Foamy Viruses, Bet, and APOBEC3 Restriction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders
viruses Review Non-Primate Lentiviral Vectors and Their Applications in Gene Therapy for Ocular Disorders Vincenzo Cavalieri 1,2,* ID , Elena Baiamonte 3 and Melania Lo Iacono 3 1 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy 2 Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy 3 Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, 90146 Palermo, Italy; [email protected] (E.B.); [email protected] (M.L.I.) * Correspondence: [email protected] Received: 30 April 2018; Accepted: 7 June 2018; Published: 9 June 2018 Abstract: Lentiviruses have a number of molecular features in common, starting with the ability to integrate their genetic material into the genome of non-dividing infected cells. A peculiar property of non-primate lentiviruses consists in their incapability to infect and induce diseases in humans, thus providing the main rationale for deriving biologically safe lentiviral vectors for gene therapy applications. In this review, we first give an overview of non-primate lentiviruses, highlighting their common and distinctive molecular characteristics together with key concepts in the molecular biology of lentiviruses. We next examine the bioengineering strategies leading to the conversion of lentiviruses into recombinant lentiviral vectors, discussing their potential clinical applications in ophthalmological research. Finally, we highlight the invaluable role of animal organisms, including the emerging zebrafish model, in ocular gene therapy based on non-primate lentiviral vectors and in ophthalmology research and vision science in general. Keywords: FIV; EIAV; BIV; JDV; VMV; CAEV; lentiviral vector; gene therapy; ophthalmology; zebrafish 1. -
The Viruses of Vervet Monkeys and of Baboons in South Africa
THE VIRUSES OF VERVET MONKEYS AND OF BABOONS IN SOUTH AFRICA Hubert Henri Malherbe A Thesis Submitted to the Faculty of Medicine University of the Witwatersrand, Johannesburg for the Degree of Doctor of Medicine Johannesburg 1974 11 ABSTRACT In this thesis are presented briefly the results of studies extending over the period 1955 to 1974. The use of vervet monkeys in South Africa for the production and testing of poliomyelitis vaccine made acquaintance with their viruses inevitable; and the subsequent introduction of the baboon as a laboratory animal of major importance also necessitates a knowledge of its viral flora. Since 1934 when Sabin and Wright described the B Virus which was recovered from a fatal human infection contracted as the result of a macaque monkey bite, numerous viral agents have been isolated from monkeys and baboons. In the United States of America, Dr. Robert N. Hull initiated the classification of simian viruses in an SV (for Simian Virus) series according to cytopathic effects as seen in unstained infected tissue cultures. In South Africa, viruses recovered from monkeys and baboons were designated numerically in an SA (for Simian Agent) series on the basis of cytopathic changes seen in stained preparations of infected cells. Integration of these two series is in progress. Simian viruses in South Africa have been recovered mainly through the inoculation of tissue cultures with material obtained by means of throat and rectal swabs, and also through the unmasking of latent agents present in kidney cells prepared as tissue cultures. Some evidence concerning viral activity has been derived from serological tests. -
LENTIVIRUS and LENTIVIRAL VECTORS
LENTIVIRUS and LENTIVIRAL VECTORS Risk Group: 3 I. Background and Health Hazards Lentiviruses are a subset of retroviruses that have the ability to integrate into host chromosomes and to infect non-dividing cells, and include human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) which can infect humans. Another commonly used lentivirus that is infectious to animals, but not humans, is feline immunodeficiency virus (FIV). Lentiviral vectors consist of recombinant or synthetic nucleic acid sequences and HIV or other lentivirus- based viral packaging and regulatory sequences flanked by either wild-type or chimeric long terminal repeat (LTR) regions. Use of these vector systems is particularly desirable because of their ability to integrate transgenes into dividing, as well as, non-dividing cells. However, there are risks