 1999; returned to author for revision December 14, 1999; accepted January 21, 2000 Foamy viruses, also called spumaviruses or spuma- sory proteins from the 3Ј end of the viral genome (Reth- retroviruses, are retroviruses described for the first time wilm et al., 1987). Construction of infectious clones of in 1954 in cell cultures derived from monkey kidneys HFV and cloning of viral genes out of the viral context (Enders et al., 1954). They are so named because of the allowed the study of the viral replication cycle and the specific cytopathic foam effect they induce in culture, implication of each gene product. One remarkable find- with the concomitant appearance of syncytia, facilitating ing is the striking similarity between FVs and the hepa- their isolation. In culture, FVs are highly lytic and present titis B virus (HBV, the prototype of hepadnaviruses) con- a large cellular tropism that reflects the ubiquity of the cerning the strategy used to replicate their genome (See- viral receptor (Hill et al., 1999). These viruses were ger et al., 1996). mainly isolated from primate species and also from non- The Third International Conference on Foamy Viruses, primates, such as cats (feline foamy virus [FeFV]) or held in Paris in June 1999, has brought new insights into cattle (bovine foamy virus [BFV]) and more recently from our understanding of these particular viruses, confirming horses (Tobaly-Tapiero et al., 1999) (Table 1).
    [Show full text]
  • Function of a Retrotransposon Nucleocapsid Protein
    REVIEW RNA Biology 7:6, 642-654; November/December 2010; © 2010 Landes Bioscience Function of a retrotransposon nucleocapsid protein Suzanne B. Sandmeyer1,2,* and Kristina A. Clemens1 1Department of Biological Chemistry; School of Medicine; 2Institute for Genomics and Bioinformatics; University of California; Irvine, CA USA Key words: nucleocapsid, retroelement, retrotransposon, retrovirus, Ty, reverse transcription, assembly Long terminal repeat (LTR) retrotransposons are not only critical for particle formation and replication. Despite its small the ancient predecessors of retroviruses, but they constitute size, NC not only performs these functions, but more recently significant fractions of the genomes of many eukaryotic has been implicated in aspects of VLP assembly involving inter- species. Studies of their structure and function are motivated actions with a diverse array of host factors. by opportunities to gain insight into common functions of retroviruses and retrotransposons, diverse mechanisms of Retroviruses differ from retrotransposons in that they traf- intracellular genomic mobility and host factors that diminish fic to the cell surface, require envelopment for maturation, and or enhance retrotransposition. This review focuses on the enter new host cells prior to uncoating, reverse transcription and nucleocapsid (NC) protein of a Saccharomyces cerevisiae LTR integration. In contrast, retrotransposons undergo maturation, retrotransposon, the metavirus, Ty3. Retrovirus NC promotes reverse transcription, uncoating and integration
    [Show full text]
  • SUPPLEMENTARY MATERIAL Further Evidence That Human Endogenous Retrovirus K102 Is a Replication Competent Foamy Virus That May Antagonize HIV-1 Replication Marian P
    Supplementary Material The Open AIDS Journal, 2015, Volume 9 i SUPPLEMENTARY MATERIAL Further Evidence that Human Endogenous Retrovirus K102 is a Replication Competent Foamy Virus that may Antagonize HIV-1 Replication Marian P. Laderoute#,1,4, Louise J. Larocque1,$, Antonio Giulivi2,4 and Francisco Diaz-Mitoma3,4 1Bloodborne Pathogens Division, Blood Zoonotics Unit, Public Health Agency of Canada, Ottawa, Ontario Canada, and #Recently Retired from Immune System Management Clinic and Lab, Ottawa, Ontario Canada; $Presently at the Centre for Biologics Evaluation, Health Canada, Ottawa, Ontario Canada 2Division of Hematopathology and Transfusion Medicine, The Ottawa