Generalization of Genetic Code Expansion

Total Page:16

File Type:pdf, Size:1020Kb

Generalization of Genetic Code Expansion Generalization of Genetic Code Expansion The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stork, Devon. 2020. Generalization of Genetic Code Expansion. Doctoral dissertation, Harvard University Graduate School of Arts and Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368951 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Molecular and Cellular Biology have examined a dissertation entitled Generalization of Genetic Code Expansion presented by Devon Stork candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Richard Losick (Sep 15, 2020 15:40 EDT) Typed name: Prof. Richard Losick Vlad Denic Signatur Vlad Denic (Sep 17, 2020 14:52 EDT) Typed name: Prof. Vladimir Denic Signature Abhishek Chatterjee (Sep 23, 2020 13:28 EDT) Typed name: Prof. Abhishek Chatterjee Signature Typed name: Prof. Signature Typed name: Prof. Date: September 15, 2020 Generalization of Genetic Code Expansion A dissertation presented by Devon Stork to The Department of Molecular and Cellular Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biochemistry Harvard University Cambridge, Massachusetts September 2020 © 2020 Devon Stork All rights reserved Dissertation Advisors: Dr. Ethan Garner and Dr. George Church Devon Stork Generalization of Genetic Code Expansion ABSTRACT The standard genetic code directs the assembly of the 20 standard amino acids into proteins and defines function in biology. Through the central dogma, DNA is transcribed into RNA which is translated by the well-understood machinery of the ribosome and accompanying tRNA, using the genetic code to create the proteins that accomplish most tasks in life. The field of genetic code expansion has focused on incorporating synthetic ‘non-standard amino acids’ (nsAAs) with novel chemical structures into the genetic code. This is done by engineering an aminoacyl-tRNA synthetase to conjugate an externally provided nsAA onto an engineered tRNA in vivo such that it will proceed to the ribosome for standard translation, being incorporated into a growing polypeptide chain. Once incorporation has been achieved, nsAAs allow for site- specific encoding of a defined chemical function, without the limitations of the standard genetic code or the requirement of complex protein engineering. With over 150 nsAAs demonstrated in the literature, a broad array of functions are available for experiment and application. However, the contexts in which they can be used are limited. In this thesis, I investigate ways to broaden the applications of existing genetic code expansion tools. I begin with a description of a post-translational proofreading tool capable of distinguishing between proteins successfully charged with a ‘correct’ nsAA and proteins with an ‘incorrect’ nsAA or standard amino acid. We repurposed a natural protein degradation iii pathway, the N-end rule, to degrade proteins that were not properly charged with the target nsAA. This system could be tuned by engineering an adaptor protein to change the desired nsAA profile, allowing different versions of post-translational proofreading to check for distinct nsAAs. Finally, we demonstrated that this tool improved the purity of desired product for promiscuous genetic code expansion systems and facilitated the directed evolution of more specific genetic code expansion systems. Next, I explore genetic code expansion beyond the optimal conditions of strains specifically engineered to enhance nsAA incorporation. My coauthors and I investigate the use of peptides derived from honeybee antimicrobial molecules which could transiently inhibit competition with genetic code expansion. These peptides allow improved nsAA incorporation into various biotechnologically relevant E. coli strains as well as facilitate the expansion of the Agrobacterium tumefaciens genetic code for the first time. Finally, I apply the tools of genetic code expansion to the bacteria Bacillus subtilis and demonstrate that nearly any nsAA used in E. coli can be applied in B. subtilis using identical synthetases. I explain that nsAA incorporation into native stop codons is much more common than in E. coli, suggesting differences in translational termination between the two organisms. I also utilize nsAAs for translational titration and photocrosslinking in B. subtilis, showing that these tools can be easily utilized for novel kinds of experiments. Together, these tools will help expand the scope of genetic code expansion beyond specifically engineered strains and nsAAs. iv Acknowledgements This thesis and all the work behind it would not have been possible without a huge amount of effort on the part of others in training and supporting me. As a graduate student, I’ve received quality mentoring from many people, professor, postdoc and graduate student. My advisors Ethan Garner and George Church each supported and mentored me in their own way, and I am thankful for the hands-off but responsive advising style. I was allowed to wander until lost and then helped to find my place again. They also encouraged to follow my interests wherever they lead me, even if that was outside of academia. I also thank my committee, Rich Losick, Abhishek Chatterjee and Vlad