associated with working with lentiviral vectors and these must be carefully evaluated. The two major risks are: 1) the potential generation of replication competent lentivirus (RCL); and 2) the potential for oncogenesis. These risks are largely based upon the vector system used and the transgene insert encoded by the vector. Therefore, it is imperative that prior to utilizing a lentiviral vector system, a risk assessment must be reviewed and documented. Also, because construction and/or use of lentiviral vectors falls under the definition of r/sNA research as outlined in the NIH Guidelines, possession must be reported in the workplace’s biological agent inventory and experiments must be submitted for review and approval by the site IBC prior to initiation. II. MODES OF TRANSMISSION Lentivirus is transmissible through injection, ingestion, exposure to broken skin or contact with mucous membranes of the eyes, nose and mouth. -
Advances in the Study of Transmissible Respiratory Tumours in Small Ruminants Veterinary Microbiology
Veterinary Microbiology 181 (2015) 170–177 Contents lists available at ScienceDirect Veterinary Microbiology journa l homepage: www.elsevier.com/locate/vetmic Advances in the study of transmissible respiratory tumours in small ruminants a a a a,b a, M. Monot , F. Archer , M. Gomes , J.-F. Mornex , C. Leroux * a INRA UMR754-Université Lyon 1, Retrovirus and Comparative Pathology, France; Université de Lyon, France b Hospices Civils de Lyon, France A R T I C L E I N F O A B S T R A C T Sheep and goats are widely infected by oncogenic retroviruses, namely Jaagsiekte Sheep RetroVirus (JSRV) Keywords: and Enzootic Nasal Tumour Virus (ENTV). Under field conditions, these viruses induce transformation of Cancer differentiated epithelial cells in the lungs for Jaagsiekte Sheep RetroVirus or the nasal cavities for Enzootic ENTV Nasal Tumour Virus. As in other vertebrates, a family of endogenous retroviruses named endogenous Goat JSRV Jaagsiekte Sheep RetroVirus (enJSRV) and closely related to exogenous Jaagsiekte Sheep RetroVirus is present Lepidic in domestic and wild small ruminants. Interestingly, Jaagsiekte Sheep RetroVirus and Enzootic Nasal Respiratory infection Tumour Virus are able to promote cell transformation, leading to cancer through their envelope Retrovirus glycoproteins. In vitro, it has been demonstrated that the envelope is able to deregulate some of the Sheep important signaling pathways that control cell proliferation. The role of the retroviral envelope in cell transformation has attracted considerable attention in the past years, but it appears to be highly dependent of the nature and origin of the cells used. Aside from its health impact in animals, it has been reported for many years that the Jaagsiekte Sheep RetroVirus-induced lung cancer is analogous to a rare, peculiar form of lung adenocarcinoma in humans, namely lepidic pulmonary adenocarcinoma. -
The Expression of Human Endogenous Retroviruses Is Modulated by the Tat Protein of HIV‐1
The Expression of Human Endogenous Retroviruses is modulated by the Tat protein of HIV‐1 by Marta Jeannette Gonzalez‐Hernandez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2012 Doctoral Committee Professor David M. Markovitz, Chair Professor Gary Huffnagle Professor Michael J. Imperiale Associate Professor David J. Miller Assistant Professor Akira Ono Assistant Professor Christiane E. Wobus © Marta Jeannette Gonzalez‐Hernandez 2012 For my family and friends, the most fantastic teachers I have ever had. ii Acknowledgements First, and foremost, I would like to thank David Markovitz for his patience and his scientific and mentoring endeavor. My time in the laboratory has been an honor and a pleasure. Special thanks are also due to all the members of the Markovitz laboratory, past and present. It has been a privilege, and a lot of fun, to work near such excellent scientists and friends. You all have a special place in my heart. I would like to thank all the members of my thesis committee for all the valuable advice, help and jokes whenever needed. Our collaborators from the Bioinformatics Core, particularly James Cavalcoli, Fan Meng, Manhong Dai, Maureen Sartor and Gil Omenn gave generous support, technical expertise and scientific insight to a very important part of this project. Thank you. Thanks also go to Mariana Kaplan’s and Akira Ono’s laboratory for help with experimental designs and for being especially generous with time and reagents. iii Table of Contents Dedication ............................................................................................................................ ii Acknowledgements ............................................................................................................. iii List of Figures ................................................................................................................... -
