Studies on the Assembly and Morphology of Human T

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Assembly and Morphology of Human T STUDIES ON THE ASSEMBLY AND MORPHOLOGY OF HUMAN T-CELL LEUKEMIA VIRUS TYPE 1 A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA José Orlando Maldonado-Ortiz IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: Louis M. Mansky, PhD August 2018 © José Maldonado, 2018 ACKNOWLEDGEMENTS I would like to thank: My wife, Lorie, whom since high school has been on my side, supporting every decision I have made, motivating me to continue regardless on the lengthiness of my studies, and for helping me stay sane during my graduate studies. My family, whom have supported and motivated me during my 25+ years as a student; they are always there to assist me whenever I need them. My friends, which in one-way or the other have provided support and friendship. My advisor, Dr. Louis Mansky, for always being supportive and providing me with knowledge, freedom, and the necessary equipment to complete my projects. I am also thankful to Lou for encouraging me to extend my graduate studies for another year, which was essential for me to better train as an independent investigator. My PhD dissertation committee members Drs. Paul Jardine, Peter Southern, and Wei Zhang, for their continued support, insightful discussions, and scientific and career advice. All members of the Mansky laboratory for their continued support and scientific discussions. My partial funding from the Institute for Molecular Virology Training Program (T32 AI083196) and my ongoing individual fellowship from the National Institute of Dental and Craniofacial Research (F30 DE22286). i DEDICATION I dedicate this thesis to my family and my wife, Lorie, for their constant support and unconditional love ii ABSTRACT The group-specific antigen (Gag) polyprotein is an essential retrovirus structural protein required for the assembly and release of virus particles. Present knowledge of Gag biology has been limited to a few retroviruses. Furthermore, current understanding of the diversity in the nature of Gag structure and function in virus particle assembly is limited. Human T-cell leukemia virus type 1 (HTLV-1) is a deltaretrovirus that causes an adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated-myelopathy/tropical spastic paraparesis (HAM/TSP), and other neurotropic conditions. HTLV-1 has infected approximately 15 million individuals worldwide. A general knowledge gap exists regarding the details of HTLV-1 replication, including particle assembly. To address this, and to test the overarching hypothesis that HTLV-1 particle assembly is distinct from that of other retroviruses, this dissertation focused on investigating three key aspects of HTLV-1 immature and mature particle morphology. First, an analysis of the morphology and Gag stoichiometry of HTLV-1-like particles and authentic, mature HTLV-1 particles by using cryogenic transmission electron microscopy (cryo-TEM) and scanning transmission electron microscopy (STEM) was conducted. HTLV-1-like particles mimicked the morphology of immature authentic HTLV-1 virions. Importantly, it was observed for the first time that the morphology of these virus-like particles (VLPs) has the unique local feature of a flat Gag lattice that does not follow the curvature of the viral membrane, resulting in an enlarged distance between the Gag lattice and the viral membrane. Measurement of the average size and mass of VLPs and authentic HTLV-1 particles suggested a consistent range of size and Gag copy numbers in these two groups of particles. The unique local flat Gag iii lattice morphological feature observed suggests that HTLV-1 Gag could be arranged in a lattice structure that is distinct from that of other retroviruses characterized to date. Second, the effects of