The Roles of Moron Genes in the Escherichia Coli Enterobacteria Phage Phi-80

Total Page:16

File Type:pdf, Size:1020Kb

The Roles of Moron Genes in the Escherichia Coli Enterobacteria Phage Phi-80 THE ROLES OF MORON GENES IN THE ESCHERICHIA COLI ENTEROBACTERIA PHAGE PHI-80 Yury V. Ivanov A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2012 Committee: Ray A. Larsen, Advisor Craig L. Zirbel Graduate Faculty Representative Vipa Phuntumart Scott O. Rogers George S. Bullerjahn © 2012 Yury Ivanov All Rights Reserved iii ABSTRACT Ray Larsen, Advisor The TonB system couples cytoplasmic membrane-derived proton motive force energy to drive ferric siderophore transport across the outer membrane of Gram-negative bacteria. While much effort has focused on this process, how energy is harnessed to provide for transport of ligands remains unknown. Several bacterial viruses (“phage”) are known to require the TonB system to irreversibly adsorb (i.e., establish infection) in the model organism Escherichia coli. One such phage is φ80, a “cousin” of the model temperate phage λ. Determining how φ80 is using the TonB system for infection should provide novel insights to the mechanisms of TonB-dependent processes. It had long been known that recombination between λ and φ80 results in a λ-like phage for whom TonB is now required; and this recombination involved the λ J gene, which encodes the tail-spike protein required for irreversible adsorption of λ to E. coli. Thus, we suspected that a φ80 homologue of the λ J gene product was responsible for the TonB dependence of φ80. While φ80 has long served as a tool for assaying TonB activity, it has not received the scrutiny afforded λ. Indeed, only a small portion of its genome (not including a J gene homolog) was known. To facilitate the use of φ80 as a molecular tool, we determined and annotated the full genome of the φ80vir strain commonly used for TonB studies. The 46,285 bp φ80vir genome contained 71 predicted open reading frames, in which the structural genes showed strong synteny with other known lambdoid viruses, with an overall degree of mosaicism indicative of multiple genetic exchanges with other viruses. iv There was also evidence of unique gene acquisition in the form of morons, one of which, termed cor, when cloned and expressed in E. coli, blocked TonB-dependent transport of ferric siderophore and irreversible adsorption of φ80vir to the TonB-dependent outer membrane protein FhuA. These and other findings reported in this dissertation provide a foundation for the use of φ80vir as a tool to dissect the mechanisms of TonB-dependent energy transduction. v Dedicated to my grandfather, Yury Ivanov, who wanted me to become a student, right after I was born. Unfortunately, I cannot tell you that I decided to go even beyond vi ACKNOWLEDGMENTS My career as a scientist would have been not possible without many individuals who played very important roles. But before giving them my regards, I would like to acknowledge Bowling Green State University for opening me new horizons. Next, I would like to acknowledge members of my committee: Drs. Ray Larsen, Scott Rogers, George Bullerjahn, Vipa Phuntumart, and Craig Zirbel. Dr. Larsen: I admire all your input, patience, and guidance that you gave me; I was honored to be your Ph.D. student and I will not let you down; even now, I am still learning from you. Dr. Rogers: you are the reason why I enjoy doing bioinformatics, genomics, phylogeny, and evolution; I will never forget our discussions during the fermentation seminar. Dr. Bullerjahn: you was in my admission committee and I thank you for giving me this opportunity to become a Doctor of Philosophy. Dr. Phuntumart: you combine both a great scientist and a charming person; thank you for all your advice. Dr. Zirbel: I wish I could know you better; I am inspired by the research that you, as a mathematician, are doing in collaboration with Dr. Leontis. Last but not least, I would like to thank my loving family for all their support and patience. To my parents, Victor Ivanov and Alla Ivanova: I owe you everything in my life; I am fortunate to be your son. Maria Ivanova: I cannot wait to see you again, grandmother; thank you for everything you have done for me. Special thanks to my brother, Evgeniy Ivanov: we are so different and yet are very good friends. My aunt, Valentina Ivanova: I always feel your support I would like to acknowledge my support team of friends and colleagues: Andrew Fedorov, Maria Kozelkova, Alex Orlov, Maribeth Spangler, Vadim Solovyov, Alex Goryaynov, Adam Boulton, Tim South, Pavel Borisov, Emil Khisamutdinov, Kate Butler, Matthew Moreau, and many others. Thanks vii to Yury Shtarkman and Alex Bludin who contributed directly to my work and are my very best friends. Finally, special thanks to BGSU faculty: Drs Tami Steveson, Paul Morris, Carmen Fioravanti –you all helped me in various ways and I do remember it. “Never say never” – I refused to believe that I will ever become a Ph.D when I was in high school; you all proved me wrong. viii TABLE OF CONTENTS Page CHAPTER I. A REVIEW OF THE LITERATURE ............................................................ 