Denic for their helpful advice and support. I owe much to the various postdocs I’ve interacted with over the years. Most notably Aditya Kunjapur, who took me under his wing when my project was going nowhere and has had so much to teach me about genetic code expansion, professionalism, and the true scientific process. We’ve continued collaborating as he became a professor and I wait with bated breath to see what his lab will accomplish with these technologies. I’ve also worked closely with Erkin Kuru, an irrepressible spirit of unrivalled creativity and brilliance. I believe in his projects even when they don’t work the first time. Many other postdocs have given me invaluable advice and feedback, including Alex Bisson, Cory Smith, Jorge Marchand, and Kamesh Narasimhan. My fellow students have provided an important feeling of camaraderie. My MCO class doing homework together was vital for the first years of graduate school, and staying in touch through D&D has been an important place to socialize. I still owe Mary Morrison, Korleki Akiti and Andrew Kane the finale to the story of the Dragonriders. The fellow students in the Garner v and Church labs have been great people to complain about science to and get advice on tough experiments. Georgia Squyres has been a role model of mine for her incredible way of analyzing the literature and planning good experiments since my second year. Max Shubert, Gabe Filsinger, George Chao and Sean Wilson have been important sounding boards and sources of support for failed experiments. Outside of the lab, I’ve had a great deal of support from friends, family and previous educators. My parents and especially my father, Christof Stork, encouraged my curiosity and interest in science from a young age, while my mother Terri Olson kept it tempered by practicality. I’ve had such a wonderful series of amazing teachers at every level of education that I really do wonder if I can take any credit for what I’ve learned. My long-term friends Andrew Gibiansky and Conrad de Kerkhove have shaped my views of the world, even if we only spend time together intermittently. Sarah Scheffler has been an incredible best friend and I’ve looked forward to every time we hang out. Finally, my partner Amanda Lemire has been my daily source of support, conversation, and fortitude, and I cannot thank her enough for helping me find my center even on bad days. vi Table of contents ABSTRACT ............................................................................................................................ iii Acknowledgements ............................................................................................................... v Table of contents ................................................................................................................. vii List of Figures ....................................................................................................................... ix List of Tables ......................................................................................................................... x Abbreviations ....................................................................................................................... xi Scientific contributions to this Thesis:....................................................................................xii Chapter 1: Introduction.......................................................................................................... 1 1.1 Genetic Code Expansion ...........................................................................................................1 1.2 Engineered tRNA & tRNA-synthetase diversity ..........................................................................4 1.3 Orthogonality and specificity of genetic code expansion ............................................................6
Recommended publications
  • Protists and the Wild, Wild West of Gene Expression
    MI70CH09-Keeling ARI 3 August 2016 18:22 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations Protists and the Wild, Wild • Explore related articles • Search keywords West of Gene Expression: New Frontiers, Lawlessness, and Misfits David Roy Smith1 and Patrick J. Keeling2 1Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7; email: [email protected] 2Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; email: [email protected] Annu. Rev. Microbiol. 2016. 70:161–78 Keywords First published online as a Review in Advance on constructive neutral evolution, mitochondrial transcription, plastid June 17, 2016 transcription, posttranscriptional processing, RNA editing, trans-splicing The Annual Review of Microbiology is online at micro.annualreviews.org Abstract This article’s doi: The DNA double helix has been called one of life’s most elegant structures, 10.1146/annurev-micro-102215-095448 largely because of its universality, simplicity, and symmetry. The expression Annu. Rev. Microbiol. 2016.70:161-178. Downloaded from www.annualreviews.org Copyright c 2016 by Annual Reviews. Access provided by University of British Columbia on 09/24/17. For personal use only. of information encoded within DNA, however, can be far from simple or All rights reserved symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukary- otes).