Characterization of a Full-Length Infectious Clone of Bovine Foamy Virus 3026
VIROLOGICA SINICA 2014, 29 (2): 94-102 DOI 10.1007/s12250-014-3382-5 RESEARCH ARTICLE Characterization of a full-length infectious clone of bovine foamy virus 3026 * Tiejun Bing1, Hong Yu1, 2, Yue Li1, Lei Sun3, Juan Tan1, Yunqi Geng1, Wentao Qiao1 1. Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China; 2. Department of Molecular and Cellular Pharmacology, the Vascular Biology Institute, University of Miami School of Medicine, Miami, FL 33136, USA; 3. National Laboratory of Biomacromolecules, Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China The biological features of most foamy viruses (FVs) are poorly understood, including bovine foamy virus (BFV). BFV strain 3026 (BFV3026) was isolated from the peripheral blood mononuclear cells of an infected cow in Zhangjiakou, China. A full-length genomic clone of BFV3026 was obtained from BFV3026-infected cells, and it exhibited more than 99% amino acid (AA) homology to another BFV strain isolated in the USA. Upon transfection into fetal canine thymus cells, the full-length BFV3026 clone produced viral structural and auxiliary proteins, typical cytopathic effects, and virus particles. These results demonstrate that the full-length BFV3026 clone is fully infectious and can be used in further BFV3026 research. KEYWORDS bovine foamy virus; infectious clone; syncytium; electron microscopy pol, and env structural genes and additional open read- INTRODUCTION ing frames (ORFs) that are under the control of the 5′- long terminal repeat (LTR) and an internal promoter (IP) Foamy viruses (FVs) are members of Retroviridae. -
Murine Models for Evaluating Antiretroviral Therapy1
[CANCER RESEARCH (SUPPL.) 50. 56l8s-5627s, September 1, I990| Murine Models for Evaluating Antiretroviral Therapy1 Ruth M. Ruprecht,2 Lisa D. Bernard, Ting-Chao Chou, Miguel A. Gama Sosa, Fatemeh Fazely, John Koch, Prem L. Sharma, and Steve Mullaney Division of Cancer Pharmacology. Dana-Farber Cancer Institute ¡R.M. R., L. D. B., M. A. G. S.. F. F.. J. K.. P. L. S., S. M.J; Departments of Medicine [R. M. K.J. Pathology ¡M.A. G. S.J, and Biological Chemistry and Molecular Pharmacology [F. F., J. K., P. L. S.J. Harvard Medical School, Boston, Massachusetts 02115, and Memorial Sloan-Kettering Cancer Center ¡T-C.C.], New York, New York 10021 Abstract Prior to using a given animal model system to test a candidate anti-AIDS agent, the following questions need to be addressed: The pandemic of the acquired immunodeficiency syndrome (AIDS), (a) Is the potential anti-AIDS drug an antiviral agent or an caused by the human immunodeficiency virus type 1 (IIIV-I ). requires immunomodulator that may be able to restore certain immune rapid development of effective therapy and prevention. Analysis of can didate anti-HIV-1 drugs in animals is problematic since no ideal animal functions? Thus, is a candidate anti-AIDS drug likely to be model for IIIV-I infection and disease exists. For many reasons, including active during the phase of asymptomatic viremia or only during small size, availability of inbred strains, immunological reagents, and overt disease? (¿>)Does a candidate antiviral agent inhibit a lymphokines, murine systems have been used for in vivo analysis of retroviral function shared by all retroviruses such as gag, pol, antiretroviral agents. -
Foamy Virus Assembly with Emphasis on Pol Encapsidation