Gag proteins labeled at the carboxy terminus with a fluorophore protein were analyzed for their influence on particle morphology. In particular, a HTLV-1 Gag expression construct with the yellow fluorescence protein (YFP) fused to the carboxy-terminus was used as a surrogate for the HTLV-1 Gag-Pro to assess the effects of co-packaging of Gag and a Gag-YFP on virus-like particle morphology and particles were analyzed by cryo-TEM. STEM and fluorescence fluctuation spectroscopy (FFS) were also used to determine the Gag stoichiometry. Ratios of 3:1 (Gag:Gag-YFP) or greater were found to result in a particle morphology indistinguishable from that of VLPs produced with the untagged HTLV-1 Gag, i.e., a mean diameter of ~113 nm and a mass of 220 MDa as determined by cryo-TEM and STEM, respectively. This information is useful for the quantitative analysis of Gag-Gag interactions that occur during virus particle assembly and in released immature particles. Third, cryo-electron tomography (cryo-ET) was used to analyze mature HTLV-1 particle morphology. Particles produced from MT-2 cells were polymorphic, roughly spherical, and varied in size. Capsid cores, when present, were typically poorly defined polyhedral structures with at least one curved region contacting the inner face of the viral membrane. Most of the particles observed lacked a defined capsid core, which likely impacts HTLV-1 particle infectivity. Taken together, the findings of this dissertation provide new insights into the nature of immature and mature HTLV-1 assembly and morphology and provide foundational knowledge towards an advanced understanding of the HTLV particle assembly pathway. iv TABLE OF CONTENTS PAGE List of tables ix List of figures x List of publications xii CHAPTER I: GENERAL INTRODUCTION 1 History and identification of human T-cell leukemia virus type 1 2 HTLV-1 clinical association 2 HTLV-1 head and neck clinical association 4 HTLV-1 genome organization 5 HTLV-1 infectious replication cycle 6 Attachment and fusion 6 Reverse transcription, nuclear transport and integration 7 Viral gene transcription 8 Post-transcriptional regulation 8 Viral protein translation 9 Gag trafficking 9 Gag and viral RNA trafficking 10 Budding and maturation 10 Gag-membrane interactions 11 Identification of Gag assembly sites along the inner leaflet of the plasma membrane 12 v Determinants of Gag-Gag interactions 13 Gag oligomerization 14 HTLV-1 transmission 15 Inter-host transmission 15 Cell-to-cell transmission 16 Virological synapses 17 Viral biofilms 18 Monoclonal expansion of HTLV-1 infected cells & leukemogenesis 18 Dissertation objectives 19 Figures 22 CHAPTER II: DISTINCT MORPHOLOGY OF HUMAN T-CELL LEUKEMIA VIRUS TYPE 1-LIKE PARTICLES 27 Introduction 28 Material and methods 30 Transfection and HTLV-1-like particle production 30 Gradient purification of authentic virus particles and VLPs 31 Cryo-TEM of HTLV-1-like particles and authentic virus particles 32 Determination of particle size 32 Determination of particle mass by STEM 33 Results 34 Analysis of the morphology of HTLV-1-like particles 34 Morphology of authentic HTLV-1 mature particles produced from MT-2 cells 35 STEM analyses of HTLV-1-like particles and authentic mature HTLV-1 vi Particles 36 Calculation of Gag stoichiometry in HTLV-1-like particles 37 Estimating Gag stoichiometry in authentic immature HTLV-1 particles by calculating Gag copy number in authentic mature HTLV-1 particles 38 Discussion 39 Figures 42 CHAPTER III: PERTURBATION OF HUMAN T-CELL LEUKEMIA VIRUS TYPE 1 PARTICLE MORPHOLOGY BY DIFFERENTIAL GAG CO-PACKAGING 48 Introduction 49 Materials and methods 52 Production and purification of HTLV-1-like particles 52 Cryo-TEM analysis of HTLV-1-like particles 53 Measurement of virus-like particle size 53 Fluorescence fluctuation spectroscopy, experimental setup and data