    [Show full text]
  • |||||||III US005478731A United States Patent (19) 11 Patent Number: 5,478,731
    |||||||III US005478731A United States Patent (19) 11 Patent Number: 5,478,731 Short 45 Date of Patent: Dec. 26,9 1995 54). POLYCOS VECTORS 56 References Cited 75) Inventor: Jay M. Short, Encinitas, Calif. PUBLICATIONS (73 Assignee: Stratagene, La Jolla, Calif. Ahmed (1989), Gene 75:315-321. 21 Appl. No.: 133,179 Evans et al. (1989), Gene 79:9-20. 22) PCT Filed: Apr. 10, 1992 Primary Examiner-Mindy B. Fleisher Assistant Examiner-Philip W. Carter 86 PCT No.: PCT/US92/03012 Attorney, Agent, or Firm-Albert P. Halluin; Pennie & S371 Date: Oct. 12, 1993 Edmonds S 102(e) Date: Oct. 12, 1993 57 ABSTRACT 87, PCT Pub. No.: WO92/18632 A bacteriophage packaging site-based vector system is describe that involves cloning vectors and methods for their PCT Pub. Date: Oct. 29, 1992 use in preparing multiple copy number bacteriophage librar O ies of cloned DNA. The vector is based on a DNA segment Related U.S. Application Data that comprises a nucleotide sequence defining a bacterioph 63 abandoned.continuationin-part of ser, No. 685.215,y Apr 12, 1991, ligationage packaging means usedsite locatedto concatamerize between twofragments termining of DNA 6 having compatible ligation means. Methods for preparing a (51) Int. Cl. ............................... C12N 1/21; C12N 7/01; concatameric DNA for packaging cloned DNA segments, C12N 15/10; C12N 15/11 and for packaging the concatamers to produce a library are 52 U.S. Cl. ................ 435/914; 435/1723; 435/252.33; also described. 435/235.1; 435/252.3; 536/23.1 58) Field of Search .............................. 435/91.32, 172.3, 435/320.1,914, 252.33, 252.3, 235.1; 536/23.1 18 Claims, 1 Drawing Sheet U.S.
    [Show full text]
  • Lessons from Nature: Microrna-Based Shrna Libraries
    PERSPECTIVE Lessons from Nature: microRNA-based shRNA libraries methods Kenneth Chang1, Stephen J Elledge2 & Gregory J Hannon1 Loss-of-function genetics has proven essential for interrogating the functions of genes .com/nature e and for probing their roles within the complex circuitry of biological pathways. In .natur many systems, technologies allowing the use of such approaches were lacking before w the discovery of RNA interference (RNAi). We have constructed first-generation short hairpin RNA (shRNA) libraries modeled after precursor microRNAs (miRNAs) and second- http://ww generation libraries modeled after primary miRNA transcripts (the Hannon-Elledge oup libraries). These libraries were arrayed, sequence-verified, and cover a substantial portion r G of all known and predicted genes in the human and mouse genomes. Comparison of first- and second-generation libraries indicates that RNAi triggers that enter the RNAi pathway lishing through a more natural route yield more effective silencing. These large-scale resources b Pu are functionally versatile, as they can be used in transient and stable studies, and for constitutive or inducible silencing. Library cassettes can be easily shuttled into vectors Nature that contain different promoters and/or that provide different modes of viral delivery. 6 200 © RNAi is an evolutionarily conserved, sequence-specific than a decade elapsed between the discovery of the first gene-silencing mechanism that is induced by dsRNA. miRNA, Caenorhabditis elegans lin-4 (refs. 11,12) and Each dsRNA silencing trigger is processed into 21–25 bp the achievement of at least a superficial understanding dsRNAs called small interfering RNAs (siRNAs)1–3 by of the biosynthesis, processing and mode of action of Dicer, a ribonuclease III family (RNase III) enzyme4.
    [Show full text]
  • Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site Madhuri Jonnalagadda Western Kentucky University
    Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School 12-2008 Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site Madhuri Jonnalagadda Western Kentucky University Follow this and additional works at: http://digitalcommons.wku.edu/theses Part of the Cell and Developmental Biology Commons, Genetics Commons, Immunopathology Commons, and the Molecular Genetics Commons Recommended Citation Jonnalagadda, Madhuri, "Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site" (2008). Masters Theses & Specialist Projects. Paper 42. http://digitalcommons.wku.edu/theses/42 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. SITE DIRECTED MUTAGENESIS OF BACTERIOPHAGE HK639 AND IDENTIFICATION OF ITS INTEGRATION SITE A Thesis presented to The faculty of the Department of Biology Western Kentucky University Bowling Green, Kentucky. In Partial Fulfillment Of the Requirement for the Degree Master of Science By Madhuri Jonnalagadda December, 2008 Site Directed Mutagenesis of Bacteriophage HK639 and Identification of its Integration Site Date Recommended 12/4/08 Dr.Rodney A. King Director of Thesis __Dr.Jeffery Marcus Dr. Sigrid Jacobshagen _____________________________________ Dean, Graduate Studies and Research Date DEDICATION I would like to dedicate my thesis to my dear father Dr. J. Padmanabha Rao, my mother, Dr.V. Lakshmi, my sister Dr. J. Sushma for their support and encouragement. i ACKNOWLEDGEMENTS I wish to express my heartfelt gratitude to my graduate committee in the Department of Biology, Western Kentucky University. Primarily, I am thankful to my advisor, Dr.