Hospital, Ottawa, Ontario Canada 3The Advanced Medical Research Institute of Canada, Sudbury, Ontario Canada 4Department of Pathology and Laboratory Medicine, The University of Ottawa, Ottawa, Ontario Canada Fig. (S1). Vacuolation does not depend upon source of serum used for culture. Cytospins stained with H & E of uncultured CB day 0 (a) or cultured for 7 days in different sources of serum in IMDM as noted above b) Wiscent FCS c) Medicorp FCS, d) autologous serum e) normal human AB serum. The results imply the foamy retrovirus was not derived from the FCS used, but was endogenous as all supported vacuolation in cells. ii The Open AIDS Journal, 2015, Volume 9 Supplementary Material Supplementary Table S1. Comparison of Features of Prototypic Foamy Virus# to Type 1 HERV-K (HML-2) HERV-K102++. Property Prototype Foamy Virus# HERV-K102++ 1 Causes vacuolation in cultured human mononuclear
    [Show full text]
  • Insights Into Innate Sensing of Prototype Foamy Viruses in Myeloid Cells
    viruses Article Insights into Innate Sensing of Prototype Foamy Viruses in Myeloid Cells 1, 2,3, 1 2,3 Maïwenn Bergez y , Jakob Weber y, Maximilian Riess , Alexander Erdbeer , Janna Seifried 1 , Nicole Stanke 2,3, Clara Munz 2,3, Veit Hornung 4 , Renate König 1,5,6,* and Dirk Lindemann 2,3,* 1 Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany; [email protected] (M.B.); [email protected] (M.R.); [email protected] (J.S.) 2 Institute of Virology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany; [email protected] (J.W.); [email protected] (A.E.); [email protected] (N.S.); [email protected] (C.M.) 3 CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany 4 Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377 München, Germany; [email protected] 5 German Center for Infection Research (DZIF), 63225 Langen, Germany 6 Immunity and Pathogenesis Program, SBP Medical Discovery Institute, La Jolla, CA 92037, USA * Correspondence: [email protected] (R.K.); [email protected] (D.L.); Tel.: +49-6103-77-4019 (R.K.); +49-351-458-6210 (D.L.) These authors contributed equally to this study. y Received: 30 September 2019; Accepted: 22 November 2019; Published: 26 November 2019 Abstract: Foamy viruses (FVs) belong to the Spumaretrovirinae subfamily of retroviruses and are characterized by unique features in their replication strategy. This includes a reverse transcription (RTr) step of the packaged RNA genome late in replication, resulting in the release of particles with a fraction of them already containing an infectious viral DNA (vDNA) genome.
    [Show full text]
  • Foamy-Like Endogenous Retroviruses Are Abundant and Extensive in Teleosts
    Foamy-like Endogenous Retroviruses Are Abundant and Extensive In Teleosts Item Type text; Electronic Thesis Authors Ruboyianes, Ryan Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 05/10/2021 23:26:24 Link to Item http://hdl.handle.net/10150/594955 FOAMY-LIKE ENDOGENOUS RETROVIRUSES ARE ABUNDANT AND EXTENSIVE IN TELEOSTS by RYAN RUBOYIANES ____________________________ Copyright © Ryan Ruboyianes 2015 A Thesis Submitted to the Faculty of the DEPARTMENT OF ECOLOGY & EVOLUTIONARY BIOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 2015 STATEMENT BY AUTHOR The thesis titled Foamy-like Endogenous Retroviruses Are Abundant and Extensive in Teleosts prepared by Ryan Ruboyianes has been submitted in partial fulfillment of requirements for a master’s degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that an accurate acknowledgement of the source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the copyright holder. SIGNED: Ryan Ruboyianes APPROVAL BY THESIS DIRECTOR This thesis has been approved on the date shown below: _______________________ Dr. Michael Worobey Date Professor of Ecology & Evolutionary Biology 2 ACKNOWLEDGEMENTS I would like to thank, from the depths of my heart, Tom Watts, for his technical and moral guidance towards completing this stage of my education.