analysis 54 Scanning transmission electron microscopy mass measurements of virus-like particles 56 Protein and RNA content of HTLV-1 virus-like particles 57 Results 58 Morphology of HTLV-1-like particles 58 Gag stoichiometry of HTLV-1-like particles determined by FFS 59 VLP diameter as determined by FFS 60 STEM analysis of HTLV-1-like particle mass 61 STEM determination of Gag stoichiometry in HTLV-1-like particles 62 Discussion 63 vii Conclusions 65 Figures 67 CHAPTER IV: ANALYSIS OF HUMAN T-CELL LEUKEMIA VIRUS TYPE 1 PARTICLES USING CRYO-ELECTRON TOMOGRAPHY 78 Text 79 Figures 88 CHAPTER V: DISSERTATION SUMMARY AND FINAL DISCUSSION 92 BIBLIOGRAPHY 101 APPENDIX I: DECLARATION OF CONTRIBUTIONS TO CO- AUTHORED PUBLICATIONS: DISTINCT PARTICLE MORPHOLOGIES REVEALED THROUGH COMPARATIVE PARALLEL ANALYSES OF RETROVIRUS-LIKE PARTICLES 129 APPENDIX II: DECLARATION OF CONTRIBUTIONS TO CO-AUTHORED PUBLICATIONS: DUAL ANTI-HIV MECHANISM OF CLOFARABINE 149 APPENDIX III: DECLARATION OF CONTRIBUTIONS TO CO- AUTHORED PUBLICATIONS: THE HIV-1 REVERSE TRANSCRIPTASE A62V MUTATION INFLUENCES REPLICATION FIDELITY AND VIRAL FITNESS IN THE CONTEXT OF MULTI-DRUG RESISTANCE MUTATIONS 168 APPENDIX IV: COPYRIGHT PERMISSIONS 183 viii LIST OF TABLES CHAPTER II PAGE Table 2-1 Summary of the mass determinations and the calculated Gag copy number per particle in human T-cell leukemia virus type 1(HTLV-1)- like particles and authentic HTLV-1 particles 47 CHAPTER III Table 3-1 Summary of HTLV-1-like particle mass determination and calculation of Gag copy number per particle 76 CHAPTER V Table 5-1 Summary of authentic HTLV-1 particle, HTLV-1-like particle, and HTLV-1-like particle expressing Gag/Gag-YFP at a 3 to 1 ratio particle size, mass determination and calculation of Gag copy number per particle 100 ix LIST OF FIGURES CHAPTER I PAGE Figure 1-1 HTLV-1 genome organization 22 Figure 1-2 HTLV-1 life cycle 23 Figure 1-3 Gag and retrovirus particle
Recommended publications
  • Combining Analysis of DNA in a Crude Virion Extraction with the Analysis of RNA from Infected Leaves to Discover New Virus Genomes
    Journal of Visualized Experiments www.jove.com Video Article Combining Analysis of DNA in a Crude Virion Extraction with the Analysis of RNA from Infected Leaves to Discover New Virus Genomes Jeanmarie Verchot1, Aastha Thapa2, Dulanjani Wijayasekara3, Peter R. Hoyt4 1 Texas A&M Agrilife Center at Dallas 2 Noble Research Center, Oklahoma State University 3 Department of Biology, College of Engineering and Natural Sciences, The University of Tulsa 4 Bioinformatics and Genomics Core Facility, Department of Biochemistry and Molecular Biology, Oklahoma State University Correspondence to: Jeanmarie Verchot at [email protected] URL: https://www.jove.com/video/57855 DOI: doi:10.3791/57855 Keywords: Immunology and Infection, Issue 137, Virus purification, plant virus, next-generation sequencing, badnavirus, virus metagenomics, virus Date Published: 7/27/2018 Citation: Verchot, J., Thapa, A., Wijayasekara, D., Hoyt, P.R. Combining Analysis of DNA in a Crude Virion Extraction with the Analysis of RNA from Infected Leaves to Discover New Virus Genomes. J. Vis. Exp. (137), e57855, doi:10.3791/57855 (2018). Abstract This metagenome approach is used to identify plant viruses with circular DNA genomes and their transcripts. Often plant DNA viruses that occur in low titers in their host or cannot be mechanically inoculated to another host are difficult to propagate to achieve a greater titer of infectious material. Infected leaves are ground in a mild buffer with optimal pH and ionic composition recommended for purifying most bacilliform Para retroviruses. Urea is used to break up inclusion bodies that trap virions and to dissolve cellular components. Differential centrifugation provides further separation of virions from plant contaminants.
