Foamy Virus Assembly with Emphasis on Pol Encapsidation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of a Full-Length Infectious Clone of Bovine Foamy Virus 3026
VIROLOGICA SINICA 2014, 29 (2): 94-102 DOI 10.1007/s12250-014-3382-5 RESEARCH ARTICLE Characterization of a full-length infectious clone of bovine foamy virus 3026 * Tiejun Bing1, Hong Yu1, 2, Yue Li1, Lei Sun3, Juan Tan1, Yunqi Geng1, Wentao Qiao1 1. Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China; 2. Department of Molecular and Cellular Pharmacology, the Vascular Biology Institute, University of Miami School of Medicine, Miami, FL 33136, USA; 3. National Laboratory of Biomacromolecules, Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China The biological features of most foamy viruses (FVs) are poorly understood, including bovine foamy virus (BFV). BFV strain 3026 (BFV3026) was isolated from the peripheral blood mononuclear cells of an infected cow in Zhangjiakou, China. A full-length genomic clone of BFV3026 was obtained from BFV3026-infected cells, and it exhibited more than 99% amino acid (AA) homology to another BFV strain isolated in the USA. Upon transfection into fetal canine thymus cells, the full-length BFV3026 clone produced viral structural and auxiliary proteins, typical cytopathic effects, and virus particles. These results demonstrate that the full-length BFV3026 clone is fully infectious and can be used in further BFV3026 research. KEYWORDS bovine foamy virus; infectious clone; syncytium; electron microscopy pol, and env structural genes and additional open read- INTRODUCTION ing frames (ORFs) that are under the control of the 5′- long terminal repeat (LTR) and an internal promoter (IP) Foamy viruses (FVs) are members of Retroviridae. -
Herpes Simplex Virus Type 1 Oril Is Not Required for Virus Infection In
JOURNAL OF VIROLOGY, Nov. 1987, p. 3528-3535 Vol. 61, No. 11 0022-538X/87/113528-08$02.00/0 Copyright C 1987, American Society for Microbiology Herpes Simplex Virus Type 1 oriL Is Not Required for Virus Replication or for the Establishment and Reactivation of Latent Infection in Mice MARYELLEN POLVINO-BODNAR, PAULO K. ORBERG, AND PRISCILLA A. SCHAFFER* Laboratory of Tumor Virus Genetics, Dana-Farber Cancer Institute, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115 Received 11 May 1987/Accepted 31 July 1987 During the course of experiments designed to isolate deletion mutants of herpes simplex virus type 1 in the gene encoding the major DNA-binding protein, ICP8, a mutant, d61, that grew efficiently in ICP8-expressing Vero cells but not in normal Vero cells was isolated (P. K. Orberg and P. A. Schaffer, J. Virol. 61:1136-1146, 1987). d61 was derived by cotransfection of ICP8-expressing Vero cells with infectious wild-type viral DNA and a plasmid, pDX, that contains an engineered 780-base-pair (bp) deletion in the ICP8 gene, as well as a spontaneous -55-bp deletion in OriL. Gel electrophoresis and Southern blot analysis indicated that d61 DNA carried both deletions present in pDX. The ability of d61 to replicate despite the deletion in OriL suggested that a functional OriL is not essential for virus replication in vitro. Because d61 harbored two mutations, a second mutant, ts+7, with a deletion in oriL-associated sequences and an intact ICP8 gene was constructed. Both d61 and ts+7 replicated efficiently in their respective permissive host cells, although their yields were slightly lower than those of control viruses with intact oriL sequences. -
Topological Analysis of the Gp41 MPER on Lipid Bilayers Relevant to the Metastable HIV-1 Envelope Prefusion State
Topological analysis of the gp41 MPER on lipid bilayers relevant to the metastable HIV-1 envelope prefusion state Yi Wanga,b, Pavanjeet Kaurc,d, Zhen-Yu J. Sune,1, Mostafa A. Elbahnasawya,b,2, Zahra Hayatic,d, Zhi-Song Qiaoa,b,3, Nhat N. Buic, Camila Chilea,b,4, Mahmoud L. Nasre,5, Gerhard Wagnere, Jia-Huai Wanga,f, Likai Songc, Ellis L. Reinherza,b,6, and Mikyung Kima,g,6 aLaboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; bDepartment of Medicine, Harvard Medical School, Boston, MA 02115; cNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306; dDepartment of Physics, Florida State University, Tallahassee, FL 