    [Show full text]
  • Construction of Infectious Feline Foamy Virus Genomes: Cat Antisera Do Not Cross-Neutralize Feline Foamy Virus Chimera with Serotype-Specific Env Sequences
    Virology 266, 150–156 (2000) doi:10.1006/viro.1999.0037, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Construction of Infectious Feline Foamy Virus Genomes: Cat Antisera Do Not Cross-Neutralize Feline Foamy Virus Chimera with Serotype-Specific Env Sequences Motomi Zemba,*,1 , Alexandra Alke,* Jochen Bodem,* Ingrid G. Winkler,† Robert L. P. Flower,†,‡ K.-I. Pfrepper,* Hajo Delius,* Rolf M. Flu¨gel,* and Martin Lo¨chelt*,2 *Abteilung Retrovirale Genexpression, Forschungsschwerpunkt Angewandte Tumorvirologie, Deutsches Krebsforschungszentrum, 69009 Heidelberg, Germany; †School of Pharmacy and Medical Science, University of South Australia, City East, North Terrace, Adelaide, South Australia, 5000; and ‡Northern Sydney Area Health Service, Royal North Shore Hospital, Sydney, New South Wales, Australia Received July 1, 1999; returned to author for revision August 31, 1999; accepted October 6, 1999 Full-length genomes of the feline foamy virus (FFV or FeFV) isolate FUV were constructed. DNA clone pFeFV-7 stably directed the expression of infectious FFV progeny virus indistinguishable from wild-type, uncloned FFV isolate FUV. The env and bel 1 genes of pFeFV-7 were substituted for by corresponding sequences of the FFV serotype 951 since previous studies implicated a defined part of FFV Env protein as responsible for serotype-specific differences in serum neutralization (I. G. Winkler, R. M. Flu¨gel, M. Lo¨chelt, and R. L. P. Flower, 1998. Virology 247: 144–151). Recombinant virus derived from chimeric plasmid pFeFV-7/951 containing the hybrid env gene and the parental clone pFeFV-7 were used for neutralization studies.
    [Show full text]
  • Characteristics of a Foamy Virus-Derived Vector That Allow for Safe Autologous Gene Therapy to Correct Leukocyte Adhesion Deficiency Ypet 1
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2007 Characteristics of a Foamy Virus-Derived Vector that allow for safe Autologous Gene Therapy to correct Leukocyte Adhesion Deficiency ypeT 1 Ryan Matthew McNichol Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Immunology and Infectious Disease Commons, and the Microbiology Commons Repository Citation McNichol, Ryan Matthew, "Characteristics of a Foamy Virus-Derived Vector that allow for safe Autologous Gene Therapy to correct Leukocyte Adhesion Deficiency ypeT 1" (2007). Browse all Theses and Dissertations. 174. https://corescholar.libraries.wright.edu/etd_all/174 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. Characteristics of a Foamy Virus-Derived Vector that allow for safe autologous gene therapy to correct Leukocyte Adhesion Deficiency Type-1 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By Ryan Matthew McNichol B.S. Wright State University, 2002 2007 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES June 11, 2007 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Ryan McNichol ENTITLED Characteristics of a Foamy Virus-Derived Vector that allow for safe Autologous Gene Therapy to Correct Leukocyte Adhesion Deficiency Type 1 BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science ___________________________ Nancy J.
    [Show full text]
  • Structure-Function Analysis of Ebola Virus Glycoproteins by Darryl L. Falzarano B.Sc., M.Sc. DOCTOR of PHILOSOPHY
    Structure-Function Analysis of Ebola Virus Glycoproteins by Darryl L. Falzarano B.Sc., M.Sc. A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements of the degree of DOCTOR OF PHILOSOPHY Department of Medical Microbiology University of Manitoba Winnipeg, MB Copyright © 2010 by Darryl L. Falzarano THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** COPYRIGHT PERMISSION A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirement of the degree of Doctor of Philosophy (c) 2010 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum. This reproduction or copy of this thesis has been made available by authority of the copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. i THIS THESIS HAS BEEN EXAMINED AND APPROVED. ______________________________________________________ Thesis supervisor, Dr. Heinz Feldmann, M.D., Ph.D. Associate Professor of Medical Microbiology Chief, Laboratory of Virology, Rocky Mountain Laboratories, DIR, NIAID, NIH ______________________________________________________ Dr. Kevin Coombs, Ph.D. Professor of Medical Microbiology, Internal Medicine Associate Dean (Research) Faculty of Medicine ______________________________________________________ Dr. John Wilkins, Ph.D. Professor of Internal Medicine, Immunology, Biochemistry and Medical Genetics Director, Manitoba Centre for Proteomics and Systems Biology ______________________________________________________ External Examiner, Dr.
    [Show full text]