1 Tailed Bacteriophages ................................................................................................ 1 Membrane Energetics and Iron Transport Systems in Bacteria................................. 3 Iron and Iron Transport in Gram-Negative Bacteria .................................................. 5 Proton Motive Force and TonB-dependent Transporters .......................................... 7 CHAPTER II. ENTEROBACTERIOPHAGE PHI-80 ......................................................... 13 Introduction … ........................................................................................................... 13 Materials and Methods ............................................................................................... 16 Phage Phi-80 Growth ..................................................................................... 16 DNA Extraction ............................................................................................. 17 Restriction Digestion Map ............................................................................. 18 Genome Cloning and DNA Library Construction ......................................... 19 Annotation of Genes ...................................................................................... 21 Comparative Genomics .................................................................................. 21 Electron Microscopy ...................................................................................... 21 Atomic Force Microscopy ............................................................................. 22 Results and Discussion ……… ................................................................................. 22 Overall Features of φ80vir Chromosome ....................................................... 22 The Left Arm ................................................................................................. 23 Head Genes ........................................................................................ 26 Tail Genes .......................................................................................... 26 ix Conserved -1 Translational Frameshift .............................................. 27 The Central Region ........................................................................................ 28 Phage Attachment Site ....................................................................... 28 The Right Arm ............................................................................................... 29 Immunity Region ............................................................................... 29 Phage Morphology ............................................................................. 31 CHAPTER III. GENES WITH MORON FEATURES ........................................................ 40 Introduction … ........................................................................................................... 40 Materials and Methods ............................................................................................... 41 Identification of Transcription Signals .......................................................... 41 G+C Skew ...................................................................................................... 42 Results and Discussion ……… ................................................................................. 42 Genes with Moron Features, or Morons ........................................................ 42 CHAPTER IV. CONVERSION RESISTANT LIPOPROTEIN COR ................................. 51 Introduction … ........................................................................................................... 51 Bacterial Lipoproteins .................................................................................... 51 Materials and Methods ............................................................................................... 54 Bacterial Strains and Construction of Plasmids ............................................. 54 Colicin and Phage Spot-Titer Assays ............................................................ 54 [55Fe3+]ferrichrome Transport ........................................................................ 55 Multiple Sequence Alignment and Phylogenetic Analysis of Cor Protein .... 55 Results and Discussion ……… ................................................................................. 57 Lytic and Lysogenic Conversion:
Recommended publications
  • Islamic Geometric Patterns Jay Bonner
    Islamic Geometric Patterns Jay Bonner Islamic Geometric Patterns Their Historical Development and Traditional Methods of Construction with a chapter on the use of computer algorithms to generate Islamic geometric patterns by Craig Kaplan Jay Bonner Bonner Design Consultancy Santa Fe, New Mexico, USA With contributions by Craig Kaplan University of Waterloo Waterloo, Ontario, Canada ISBN 978-1-4419-0216-0 ISBN 978-1-4419-0217-7 (eBook) DOI 10.1007/978-1-4419-0217-7 Library of Congress Control Number: 2017936979 # Jay Bonner 2017 Chapter 4 is published with kind permission of # Craig Kaplan 2017. All Rights Reserved. This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • A Viewpoint of Aspects of a History of Genetics: an Autobiography
    12. The Postgraduate Medical School,London University. The Head of the Bacteriology Department at the PGMS(later the Royal PGMS) was Professor Lord(Trevor) Stamp who did'nt seem to bother what research I did so long as I did something. My closest colleague was Dr.Denny Mitchison(Lecturer),one of the three biologist sons of authoress Naomi Mitchison and nephew of J.B.S.Haldane,whose main interest was typing tubercle bacilli under MRC!auspices. In addition there were at least two non-tenured medical graduates on the staff. My only departmental responsibilities were to take my turn at clinical bacteriology which amounted to the mornings of one week in every three or four,and to share in teaching the bacteriology course for the Diploma in Clinical Pathology which occupied me for not more than a few weeks in the year. There was,in fact,a positive obligation to spend at least half one's time at research. I decided to return to the mechanism of somatic phase variation in S.enteritidis,but had begun to realise the potentiafities of genetic analysis inherent in the recent discovery by Lederberg and Tatum(1946) of conjugation in Escherichia coli ,and wondered if Salmonella also could conjugate. But it was clear that I should first become acquainted with the phenomenon in --E.coli. Towards the end of 1950 I went on a bacterial chemistry course at Cambridge,organized by Prof.E.H.Gale,and there met Luca Cavalli(later Cavalli-Sforza) who had worked with Joshua Lederberg on conjugation at Wisconsin and,being mainly interested in population genetics,was currently a visitor in Prof.R.A.Fisher's Department of Mathematics.
    [Show full text]
  • Phage Integration and Chromosome Structure. a Personal History
    ANRV329-GE41-01 ARI 2 November 2007 12:22 by Annual Reviews on 12/13/07. For personal use only. Annu. Rev. Genet. 2007.41:1-11. Downloaded from arjournals.annualreviews.org ANRV329-GE41-01 ARI 2 November 2007 12:22 Phage Integration and Chromosome Structure. A Personal History Allan Campbell Department of Biological Sciences, Stanford University, Stanford, California 94305-5020; email: [email protected] Annu. Rev. Genet. 2007. 41:1–11 Key Words First published online as a Review in Advance on lysogeny, transduction, conditional lethals, deletion mapping April 27, 2007 Abstract by Annual Reviews on 12/13/07. For personal use only. The Annual Review of Genetics is online at http://genet.annualreviews.org In 1962, I proposed a model for integration of λ prophage into the This article’s doi: bacterial chromosome. The model postulated two steps (i ) circular- 10.1146/annurev.genet.41.110306.130240 ization of the linear DNA molecule that had been injected into the Annu. Rev. Genet. 2007.41:1-11. Downloaded from arjournals.annualreviews.org Copyright c 2007 by Annual Reviews. cell from the phage particle; (ii ) reciprocal recombination between All rights reserved phage and bacterial DNA at specific sites on both partners. This 0066-4197/07/1201-0001$20.00 resulted in a cyclic permutation of gene order going from phage to prophage. This contrasted with integration models current at the time, which postulated that the prophage was not inserted into the continuity of the chromosome but rather laterally attached or synapsed with it. This chapter summarizes some of the steps leading up to the model including especially the genetic characterization of specialized transducing phages (λgal ) by recombinational rescue of conditionally lethal mutations.