32306; eDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; fDepartment of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215; and gDepartment of Dermatology, Harvard Medical School, Boston, MA 02215 Edited by Peter Palese, Icahn School of Medicine at Mount Sinai, New York, NY, and approved September 23, 2019 (received for review July 18, 2019) The membrane proximal external region (MPER) of HIV-1 envelope immunologically vulnerable epitopes targeted by several of the most glycoprotein (gp) 41 is an attractive vaccine target for elicitation of broadly neutralizing antibodies (bNAbs) developed during the broadly neutralizing antibodies (bNAbs) by vaccination. However, course of natural HIV-1 infection (10–13). Insertion, deletion, current details regarding the quaternary structural organization of and mutations of residues in the MPER defined the functional the MPER within the native prefusion trimer [(gp120/41)3] are elu- importance of the MPER in Env incorporation, viral fusion, and sive and even contradictory, hindering rational MPER immunogen infectivity (14–16). -
D3.7 First Periodic Report on Ongoing Jrps WP3 Joint Research Projects
D3.7 First periodic report on ongoing JRPs WP3 Joint Research Projects Responsible Partner: Sciensano Contributing partners: / 1 GENERAL INFORMATION European Joint Programme Promoting One Health in Europe through joint actions on foodborne full title zoonoses, antimicrobial resistance and emerging microbiological hazards European Joint Programme One Health EJP acronym Funding This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 773830. Grant Agreement Grant agreement n° 773830 Starting Date 01/01/2018 Duration 60 Months DOCUMENT MANAGEMENT Deliverable D3.7 First periodic report on ongoing JRPs WP and Task WP3; Task 3.2 Leader Sciensano Other contributors ANSES, SVA, WBVR, INSA Due month of the deliverable M13 Actual submission month M14 Type R R: Document, report DEC: Websites, patent fillings, videos, etc. OTHER Dissemination level PU PU: Public CO: confidential, only for members of the consortium (including the Commission Services) First periodic report on ongoing JRP Introduction Joint Research Projects serve as an instrument that help OneHealth EJP partners to work together in developing new detection methods, improved diagnostic tests, fast and accurate typing methods, in gaining new insight in the spread of pathogens and their resistance traits etc. At the same time, through setting up these scientific collaborations, researchers spread over Europe identify new possible partners and strengthen links between known colleagues. As such, the JRP help in creating and consolidating a firm network of organizations that have reference tasks in their scope and that deal with foodborne zoonoses, antimicrobial resistance and emerging threats. Summary of the performance of the Joint Research Projects Project deliverables and milestones The 11 joint research projects planned to submit a total of 77 deliverables. -
(Infected Cell Protein 8) of Herpes Simplex Virus L*
THEJOURNAL OF BIOLOGICAL CHEMISTRY Vol. 262, No. 9, Issue of March 25, pp. 4260-4266, 1987 0 1987 by The American Society of Biological Chemists, Inc Printed in U.S. A. Interaction between theDNA Polymerase and Single-stranded DNA- binding Protein (Infected Cell Protein 8) of Herpes Simplex Virus l* (Received for publication, September 22, 1986) Michael E. O’DonnellS, Per EliasQ,Barbara E. Funnellll, and I. R. Lehman From the Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305 The herpes virus-encoded DNA replication protein, ICP8 completely inhibits replication of singly primed ssDNA infected cell protein 8 (ICPS), binds specifically to templates by the herpespolymerase. On the other hand, ICP8 single-stranded DNA with a stoichiometry of one ICPS strongly stimulates replication of duplex DNA. It does so, molecule/l2 nucleotides. In the absence of single- however, onlyin the presence of anuclear extract from stranded DNA, it assembles into long filamentous herpes-infected cells. structures. Binding of ICPS inhibits DNA synthesis by the herpes-induced DNA polymerase on singly primed EXPERIMENTALPROCEDURES single-stranded DNA circles. In contrast, ICPS greatly Materials-DNase I and venom phosphodiesterase were obtained stimulates replication of circular duplex DNA by the from Worthington. The syntheticoligodeoxynucleotide (44-mer) was polymerase. Stimulation occurs only in the presence of synthesized by the solid-phase coupling of protected phosphoramidate a nuclear extract from herpes-infected cells. Appear- nucleoside derivatives (11).3H-Labeled #X ssDNA was a gift from ance of the stimulatory activity in nuclear extracts Dr. R. Bryant (this department). pMOB45 (10.5 kilobases) linear coincides closely with the time of appearance of her- duplex plasmid DNA was a gift from Dr. -