    [Show full text]
  • Feline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model
    Viruses 2013, 5, 1702-1718; doi:10.3390/v5071702 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Feline Foamy Virus-Based Vectors: Advantages of an Authentic Animal Model †,‡ † Weibin Liu , Janet Lei , Yang Liu, Dragana Slavkovic Lukic, Ann-Mareen Räthe, # Qiuying Bao, Timo Kehl, Anne Bleiholder, Torsten Hechler and Martin Löchelt * Department of Genome Modifications, Research Program Infection and Cancer, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany; E-Mails: [email protected] (W.L.); [email protected] (J.L.); [email protected] (Y.L.); [email protected] (D.S.L.); [email protected] (A.-M.R.); [email protected] (Q.B.); [email protected] (T.K.); [email protected] (T.H.) † These authors contributed equally to this work. ‡ Current address: Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA. # Current address: Department of Biochemistry, Heidelberg Pharma GmbH, Schriesheimer Str. 101, 68526 Ladenburg, Germany. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-6221-424933; Fax: +49-6221-424932. Received: 1 March 2013; in revised form: 13 June 2013 / Accepted: 25 June 2013 / Published: 12 July 2013 Abstract: New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV).
    [Show full text]
  • Bovine Leukemia Virus (BLV) Infection (Cumulative Percentages*)
    June 2014 James Evermann, Professor Bovine Leukosis – Where have we been? Bovine leukosis (leukemia) virus infection has been monitored in the United States cattle population since the late 1970’s when a serologic test was first introduced (14). Prior to that time there was sporadic clinical evidence dating back to the late 1800’s that cattle were susceptible to infectious cancer (13). The agent was first identified in 1969, and that discovery allowed for development of various diagnostic tests. Over the past 40 years testing has allowed us to monitor for BLV infection from its subclinical phase to the clinical phase, and construct reliable control strategies for BLV infection in herds, regions, and in some cases, complete eradication (12). Initially, there were two reasons to control BLV. They were first centered on reduction of carcass condemnation at meat processing plants, and the second was to improve trade-marketing of cattle within regions and between countries. Since overt clinical forms of bovine leukosis were being noticed less due to cows shorter duration of time on the farm (primarily dairy cattle), trade restrictions between countries were the predominant reasons to test for and certify populations of cattle as “BLV free” (16). Recently, there has been renewed interest in controlling BLV within the United States not only for improvement of trade-marketing of cattle, but also because of newer data, which affirms that BLV infection has a negative effect on dairy cattle production (1, 6). These data, in addition to reports of BLV genomic segments being found in human tissues have prompted this update (5, 10).
    [Show full text]
  • Retroviral Infections in Sheep and Goats: Small Ruminant Lentiviruses and Host Interaction
    Viruses 2013, 5, 2043-2061; doi:10.3390/v5082043 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Retroviral Infections in Sheep and Goats: Small Ruminant Lentiviruses and Host Interaction Amaia Larruskain and Begoña M. Jugo * Genomics and Health Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Bilbao 48080, Spain; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-94-601-5518. Received: 3 June 2013; in revised form: 26 July 2013 / Accepted: 5 August 2013 / Published: 19 August 2013 Abstract: Small ruminant lentiviruses (SRLV) are members of the Retrovirus family comprising the closely related Visna/Maedi Virus (VMV) and the Caprine Arthritis- Encephalitis Virus (CAEV), which infect sheep and goats. Both infect cells of the monocyte/macrophage lineage and cause lifelong infections. Infection by VMV and CAEV can lead to Visna/Maedi (VM) and Caprine Arthritis-Encephalitis (CAE) respectively, slow progressive inflammatory diseases primarily affecting the lungs, nervous system, joints and mammary glands. VM and CAE are distributed worldwide and develop over a period of months or years, always leading to the death of the host, with the consequent economic and welfare implications. Currently, the control of VM and CAE relies on the control of transmission and culling of infected animals. However, there is evidence that host genetics play an important role in determining Susceptibility/Resistance to SRLV infection and disease progression, but little work has been performed in small ruminants.