    [Show full text]
  • Protists and the Wild, Wild West of Gene Expression
    MI70CH09-Keeling ARI 3 August 2016 18:22 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations Protists and the Wild, Wild • Explore related articles • Search keywords West of Gene Expression: New Frontiers, Lawlessness, and Misfits David Roy Smith1 and Patrick J. Keeling2 1Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7; email: [email protected] 2Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; email: [email protected] Annu. Rev. Microbiol. 2016. 70:161–78 Keywords First published online as a Review in Advance on constructive neutral evolution, mitochondrial transcription, plastid June 17, 2016 transcription, posttranscriptional processing, RNA editing, trans-splicing The Annual Review of Microbiology is online at micro.annualreviews.org Abstract This article’s doi: The DNA double helix has been called one of life’s most elegant structures, 10.1146/annurev-micro-102215-095448 largely because of its universality, simplicity, and symmetry. The expression Annu. Rev. Microbiol. 2016.70:161-178. Downloaded from www.annualreviews.org Copyright c 2016 by Annual Reviews. Access provided by University of British Columbia on 09/24/17. For personal use only. of information encoded within DNA, however, can be far from simple or All rights reserved symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukary- otes).
    [Show full text]
  • Modeling Bacteria-Phage Interactions and Its Implications for Phage
    CHAPTER THREE Modeling Bacteria–Phage Interactions and Its Implications for Phage Therapy Saptarshi Sinha, Rajdeep K. Grewal, Soumen Roy1 Bose Institute, Kolkata, India 1Corresponding author: e-mail address: [email protected] Contents 1. The Bacteria–Phage Interaction 104 1.1 Discovery of Bacteriophages: A Brief History 104 1.2 Lytic and Lysogenic Cycle 106 1.3 Adsorption Rate 107 1.4 Multiplicity of Infection 109 1.5 One-Step Growth Curve 110 1.6 Phage Therapy 111 1.7 Bacteria–Phage Coevolution 113 1.8 Modeling Bacteria–Phage Interactions 113 2. Mathematical Modeling 115 2.1 Differential Equations 115 2.2 Basic Model for Bacteria–Phage Interactions 117 2.3 Resource Concentration Factor 118 2.4 Phage Resistance in Bacteria 118 2.5 Bacteria–Phage Interaction Networks 120 2.6 System of ODEs 121 2.7 Recent Developments 122 3. Computer Simulations 124 3.1 Monte Carlo Simulations 124 3.2 Probability Distribution 126 3.3 Probability of Cell Division 128 3.4 Probability of Phage Adsorption 129 3.5 Latent Period and Burst Size 130 3.6 Secondary Infection and Killing 130 4. Phage Bacteria Interaction Under Spatial Limitations 132 4.1 Formation of Plaque 132 4.2 Factors Affecting Plaque Diameter 133 4.3 Modeling of Plaque Growth as a Reaction–Diffusion System 134 # Advances in Applied Microbiology, Volume 103 2018 Elsevier Inc. 103 ISSN 0065-2164 All rights reserved. https://doi.org/10.1016/bs.aambs.2018.01.005 104 Saptarshi Sinha et al. 4.4 Traveling Wave Front Solutions 135 4.5 Cellular Automata Modeling 135 4.6 SIR-Type Modeling 136 Acknowledgments 137 References 138 Abstract Bacteriophages are more abundant than any other organism on our planet.