Enzyme Activities in Four Different Forms of Human Immunodeficiency
Proc. Nati. Acad. Sci. USA Vol. 88, pp. 45%-4600, June 1991 Biochemistry Enzyme activities in four different forms of human immunodeficiency virus 1 poi gene products (reverse transcriptase/RNase H/crossover linker mutagenesis/baculoirus expression system) YU-WEN HU AND C. YONG KANG Department of Microbiology and Immunology, University of Ottawa, Faculty of Medicine, Ottawa, ON, Canada K1H 8M5 Communicated by Max D. Summers, February 19, 1991 (received for review December 3, 1990) ABSTRACT Five cassettes of the pol gene of human im- activity (10, 11) but no RNase H activity (3, 7, 12, 13). The munodeficiency virus 1 were constructed and inserted under reverse transcriptase isolated from purified HIV-1 has a the control of the polyhedrin gene promoter of Autographa molecular mass of 95 (14) to 110 (15) kDa, as determined by calfornica nuclear polyhedrosis virus by homologous recom- gel filtration and glycerol gradient centrifugation, respec- bination. The first cassette polF contains the full-length pol tively. However, the 98-kDa nonprocessed polyprotein ex- open reading frame; the second cassette pollOO starts with the pressed in Escherichia coli displayed little or no reverse first AUG codon of the pol gene and deletes 103 amino acids transcriptase activity (16). The p66/pSi heterodimer ex- from the amino terminus of the pol gene product; the third pressed in E. coli has an apparent molecular mass of 120-130 cassette po197 deletes the entire protease coding sequence; the kDa and was active (5, 6). In addition, there is a 165-kDa fourth cassette po166 deletes both the protease and endonucle- putative gag-pol precursor polyprotein that also possesses ase/integrase coding sequences; and the fifth cassette polSl reverse transcriptase activity (10). -
Identification of Virus-Encoded Micrornas in Divergent Papillomaviruses
RESEARCH ARTICLE Identification of virus-encoded microRNAs in divergent Papillomaviruses Rachel Chirayil1³, Rodney P. Kincaid1³, Christine Dahlke2³, Chad V. Kuny1³, Nicole DaÈlken2, Michael Spohn2, Becki Lawson3, Adam Grundhoff2*, Christopher S. Sullivan1* 1 Center for Systems and Synthetic Biology, Center for Infectious Disease and Dept. Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America, 2 Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany, 3 Institute of Zoology, Zoological Society of London, London, United Kingdom a1111111111 a1111111111 ³ These authors share first authorship on this work. a1111111111 * [email protected] (AG); [email protected] (CSS) a1111111111 a1111111111 Abstract MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly OPEN ACCESS encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are Citation: Chirayil R, Kincaid RP, Dahlke C, Kuny capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miR- CV, DaÈlken N, Spohn M, et al. (2018) Identification of virus-encoded microRNAs in divergent NAs have been described. The incomplete understanding of PV-encoded miRNAs is due in Papillomaviruses. PLoS Pathog 14(7): e1007156. part to lack of tractable laboratory models for most PV types. To overcome this, we have https://doi.org/10.1371/journal.ppat.1007156 developed miRNA Discovery by forced Genome Expression (miDGE), a new wet bench Editor: Paul Francis Lambert, University of approach to miRNA identification that screens numerous pathogen genomes in parallel. Wisconsin Madison School of Medicine and Public Using miDGE, we screened over 73 different PV genomes for the ability to code for miRNAs. -
Genomic Diversity in Rotavirus and the Current Scenario of Rotavirus Vaccines: a Brief Overview