    [Show full text]
  • Pathobiology of Bovine Leukemia Virus I Schwartz, D Lévy
    Pathobiology of bovine leukemia virus I Schwartz, D Lévy To cite this version: I Schwartz, D Lévy. Pathobiology of bovine leukemia virus. Veterinary Research, BioMed Central, 1994, 25 (6), pp.521-536. hal-00902257 HAL Id: hal-00902257 https://hal.archives-ouvertes.fr/hal-00902257 Submitted on 1 Jan 1994 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Review article Pathobiology of bovine leukemia virus I Schwartz D Lévy URA-INRA d’Immuno-Pathologie Cellulaire et Moléculaire, École Nationale Vétérinaire dAlfort, 7, avenue du Général-de-Gaulle, 94704 Maisons-Alfort cedex, France (Received 16 March 1994; accepted 25 July 1994) Summary ― Bovine leukemia virus (BLV) is a retrovirus similar to the human T-cell leukemia virus (HTLV). Most BLV infected animals (70%) develop a B-cell lymphoproliferative syndrome with altered productive traits and 1 to 5% die with B-cell lymphosarcomas. Although BLV infection is worid-wide, west- ern European countries have almost eradicated it by slaughtering the seropositive animals. BLV infec- tion remains endemic in many countries including the United States and prophylactic strategies involv- ing recombinant vaccine vectors, genetically modified BLV and transgenic animals resistant to the infection are under study.
    [Show full text]
  • Lymphadenopathy-Associated Virus and Molecular Cloning Of
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 9754-9758, December 1986 Medical Sciences Cross-reactivity to human T-lymphotropic virus type III/ lymphadenopathy-associated virus and molecular cloning of simian T-cell lymphotropic virus type III from African green monkeys (simian retrovirus/unintegrated viral DNA/acquired immunodeficiency syndrome/nucleic acid hybridization) VANESSA HIRSCH, NORBERT RIEDEL, HARDY KORNFELD, PHYLLIS J. KANKI, M. ESSEX, AND JAMES I. MULLINS* Department of Cancer Biology, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115 Communicated by Norman Davidson, September 10, 1986 ABSTRACT Simian T-lymphotropic retroviruses with STLV-III viruses also share a tropism and are cytopathic for structural, antigenic, and cytopathic features similar to the human T4 lymphocytes in culture (11-17), suggesting that etiologic agent of human acquired immunodeficiency syn- study of STLV-III may yield insight into mechanisms of drome, human T-lymphotropic virus type III/lymph- disease induction relevant to human acquired immunodefi- adenopathy-associated virus (HTLV-I/LAV), have been iso- ciency syndrome (AIDS). lated from a variety of primate species including African green STLV-III was first identified in captive, ill rhesus monkeys monkeys (STLV-IIIAGM). This report describes nucleic acid (Macaca mulatta) in the United States (STLV-IImac) (12, 13) cross-reactivity between STLV-UIAGM and HTLV-Il/LAV, and a very similar virus was found in a large proportion of molecular cloning of the STLV-IIIAGM genome, and evaluation
    [Show full text]
  • Study of Chikungunya Virus Entry and Host Response to Infection Marie Cresson
    Study of chikungunya virus entry and host response to infection Marie Cresson To cite this version: Marie Cresson. Study of chikungunya virus entry and host response to infection. Virology. Uni- versité de Lyon; Institut Pasteur of Shanghai. Chinese Academy of Sciences, 2019. English. NNT : 2019LYSE1050. tel-03270900 HAL Id: tel-03270900 https://tel.archives-ouvertes.fr/tel-03270900 Submitted on 25 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : 2019LYSE1050 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale N° 341 – E2M2 Evolution, Ecosystèmes, Microbiologie, Modélisation Spécialité de doctorat : Biologie Discipline : Virologie Soutenue publiquement le 15/04/2019, par : Marie Cresson Study of chikungunya virus entry and host response to infection Devant le jury composé de : Choumet Valérie - Chargée de recherche - Institut Pasteur Paris Rapporteure Meng Guangxun - Professeur - Institut Pasteur Shanghai Rapporteur Lozach Pierre-Yves - Chargé de recherche - CHU d'Heidelberg Rapporteur Kretz Carole - Professeure - Université Claude Bernard Lyon 1 Examinatrice Roques Pierre - Directeur de recherche - CEA Fontenay-aux-Roses Examinateur Maisse-Paradisi Carine - Chargée de recherche - INRA Directrice de thèse Lavillette Dimitri - Professeur - Institut Pasteur Shanghai Co-directeur de thèse 2 UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M.