    [Show full text]
  • |||||||III US005478731A United States Patent (19) 11 Patent Number: 5,478,731
    |||||||III US005478731A United States Patent (19) 11 Patent Number: 5,478,731 Short 45 Date of Patent: Dec. 26,9 1995 54). POLYCOS VECTORS 56 References Cited 75) Inventor: Jay M. Short, Encinitas, Calif. PUBLICATIONS (73 Assignee: Stratagene, La Jolla, Calif. Ahmed (1989), Gene 75:315-321. 21 Appl. No.: 133,179 Evans et al. (1989), Gene 79:9-20. 22) PCT Filed: Apr. 10, 1992 Primary Examiner-Mindy B. Fleisher Assistant Examiner-Philip W. Carter 86 PCT No.: PCT/US92/03012 Attorney, Agent, or Firm-Albert P. Halluin; Pennie & S371 Date: Oct. 12, 1993 Edmonds S 102(e) Date: Oct. 12, 1993 57 ABSTRACT 87, PCT Pub. No.: WO92/18632 A bacteriophage packaging site-based vector system is describe that involves cloning vectors and methods for their PCT Pub. Date: Oct. 29, 1992 use in preparing multiple copy number bacteriophage librar O ies of cloned DNA. The vector is based on a DNA segment Related U.S. Application Data that comprises a nucleotide sequence defining a bacterioph 63 abandoned.continuationin-part of ser, No. 685.215,y Apr 12, 1991, ligationage packaging means usedsite locatedto concatamerize between twofragments termining of DNA 6 having compatible ligation means. Methods for preparing a (51) Int. Cl. ............................... C12N 1/21; C12N 7/01; concatameric DNA for packaging cloned DNA segments, C12N 15/10; C12N 15/11 and for packaging the concatamers to produce a library are 52 U.S. Cl. ................ 435/914; 435/1723; 435/252.33; also described. 435/235.1; 435/252.3; 536/23.1 58) Field of Search .............................. 435/91.32, 172.3, 435/320.1,914, 252.33, 252.3, 235.1; 536/23.1 18 Claims, 1 Drawing Sheet U.S.
    [Show full text]
  • The Eagle 1939 (Easter)
    96 THE EAGLE . THE EAGLE � I.QttQacQt 1.Q1.1.Q1 l.Q1c1tcQtcbtf.(/hf.Q1 cbt to't c.()'t '" cQt� I.Q1 eb't""" � COLLEGE AWARDS .,pt.,pt &Q'I.,pt tbtlbtc.QJcg.tQt No. 223 VOL. LI June 1939 � l.Q1 cQt cQt following awards were made on the results of the &Q'Ic.()'Ic.()'Ic.()'I&Q'I�cQtc.QJl.Q1f.(/hcQt l.Q1f.(/hcQtf.(/hl.Q1l.Q1c.()'tcQt c.()'tf.(/h l.Q1c.QJtQt�"' � THE Annual Entrance Scholarships Examination, December 1938: Major Scholarships: Read, A. H., Marlborough College, for Mathematics (Baylis Scholar- ship). Goldie, A. W., Wolverhampton Grammar School, for Mathematics. Charlesworth, G. R, Penis tone Grammar School, for Mathematics. Brough, J., Edinburgh University, for Classics. Howorth, R H., Manchester Grammar School, fo r Classics (Patchett Scholarship ). THE COMMEMORATION SERMON Freeman, E. J., King Edward VI School, Birmingham, for Classics. Crook, J. A., Dulwich College, for Classics. By THE MASTER, Sunday, 7 May 1939 Hereward, H. G., King Edward VI School, Birmingham, for Natural Sciences. T from the will of the Lady Robinson, R E., Battersea Grammar School, for History. me begin with a sentence Lapworth, H. J., King Edward VI School, Birmingham, for Modern Margaret: Languages. I "Be it remembered that it was also the last will of the said Minor Scholarships: princess to dissolve the hospital of Saint John in Cambridge Jones, R P. N., Manchester Grammar School, for Mathematics. persons, Bell, W. R G., Bradford Grammar School, for Mathematics. and to alter and to found thereof a College of secular Ferguson, J" Bishop's Stortford College, for Classics.