Central Archives of Paediatrics and Developmental Pathology Bringing Excellence in Open Access Review Article *Corresponding author Vijaya Lakshmi Nag, Department of Microbiology, All India Institute of Medical Sciences, Jodhpur, India, Tel: Genomic Diversity in Rotavirus 918003996874; Email: Submitted: 15 October 2017 and the Current Scenario of Accepted: 01 November 2017 Published: 03 November 2017 Copyright Rotavirus Vaccines: A Brief © 2017 Nag et al. Overview OPEN ACCESS Keywords Vijaya Lakshmi Nag* and Kumar Saurabh • Rotavirus infection Department of Microbiology, All India Institute of Medical Sciences, India • Genomic diversity • Rotavirus vaccines Abstract Rotavirus associated infection still dominates the list of diarrheal illnesses in paediatric population despite the availability of effective Rotavirus vaccines. Frequent genetic reassortment in the genome of rotavirus leads to emergence of novel genotypes in different geographic areas worldwide. This review aims to give a brief overview of the genetic diversity prevailing in rotavirus worldwide with a focus on the vaccines available for rotavirus infection. ABBREVIATIONS may also be used. Electron microscopy and polyacrylamide gel electrophoresis are also useful. Molecular techniques like nested RV: Rotavirus Infection; RNA: Ribonucleic Acid; EIA: polymerase chain reaction (PCR), multiplex PCR and Reverse Enzyme Immunoassay; ELISA: Enzyme Linked Immunosorbent transcriptase PCR (RT-PCR) in stool samples can additionally Assay; IgA: Immunoglobulin A; IgG: Immunoglobulin G; PCR: help in the genotypic studies [5-7]. The genetic sequencing Polymerase Chain Reaction; RT-PCR: Reverse Transcriptase PCR; methods like microarray and real time PCR (RT-qPCR) are very VP: Viral Structural Protein; NSP: Non-Structural Protein; PAGE: sensitive methods for diagnosis [8]. Polyacrylamide Gel Electrophoresis; RRV: Rhesus Rotavirus, UIP: Universal Immunization Programme; WHO: World Health Vaccine development and implementation has seen lots of Organization. -
Lentivirus and Lentiviral Vectors Fact Sheet
Lentivirus and Lentiviral Vectors Family: Retroviridae Genus: Lentivirus Enveloped Size: ~ 80 - 120 nm in diameter Genome: Two copies of positive-sense ssRNA inside a conical capsid Risk Group: 2 Lentivirus Characteristics Lentivirus (lente-, latin for “slow”) is a group of retroviruses characterized for a long incubation period. They are classified into five serogroups according to the vertebrate hosts they infect: bovine, equine, feline, ovine/caprine and primate. Some examples of lentiviruses are Human (HIV), Simian (SIV) and Feline (FIV) Immunodeficiency Viruses. Lentiviruses can deliver large amounts of genetic information into the DNA of host cells and can integrate in both dividing and non- dividing cells. The viral genome is passed onto daughter cells during division, making it one of the most efficient gene delivery vectors. Most lentiviral vectors are based on the Human Immunodeficiency Virus (HIV), which will be used as a model of lentiviral vector in this fact sheet. Structure of the HIV Virus The structure of HIV is different from that of other retroviruses. HIV is roughly spherical with a diameter of ~120 nm. HIV is composed of two copies of positive ssRNA that code for nine genes enclosed by a conical capsid containing 2,000 copies of the p24 protein. The ssRNA is tightly bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion: reverse transcriptase (RT), proteases (PR), ribonuclease and integrase (IN). A matrix composed of p17 surrounds the capsid ensuring the integrity of the virion. This, in turn, is surrounded by an envelope composed of two layers of phospholipids taken from the membrane of a human cell when a newly formed virus particle buds from the cell. -
Molecular Epidemiology and Whole-Genome Analysis of Bovine Foamy Virus in Japan