    [Show full text]
  • Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates Pileatus (Pileated Gibbon) Reveals Ancient Co-Evolution with Lesser Apes
    viruses Article Molecular Analysis of the Complete Genome of a Simian Foamy Virus Infecting Hylobates pileatus (pileated gibbon) Reveals Ancient Co-Evolution with Lesser Apes Anupama Shankar 1, Samuel D. Sibley 2, Tony L. Goldberg 2 and William M. Switzer 1,* 1 Laboratory Branch, Division of HIV/AIDS Prevention, Center for Disease Control and Prevention, Atlanta, GA 30329, USA 2 Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA * Correspondence: [email protected]; Tel.: +1-404-639-2019 Received: 1 April 2019; Accepted: 30 June 2019; Published: 3 July 2019 Abstract: Foamy viruses (FVs) are complex retroviruses present in many mammals, including nonhuman primates, where they are called simian foamy viruses (SFVs). SFVs can zoonotically infect humans, but very few complete SFV genomes are available, hampering the design of diagnostic assays. Gibbons are lesser apes widespread across Southeast Asia that can be infected with SFV, but only two partial SFV sequences are currently available. We used a metagenomics approach with next-generation sequencing of nucleic acid extracted from the cell culture of a blood specimen from a lesser ape, the pileated gibbon (Hylobates pileatus), to obtain the complete SFVhpi_SAM106 genome. We used Bayesian analysis to co-infer phylogenetic relationships and divergence dates. SFVhpi_SAM106 is ancestral to other ape SFVs with a divergence date of ~20.6 million years ago, reflecting ancient co-evolution of the host and SFVhpi_SAM106. Analysis of the complete SFVhpi_SAM106 genome shows that it has the same genetic architecture as other SFVs but has the longest recorded genome (13,885-nt) due to a longer long terminal repeat region (2,071 bp).
    [Show full text]
  • Silencers of HTLV-1 and HTLV-2
    Harrod Retrovirology (2019) 16:25 https://doi.org/10.1186/s12977-019-0487-9 Retrovirology REVIEW Open Access Silencers of HTLV-1 and HTLV-2: the pX-encoded latency-maintenance factors Robert Harrod* Abstract Of the members of the primate T cell lymphotropic virus (PTLV) family, only the human T-cell leukemia virus type-1 (HTLV-1) causes disease in humans—as the etiological agent of adult T-cell leukemia/lymphoma (ATLL), HTLV-1-as- sociated myelopathy/tropical spastic paraparesis (HAM/TSP), and other auto-infammatory disorders. Despite having signifcant genomic organizational and structural similarities, the closely related human T-cell lymphotropic virus type-2 (HTLV-2) is considered apathogenic and has been linked with benign lymphoproliferation and mild neuro- logical symptoms in certain infected patients. The silencing of proviral gene expression and maintenance of latency are central for the establishment of persistent infections in vivo. The conserved pX sequences of HTLV-1 and HTLV-2 encode several ancillary factors which have been shown to negatively regulate proviral gene expression, while simul- taneously activating host cellular proliferative and pro-survival pathways. In particular, the ORF-II proteins, HTLV-1 p30 II and HTLV-2 p28II, suppress Tax-dependent transactivation from the viral promoter—whereas p30 II also inhibits PU.1- mediated infammatory-signaling, diferentially augments the expression of p53-regulated metabolic/pro-survival genes, and induces lymphoproliferation which could promote mitotic proviral replication. The ubiquitinated form of the HTLV-1 p13II protein localizes to nuclear speckles and interferes with recruitment of the p300 coactivator by the viral transactivator Tax. Further, the antisense-encoded HTLV-1 HBZ and HTLV-2 APH-2 proteins and mRNAs negatively regulate Tax-dependent proviral gene expression and activate infammatory signaling associated with enhanced T-cell lymphoproliferation.