Viruses 2013, 5, 886-900; doi:10.3390/v5030886 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Foamy Virus Assembly with Emphasis on Pol Encapsidation Eun-Gyung Lee 1, Carolyn R. Stenbak 2 and Maxine L. Linial 1,* 1 Fred Hutchinson Cancer Research Center, Basic Sciences Division; 1100 Fairview Avenue North, Seattle, WA 98109, USA; E-Mails: [email protected] (EGL); [email protected] (MLL) 2 Seattle University, Biology Department; 901 12th Avenue, Seattle, WA 98122, USA; E-Mail: [email protected] * Authors to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-206- 667-4442; Fax: +1-206-667-5939 Received: 31 January 2013; in revised form: 11 March 2013 / Accepted: 14 March 2013 / Published: 20 March 2013 Abstract: Foamy viruses (FVs) differ from all other genera of retroviruses (orthoretroviruses) in many aspects of viral replication. In this review, we discuss FV assembly, with special emphasis on Pol incorporation. FV assembly takes place intracellularly, near the pericentriolar region, at a site similar to that used by betaretroviruses. The regions of Gag, Pol and genomic RNA required for viral assembly are described. In contrast to orthoretroviral Pol, which is synthesized as a Gag-Pol fusion protein and packaged through Gag-Gag interactions, FV Pol is synthesized from a spliced mRNA lacking all Gag sequences. Thus, encapsidation of FV Pol requires a different mechanism. We detail how WT Pol lacking Gag sequences is incorporated into virus particles. In addition, a mutant in which Pol is expressed as an orthoretroviral-like Gag-Pol fusion protein is discussed. -
And Giant Guitarfish (Rhynchobatus Djiddensis)
VIRAL DISCOVERY IN BLUEGILL SUNFISH (LEPOMIS MACROCHIRUS) AND GIANT GUITARFISH (RHYNCHOBATUS DJIDDENSIS) BY HISTOPATHOLOGY EVALUATION, METAGENOMIC ANALYSIS AND NEXT GENERATION SEQUENCING by JENNIFER ANNE DILL (Under the Direction of Alvin Camus) ABSTRACT The rapid growth of aquaculture production and international trade in live fish has led to the emergence of many new diseases. The introduction of novel disease agents can result in significant economic losses, as well as threats to vulnerable wild fish populations. Losses are often exacerbated by a lack of agent identification, delay in the development of diagnostic tools and poor knowledge of host range and susceptibility. Examples in bluegill sunfish (Lepomis macrochirus) and the giant guitarfish (Rhynchobatus djiddensis) will be discussed here. Bluegill are popular freshwater game fish, native to eastern North America, living in shallow lakes, ponds, and slow moving waterways. Bluegill experiencing epizootics of proliferative lip and skin lesions, characterized by epidermal hyperplasia, papillomas, and rarely squamous cell carcinoma, were investigated in two isolated poopulations. Next generation genomic sequencing revealed partial DNA sequences of an endogenous retrovirus and the entire circular genome of a novel hepadnavirus. Giant Guitarfish, a rajiform elasmobranch listed as ‘vulnerable’ on the IUCN Red List, are found in the tropical Western Indian Ocean. Proliferative skin lesions were observed on the ventrum and caudal fin of a juvenile male quarantined at a public aquarium following international shipment. Histologically, lesions consisted of papillomatous epidermal hyperplasia with myriad large, amphophilic, intranuclear inclusions. Deep sequencing and metagenomic analysis produced the complete genomes of two novel DNA viruses, a typical polyomavirus and a second unclassified virus with a 20 kb genome tentatively named Colossomavirus. -
Lentivirus Vector Fact Sheet
LENTIVIRUS VECTOR FACT SHEET LENTIVIRUSES: Lentiviral vector constructs are derived from HIV and are therefore highly efficient vehicles for in vivo gene delivery. Use of these vector systems is particularly desirable because of their ability to integrate transgenes into dividing, as well as, non-dividing cells. However, there are risks associated with working with lentiviral vectors and these must be carefully evaluated. The two major risks are: 1) the potential generation of replication competent virus; and 2) the potential for oncogenesis through insertional mutagenesis. These risks are largely based upon the vector system used and the transgene insert encoded by the vector. Therefore, it is imperative that prior to utilizing a lentiviral vector system, a risk assessment must be completed and documented. Also, because construction and/or use of lentiviral vectors falls under the definition of rDNA research as outlined in the NIH Recombinant DNA Guidelines, possession must be reported in the workplace’s biological agent inventory and experiments must be submitted for review and approval by the site IBC prior to initiation. Typically, lentiviral