    [Show full text]
  • Lessons from Nature: Microrna-Based Shrna Libraries
    PERSPECTIVE Lessons from Nature: microRNA-based shRNA libraries methods Kenneth Chang1, Stephen J Elledge2 & Gregory J Hannon1 Loss-of-function genetics has proven essential for interrogating the functions of genes .com/nature e and for probing their roles within the complex circuitry of biological pathways. In .natur many systems, technologies allowing the use of such approaches were lacking before w the discovery of RNA interference (RNAi). We have constructed first-generation short hairpin RNA (shRNA) libraries modeled after precursor microRNAs (miRNAs) and second- http://ww generation libraries modeled after primary miRNA transcripts (the Hannon-Elledge oup libraries). These libraries were arrayed, sequence-verified, and cover a substantial portion r G of all known and predicted genes in the human and mouse genomes. Comparison of first- and second-generation libraries indicates that RNAi triggers that enter the RNAi pathway lishing through a more natural route yield more effective silencing. These large-scale resources b Pu are functionally versatile, as they can be used in transient and stable studies, and for constitutive or inducible silencing. Library cassettes can be easily shuttled into vectors Nature that contain different promoters and/or that provide different modes of viral delivery. 6 200 © RNAi is an evolutionarily conserved, sequence-specific than a decade elapsed between the discovery of the first gene-silencing mechanism that is induced by dsRNA. miRNA, Caenorhabditis elegans lin-4 (refs. 11,12) and Each dsRNA silencing trigger is processed into 21–25 bp the achievement of at least a superficial understanding dsRNAs called small interfering RNAs (siRNAs)1–3 by of the biosynthesis, processing and mode of action of Dicer, a ribonuclease III family (RNase III) enzyme4.
    [Show full text]
  • Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site Madhuri Jonnalagadda Western Kentucky University
    Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School 12-2008 Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site Madhuri Jonnalagadda Western Kentucky University Follow this and additional works at: http://digitalcommons.wku.edu/theses Part of the Cell and Developmental Biology Commons, Genetics Commons, Immunopathology Commons, and the Molecular Genetics Commons Recommended Citation Jonnalagadda, Madhuri, "Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site" (2008). Masters Theses & Specialist Projects. Paper 42. http://digitalcommons.wku.edu/theses/42 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. SITE DIRECTED MUTAGENESIS OF BACTERIOPHAGE HK639 AND IDENTIFICATION OF ITS INTEGRATION SITE A Thesis presented to The faculty of the Department of Biology Western Kentucky University Bowling Green, Kentucky. In Partial Fulfillment Of the Requirement for the Degree Master of Science By Madhuri Jonnalagadda December, 2008 Site Directed Mutagenesis of Bacteriophage HK639 and Identification of its Integration Site Date Recommended 12/4/08 Dr.Rodney A. King Director of Thesis __Dr.Jeffery Marcus Dr. Sigrid Jacobshagen _____________________________________ Dean, Graduate Studies and Research Date DEDICATION I would like to dedicate my thesis to my dear father Dr. J. Padmanabha Rao, my mother, Dr.V. Lakshmi, my sister Dr. J. Sushma for their support and encouragement. i ACKNOWLEDGEMENTS I wish to express my heartfelt gratitude to my graduate committee in the Department of Biology, Western Kentucky University. Primarily, I am thankful to my advisor, Dr.
    [Show full text]
  • The Eighth Day of Creation”: Looking Back Across 40 Years to the Birth of Molecular Biology and the Roots of Modern Cell Biology
    “The Eighth Day of Creation”: looking back across 40 years to the birth of molecular biology and the roots of modern cell biology Mark Peifer1 1 Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA * To whom correspondence should be addressed Email: [email protected] Phone: (919) 962-2272 1 Forty years ago, Horace Judson’s “The Eight Day of Creation” was published, a book vividly recounting the foundations of modern biology, the molecular biology revolution. This book inspired many in my generation. The anniversary provides a chance for a new generation to take a look back, to see how science has changed and hasn’t changed. Many central players in the book, including Sydney Brenner, Seymour Benzer and Francois Jacob, would go on to be among the founders of modern cell, developmental, and neurobiology. These players come alive via their own words, as complex individuals, both heroes and anti-heroes. The technologies and experimental approaches they pioneered, ranging from cell fractionation to immunoprecipitation to structural biology, and the multidisciplinary approaches they took continue to power and inspire our work today. In the process, Judson brings out of the shadows the central roles played by women in many of the era’s discoveries. He provides us with a vision of how science and scientists have changed, of how many things about our endeavor never change, and how some new ideas are perhaps not as new as we’d like to think. 2 In 1979 Horace Judson completed a ten-year project about cell and molecular biology’s foundations, unveiling “The Eighth Day of Creation”, a book I view as one of the most masterful evocations of a scientific revolution (Judson, 1979).