    [Show full text]
  • MORC1 Represses Transposable Elements in the Mouse Male Germline
    ARTICLE Received 12 Sep 2014 | Accepted 7 Nov 2014 | Published 12 Dec 2014 DOI: 10.1038/ncomms6795 OPEN MORC1 represses transposable elements in the mouse male germline William A. Pastor1,*, Hume Stroud1,*,w, Kevin Nee1, Wanlu Liu1, Dubravka Pezic2, Sergei Manakov2, Serena A. Lee1, Guillaume Moissiard1, Natasha Zamudio3,De´borah Bourc’his3, Alexei A. Aravin2, Amander T. Clark1,4 & Steven E. Jacobsen1,4,5 The Microrchidia (Morc) family of GHKL ATPases are present in a wide variety of prokaryotic and eukaryotic organisms but are of largely unknown function. Genetic screens in Arabidopsis thaliana have identified Morc genes as important repressors of transposons and other DNA-methylated and silent genes. MORC1-deficient mice were previously found to display male-specific germ cell loss and infertility. Here we show that MORC1 is responsible for transposon repression in the male germline in a pattern that is similar to that observed for germ cells deficient for the DNA methyltransferase homologue DNMT3L. Morc1 mutants show highly localized defects in the establishment of DNA methylation at specific classes of transposons, and this is associated with failed transposon silencing at these sites. Our results identify MORC1 as an important new regulator of the epigenetic landscape of male germ cells during the period of global de novo methylation. 1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, 4028 Terasaki Life Sciences Building, 610 Charles E. Young Drive East, Los Angeles, California 90095, USA. 2 Division of Biology and Biochemical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA. 3 Unite´ de ge´ne´tique et biologie du de´veloppement, Instititute Curie, CNRS UMR3215, INSERM U934, Paris 75005, France.
    [Show full text]
  • The Roles of Moron Genes in the Escherichia Coli Enterobacteria Phage Phi-80
    THE ROLES OF MORON GENES IN THE ESCHERICHIA COLI ENTEROBACTERIA PHAGE PHI-80 Yury V. Ivanov A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2012 Committee: Ray A. Larsen, Advisor Craig L. Zirbel Graduate Faculty Representative Vipa Phuntumart Scott O. Rogers George S. Bullerjahn © 2012 Yury Ivanov All Rights Reserved iii ABSTRACT Ray Larsen, Advisor The TonB system couples cytoplasmic membrane-derived proton motive force energy to drive ferric siderophore transport across the outer membrane of Gram-negative bacteria. While much effort has focused on this process, how energy is harnessed to provide for transport of ligands remains unknown. Several bacterial viruses (“phage”) are known to require the TonB system to irreversibly adsorb (i.e., establish infection) in the model organism Escherichia coli. One such phage is φ80, a “cousin” of the model temperate phage λ. Determining how φ80 is using the TonB system for infection should provide novel insights to the mechanisms of TonB-dependent processes. It had long been known that recombination between λ and φ80 results in a λ-like phage for whom TonB is now required; and this recombination involved the λ J gene, which encodes the tail-spike protein required for irreversible adsorption of λ to E. coli. Thus, we suspected that a φ80 homologue of the λ J gene product was responsible for the TonB dependence of φ80. While φ80 has long served as a tool for assaying TonB activity, it has not received the scrutiny afforded λ.
    [Show full text]
  • Manual: Lambda ZAP-CMV XR Library Construction
    Lambda ZAP-CMV XR Library Construction Kit INSTRUCTION MANUAL Catalog #200448 BN #200448-12 Revision A.01 For In Vitro Use Only 200448-12 LIMITED PRODUCT WARRANTY This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product. ORDERING INFORMATION AND TECHNICAL SERVICES United States and Canada Agilent Technologies Stratagene Products Division 11011 North Torrey Pines Road La Jolla, CA 92037 Telephone (858) 373-6300 Order Toll Free (800) 424-5444 Technical Services (800) 894-1304 Internet [email protected] World Wide Web www.stratagene.com Europe Location Telephone Fax Technical Services Austria 0800 292 499 0800 292 496 0800 292 498 Belgium 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 15775 0800 15740 0800 15720 France 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 919 288 0800 919 287 0800 919 289 Germany 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 182 8232 0800 182 8231 0800 182 8234 Netherlands 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 023 0446 +31 (0)20 312 5700 0800 023 0448 Switzerland 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 563 080 0800 563 082 0800 563 081 United Kingdom 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 917 3282 0800 917 3283 0800 917 3281 All Other Countries Please contact your local distributor.