vectors may be safely handled using either BSL-2 or BSL-2 enhanced controls depending upon the risk assessment. LENTIVIRAL VECTORS: Lentiviruses can infect not only dividing, but also non-dividing host cells, because their pre-integration complex (virus “shell”) can get through the intact membrane of the nucleus of the target cell. Lentiviral vectors can be used to provide highly effective gene therapy as they can provide long-term expression of the vectored transgene in target cells. First-generation lentiviral vectors were manufactured using a single vector packaging system that contained all HIV genes, except the envelope (env) gene, in one plasmid. -
D3.7 First Periodic Report on Ongoing Jrps WP3 Joint Research Projects
D3.7 First periodic report on ongoing JRPs WP3 Joint Research Projects Responsible Partner: Sciensano Contributing partners: / 1 GENERAL INFORMATION European Joint Programme Promoting One Health in Europe through joint actions on foodborne full title zoonoses, antimicrobial resistance and emerging microbiological hazards European Joint Programme One Health EJP acronym Funding This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 773830. Grant Agreement Grant agreement n° 773830 Starting Date 01/01/2018 Duration 60 Months DOCUMENT MANAGEMENT Deliverable D3.7 First periodic report on ongoing JRPs WP and Task WP3; Task 3.2 Leader Sciensano Other contributors ANSES, SVA, WBVR, INSA Due month of the deliverable M13 Actual submission month M14 Type R R: Document, report DEC: Websites, patent fillings, videos, etc. OTHER Dissemination level PU PU: Public CO: confidential, only for members of the consortium (including the Commission Services) First periodic report on ongoing JRP Introduction Joint Research Projects serve as an instrument that help OneHealth EJP partners to work together in developing new detection methods, improved diagnostic tests, fast and accurate typing methods, in gaining new insight in the spread of pathogens and their resistance traits etc. At the same time, through setting up these scientific collaborations, researchers spread over Europe identify new possible partners and strengthen links between known colleagues. As such, the JRP help in creating and consolidating a firm network of organizations that have reference tasks in their scope and that deal with foodborne zoonoses, antimicrobial resistance and emerging threats. Summary of the performance of the Joint Research Projects Project deliverables and milestones The 11 joint research projects planned to submit a total of 77 deliverables. -
Eukaryote Cell Biology - Michelle Gehringer
FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer EUKARYOTE CELL BIOLOGY Michelle Gehringer Department of Biochemistry and Microbiology, University of Port Elizabeth, South Africa Keywords: cell theory, cell diversity, eukaryote cell structure, nucleus, chromatin, DNA, organelles, mitochondria, chloroplasts, transcription, RNA, translation, ribosomes, cell cycle, interphase, mitosis, meiosis, signal transduction, growth regulation, cancer, oncogenesis. Contents 1. Introduction 1.1. The first cell 2. Origin of Eukaryotes 3. Cellular differentiation in multicellular organisms 3.1. Plants 3.2. Animals 4. Eukaryotic cell structure 5. Organization of eukaryotic cells 5.1. Plasma membrane 5.2. Extracellular matrices 5.3. Protein synthesis and transport 5.4. Cytoskeleton and movement 5.5. Nucleus 5.5.1 Genomes 5.5.2 Gene expression 5.5.3 Maintaining the genome 5.6. Organelles 6. The cell cycle 6.1. Mitosis 6.2. Meiosis 7. Regulation of cell growth 7.1. Signal transduction 7.2. Programmed cell death 7.3. CancerUNESCO – EOLSS 8. Experimental Models 8.1. Yeast SAMPLE CHAPTERS 8.2. Arabidopsis 8.3. Drosophila 8.4. The mouse 8.5. Cell culture 8.6. Separation of cellular contents 8.7. Tracing biochemical pathways 9. Future Investigations Glossary Bibliography ©Encyclopedia of Life Support Systems (EOLSS) FUNDAMENTALS OF BIOCHEMISTRY, CELL BIOLOGY AND BIOPHYSICS – Vol. II - Eukaryote Cell Biology - Michelle Gehringer Biographical Sketch Summary Cells form the basic unit of life on our planet. They are well organized systems which perform all the essential tasks of eating, respiring, replicating and excreting waste products. The first cells, which are thought to have evolved about 3.8 billion years ago, much resembled present day prokaryotes.