viruses Article Molecular Epidemiology and Whole-Genome Analysis of Bovine Foamy Virus in Japan Hirohisa Mekata 1,* , Tomohiro Okagawa 2, Satoru Konnai 2,3 and Takayuki Miyazawa 4 1 Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan 2 Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; [email protected] (T.O.); [email protected] (S.K.) 3 Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan 4 Laboratory of Virus-Host Coevolution, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; [email protected] * Correspondence: [email protected]; Tel./Fax: +81-985-58-7881 Abstract: Bovine foamy virus (BFV) is a member of the foamy virus family in cattle. Information on the epidemiology, transmission routes, and whole-genome sequences of BFV is still limited. To understand the characteristics of BFV, this study included a molecular survey in Japan and the determination of the whole-genome sequences of 30 BFV isolates. A total of 30 (3.4%, 30/884) cattle were infected with BFV according to PCR analysis. Cattle less than 48 months old were scarcely infected with this virus, and older animals had a significantly higher rate of infection. To reveal the possibility of vertical transmission, we additionally surveyed 77 pairs of dams and 3-month-old calves in a farm already confirmed to have BFV. We confirmed that one of the calves born from a dam with BFV was infected. -
10 International Foamy Virus Conference 2014
10th INTERNATIONAL FOAMY VIRUS CONFERENCE 2014 June 24‐25, 2014 National Veterinary Research Institute, Pulawy, Poland Organized by: National Veterinary Research Institute Committee of Veterinary Sciences Polish Academy of Sciences Topics include: Foamy Virus Infection and Zoonotic Aspects, Foamy Virus Restriction and Immunity, Foamy Virus Biology and Gene Therapy Vectors http://www.piwet.pulawy.pl/ifvc/ Organizers Jacek Kuźmak and Magdalena Materniak Scientific Advisors Martin Löchelt and Axel Rethwilm Sponsors Support for the meeting was provided by the Committee of Veterinary Sciences Polish Academy of Sciences, ROCHE, Thermo Fisher Scientific and EURx Abstract book was issued thanks to the support provided by Committee of Veterinary Sciences Polish Academy of Sciences 2 Program Overview Monday, June 23rd, 2014 19 00 – 20 00 Registration 20 30 – open end Welcome Reception Tuesday, June 24th, 2014 9 00 – 9 30 Registration 9 30 – 9 45 Welcome 9 45 – 10 15 Arifa Khan (FDA, Bethesda, US) - Simian foamy virus infection in natural host species 10 15 – 10 45 Antoine Gessain (Institute Pasteur, Paris, France) – Zoonotic human infection by simian foamy viruses 10 45 – 11 20 Session 1 on Foamy Virus Infection and Zoonotic Aspects Chairs: Arifa S. Khan and Antoine Gessain 11 20 – 11 45 Coffee break 11 45 – 12 30 Session 1 on Foamy Virus Infection and Zoonotic Aspects Chairs: Arifa S. Khan and Antoine Gessain 12 30 – 13 00 Aris Katzourakis (Oxford University, UK - Mammalian genomes, their endogenous viral elements, and the evolutionary history -
Mechanism of Hepatitis B Virus Cccdna Formation
viruses Review Mechanism of Hepatitis B Virus cccDNA Formation Lei Wei and Alexander Ploss * 110 Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-609-258-7128 Abstract: Hepatitis B virus (HBV) remains a major medical problem affecting at least 257 million chronically infected patients who are at risk of developing serious, frequently fatal liver diseases. HBV is a small, partially double-stranded DNA virus that goes through an intricate replication cycle in its native cellular environment: human hepatocytes. A critical step in the viral life-cycle is the conversion of relaxed circular DNA (rcDNA) into covalently closed circular DNA (cccDNA), the latter being the major template for HBV gene transcription. For this conversion, HBV relies on multiple host factors, as enzymes capable of catalyzing the relevant reactions are not encoded in the viral genome. Combinations of genetic and biochemical approaches have produced findings that provide a more holistic picture of the complex mechanism of HBV cccDNA formation. Here, we review some of these studies that have helped to provide a comprehensive picture of rcDNA to cccDNA conversion. Mechanistic insights into this critical step for HBV persistence hold the key for devising new therapies that will lead not only to viral suppression but to a cure. Keywords: hepatitis B virus; HBV; viral replication; cccDNA biogenesis; rcDNA; DNA repair Citation: Wei, L.; Ploss, A. 1. Overview of HBV Life Cycle and cccDNA Biogenesis Mechanism of Hepatitis B Virus cccDNA Formation. Viruses 2021, 13, The hepatotropic HBV belongs to the Hepadnaviridae family and is a blood-borne 1463.