    [Show full text]
  • Murine Cytomegalovirus Encodes a Mir-27 Inhibitor Disguised As a Target
    Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target Valentina Libria,1, Aleksandra Helwakb,1, Pascal Miesenc, Diwakar Santhakumara,d, Jessica G. Borger a, Grzegorz Kudlab, Finn Greye, David Tollerveyb, and Amy H. Bucka,d,2 aCentre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; bWellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom; cDepartment of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB, Nijmegen, The Netherlands; dDivision of Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; and eThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom Edited* by Norman R. Pace, University of Colorado, Boulder, CO, and approved November 29, 2011 (received for review September 1, 2011) Individual microRNAs (miRNAs) are rapidly down-regulated during involved (16). A small nuclear RNA (snRNA) in Herpesvirus conditions of cellular activation and infection, but factors mediat- saimiri (HVS), HSUR-1, was recently shown to bind to miR-27 ing miRNA turnover are poorly understood. Infection of mouse and mediate its degradation (17). However, no homolog of cells with murine cytomegalovirus (MCMV) induces the rapid HSUR-1 has been identified in other viral families. miRNA down-regulation of an antiviral cellular miRNA, miR-27. Here, we turnover mechanisms in animals remain poorly characterized identify a transcript produced by MCMV that binds to miR-27 and (18). The aim of this work was to identify miR-27 interaction sites mediates its degradation.
    [Show full text]
  • Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and Their Suppression
    Viruses 2013, 5, 619-653; doi:10.3390/v5020619 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Article Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and their Suppression Sidney Hayes *, Craig Erker, Monique A. Horbay, Kristen Marciniuk, Wen Wang and Connie Hayes Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada; E-Mails: [email protected] (S.H.); [email protected] (C.E.); [email protected] (M.A.H.); [email protected] (K.M.); [email protected] (W.W.); [email protected] (C.H.) * Author to whom correspondence should be addressed; [email protected]; Tel.: +1-306-966-4307; Fax: +1-306-966-4298. Received: 4 December 2012; in revised form: 21 January 2013 / Accepted: 29 January 2013 / Published: 6 February 2013 Abstract: The initiation of bacteriophage λ replication depends upon interactions between the oriλ DNA site, phage proteins O and P, and E. coli host replication proteins. P exhibits a high affinity for DnaB, the major replicative helicase for unwinding double stranded DNA. The concept of P-lethality relates to the hypothesis that P can sequester DnaB and in turn prevent cellular replication initiation from oriC. Alternatively, it was suggested that P-lethality does not involve an interaction between P and DnaB, but is targeted to DnaA. P-lethality is assessed by examining host cells for transformation by ColE1-type plasmids that can express P, and the absence of transformants is attributed to a lethal effect of P expression. The plasmid we employed enabled conditional expression of P, where under permissive conditions, cells were efficiently transformed.
    [Show full text]
  • Electronic Supplement
    Electronic Supplement Scheme of lambda phage structure and protein components Head Tail gpA gpG gpB gpH gpC gpI gpD gpJ gpE gpK gpFⅡ gpL gpW gpM gpT gpU gpV gpZ Preparation of Lambda phage The procedure for preparing lambda phage was adapted from protocols in Molecular Cloning: A Laboratory Manual [38]. Materials ‐ media and buffer E.coli bacteria strain LE392 and lambda phage strain were purchased from Promega (Madison, WI). Sterilized Luria Bertani (LB) medium (10 g trypton, 5 g yeast extract and 10 g NaCl / liter, pH=7.5) was used for bacterial and phage cultivation, as well as for the plaque assay. Sterilized SM solution (5.8 g of NaCl, 2 g of MgSO4∙ 7H2O, 50 ml of 1 M Tris‐HCl at pH=7.5, and 5 ml of 2% Gelatin / liter) was employed as suspension buffer for lambda phage. Agar solution (7 g agar in one liter of LB medium, pH=7.5) was prepared for multiple usage throughout the procedure. Agar solution condensed in Petri dishes is referred to as bottom agar/agar plate, while agar solution stored in bottles for further use is top agar. Bacterial growth The bacteria strain LE392 was streaked on agar plate and incubated at 37 °C overnight. Then a single bacterial colony was picked from the streaked plate and incubated with 50 ml of LB medium in the presence of 0.2% maltose overnight for bacterial growth. After centrifugation of bacterial culture, the supernatant was discarded and bacterial cell pellet was resuspended with 10 mM MgSO4 to a final concentration of OD600 = 1.0 (optical density measured at 600 nm).