    [Show full text]
  • MORC1 Represses Transposable Elements in the Mouse Male Germline
    ARTICLE Received 12 Sep 2014 | Accepted 7 Nov 2014 | Published 12 Dec 2014 DOI: 10.1038/ncomms6795 OPEN MORC1 represses transposable elements in the mouse male germline William A. Pastor1,*, Hume Stroud1,*,w, Kevin Nee1, Wanlu Liu1, Dubravka Pezic2, Sergei Manakov2, Serena A. Lee1, Guillaume Moissiard1, Natasha Zamudio3,De´borah Bourc’his3, Alexei A. Aravin2, Amander T. Clark1,4 & Steven E. Jacobsen1,4,5 The Microrchidia (Morc) family of GHKL ATPases are present in a wide variety of prokaryotic and eukaryotic organisms but are of largely unknown function. Genetic screens in Arabidopsis thaliana have identified Morc genes as important repressors of transposons and other DNA-methylated and silent genes. MORC1-deficient mice were previously found to display male-specific germ cell loss and infertility. Here we show that MORC1 is responsible for transposon repression in the male germline in a pattern that is similar to that observed for germ cells deficient for the DNA methyltransferase homologue DNMT3L. Morc1 mutants show highly localized defects in the establishment of DNA methylation at specific classes of transposons, and this is associated with failed transposon silencing at these sites. Our results identify MORC1 as an important new regulator of the epigenetic landscape of male germ cells during the period of global de novo methylation. 1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, 4028 Terasaki Life Sciences Building, 610 Charles E. Young Drive East, Los Angeles, California 90095, USA. 2 Division of Biology and Biochemical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA. 3 Unite´ de ge´ne´tique et biologie du de´veloppement, Instititute Curie, CNRS UMR3215, INSERM U934, Paris 75005, France.
    [Show full text]
  • 6 Women Scientists Who Were Snubbed Due to Sexism Despite Enormous Progress in Recent Decades, Women Still Have to Deal with Biases Against Them in the Sciences
    6 Women Scientists Who Were Snubbed Due to Sexism Despite enormous progress in recent decades, women still have to deal with biases against them in the sciences. BY JANE J. LEE, NATIONAL GEOGRAPHIC PUBLISHED MAY 19, 2013 In April, National Geographic News published a story about the letter in which scientist Francis Crick described DNA to his 12-year-old son. In 1962, Crick was awarded a Nobel Prize for discovering the structure of DNA, along with fellow scientists James Watson and Maurice Wilkins. Several people posted comments about our story that noted one name was missing from the Nobel roster: Rosalind Franklin, a British biophysicist who also studied DNA. Her data were critical to Crick and Watson's work. But it turns out that Franklin would not have been eligible for the prize—she had passed away four years before Watson, Crick, and Wilkins received the prize, and the Nobel is never awarded posthumously. But even if she had been alive, she may still have been overlooked. Like many women scientists, Franklin was robbed of recognition throughout her career (See her section below for details.) She was not the first woman to have endured indignities in the male- dominated world of science, but Franklin's case is especially egregious, said Ruth Lewin Sime, a retired chemistry professor at Sacramento City College who has written on women in science. Over the centuries, female researchers have had to work as "volunteer" faculty members, seen credit for significant discoveries they've made assigned to male colleagues, and been written out of textbooks.
    [Show full text]