    [Show full text]
  • REVIEW Molecular and Cellular Aspects of HTLV-1 Associated
    Leukemia (2003) 17, 26–38 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu REVIEW Molecular and cellular aspects of HTLV-1 associated leukemogenesis in vivo F Mortreux1,3, A-S Gabet1 and E Wattel1,2 1Unite´ d’Oncogene`se Virale, UMR5537 CNRS-Universite´ Claude Bernard, Centre Le´ ´on Be´rard, Lyon, France; and 2Service d’He´matologie, Pavillon E, Hoˆpital Edouard Herriot, Lyon, France Most cancers and leukemias are preceded by a prolonged per- leukemia/lymphoma (ATLL).2,3 Furthermore, this virus has iod of clinical latency during which cellular, chromosomal and been associated with the development of a chronic progress- molecular aberrations help move normal cell towards the malig- ive neuromyelopathy (tropical spastic paraparesis (TSP)/HTLV- nant phenotype. The problem is that premalignant cells are 4 usually indistinguishable from their normal counterparts, ther- 1-associated myelopathy (HAM)), and, to a lesser extent, to eby ruling out the possibility to investigate the events that a variety of inflammatory diseases.5–9 govern early leukemogenesis in vivo. Adult T cell Among the 15–25 million individuals infected worldwide, leukemia/lymphoma (ATLL) is a T cell malignancy that occurs approximately 3% to 5% will develop ATLL, depending on as after a 40–60-year period of clinical latency in about 3–5% of yet unknown cofactors. ATLL harbors different clinical fea- HTLV-1-infected individuals. ATLL cells are monoclonally expanded and harbor an integrated provirus. A persistent tures resulting in a division of the spectrumof the disease into 10,11 oligo/polyclonal expansion of HTLV-1-bearing cells has been four clinical subtypes referred to as acute, lymphoma, shown to precede ATLL, supporting the fact that in ATLL tumor chronic and smoldering subtypes.
    [Show full text]
  • An Endogenous Foamy-Like Viral Element in the Coelacanth Genome
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central An Endogenous Foamy-like Viral Element in the Coelacanth Genome Guan-Zhu Han*, Michael Worobey* Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, United States of America Abstract Little is known about the origin and long-term evolutionary mode of retroviruses. Retroviruses can integrate into their hosts’ genomes, providing a molecular fossil record for studying their deep history. Here we report the discovery of an endogenous foamy virus-like element, which we designate ‘coelacanth endogenous foamy-like virus’ (CoeEFV), within the genome of the coelacanth (Latimeria chalumnae). Phylogenetic analyses place CoeEFV basal to all known foamy viruses, strongly suggesting an ancient ocean origin of this major retroviral lineage, which had previously been known to infect only land mammals. The discovery of CoeEFV reveals the presence of foamy-like viruses in species outside the Mammalia. We show that foamy-like viruses have likely codiverged with their vertebrate hosts for more than 407 million years and underwent an evolutionary transition from water to land with their vertebrate hosts. These findings suggest an ancient marine origin of retroviruses and have important implications in understanding foamy virus biology. Citation: Han G-Z, Worobey M (2012) An Endogenous Foamy-like Viral Element in the Coelacanth Genome. PLoS Pathog 8(6): e1002790. doi:10.1371/ journal.ppat.1002790 Editor: Michael Emerman, Fred Hutchinson Cancer Research Center, United States of America Received February 29, 2012; Accepted May 22, 2012; Published June 28, 2012 Copyright: ß 2012 Han, Worobey.
    [Show full text]
  • Process Infectivity at Multiple Steps of the Entry Responses and Directly
    Antibodies to the Envelope Glycoprotein of Human T Cell Leukemia Virus Type 1 Robustly Activate Cell-Mediated Cytotoxic Responses and Directly Neutralize Viral This information is current as Infectivity at Multiple Steps of the Entry of September 26, 2021. Process Chien-Wen S. Kuo, Antonis Mirsaliotis and David W. Brighty Downloaded from J Immunol published online 6 June 2011 http://www.jimmunol.org/content/early/2011/06/06/jimmun ol.1100070 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2011/06/06/jimmunol.110007 Material 0.DC1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published June 6, 2011, doi:10.4049/jimmunol.1100070 The Journal of Immunology Antibodies to the Envelope Glycoprotein of Human T Cell Leukemia Virus Type 1 Robustly Activate Cell-Mediated Cytotoxic Responses and Directly Neutralize Viral Infectivity at Multiple Steps of the Entry Process Chien-Wen S.
    [Show full text]