    [Show full text]
  • Domestication of Lambda Phage Genes Into a Putative Third Type of Replicative Helicase Matchmaker
    GBE Domestication of Lambda Phage Genes into a Putative Third Type of Replicative Helicase Matchmaker Pierre Bre´ zellec1,Marie-Agne`s Petit2, Sophie Pasek3, Isabelle Vallet-Gely4, Christophe Possoz4,and Jean-Luc Ferat1,4,* 1Universite de Versailles Saint-Quentin en Yvelines UFR des Sciences, France 2Micalis Institute, INRA, AgroParisTech, Universite´ Paris-Saclay, Jouy-en-Josas, France 3Atelier de Bioinformatique, UMR 7205 ISYEB, CNRS-MNHN-UPMC-EPHE, Muse´ um d’Histoire Naturelle, Paris, France 4Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Universite´ Paris-Saclay, 91198, Gif-sur-Yvette cedex, France *Corresponding author: E-mail: [email protected]. Accepted: June 26, 2017 Abstract At the onset of the initiation of chromosome replication, bacterial replicative helicases are recruited and loaded on the DnaA-oriC nucleoprotein platform, assisted by proteins like DnaC/DnaI or DciA. Two orders of bacteria appear, however, to lack either of these factors, raising the question of the essentiality of these factors in bacteria. Through a phylogenomic approach, we identified a pair of genes that could have substituted for dciA. The two domesticated genes are specific of the dnaC/dnaI-anddciA-lacking organisms and apparently domesticated from lambdoid phage genes. They derive from kO and kP and were renamed dopC and dopE, respectively. DopE is expected to bring the replicative helicase to the bacterial origin of replication, while DopC might assist DopE in this function. The confirmation of the implication of DopCE in the handling of the replicative helicase at the onset of replication in these organisms would generalize to all bacteria and therefore to all living organisms the need for specific factors dedicated to this function.
    [Show full text]
  • Genetic Map of Bacteriophage Lambda
    MICROBIOLOGICAL REVIEWS, Sept. 1978, p. 577-591 Vol.42, No. 3 0146-0749/78/0042-0577$02.00/0 Copyright © 1978 American Society for Microbiology Printed in U.S.A. Genetic Map of Bacteriophage Lambda HARRISON ECHOLS* AND HELIOS MURIALDO Department ofMolecular Biology, University of California, Berkeley, California 94720, * and Department of Medical Genetics, University of Toronto, Toronto M5S 1A8, Canada INTRODUCTION .5..577 PHYSICAL STATES AND ACTIVITY OF THE A GENOME 577 GENETIC MAP OF THE A GENOME .577 ACTIITrY MAP OF THE A GENOME .583 COMMENTS ON GENETIC ORGANIZATION ...........5*583 LITERATURE CITED .584 INTRODUCTION that are the obligatory precursors for the The study of bacteriophage A has been a cen- cleaved, linear molecules packaged into a phage tral endeavor of molecular biology for a number head (Fig. 1). The lysogenic pathway involves a of years. Phage A has been the creature of choice repression of transcription and a site-specific for many investigators interested in deoxyribo- recombination event that inserts A DNA into nucleic acid (DNA) transcription, replication, the host Escherichia coli genome. This integra- and recombination, in nucleoprotein assembly, tive recombination between the phage and host and in the organization of these processes into attachment sites (att) generates a genetic struc- temporally regulated pathways. As a result of ture that is permuted from the linear order this intensive study, a great deal of information found in the phage particle because the phage is now available about A genes and how they attachment site (a a' or P P) is approximately work; however, the communication of this in the center of the mature DNA molecule (Fig.
    [Show full text]