Encoded Genes in the Biology and Pathogenesis of Escherichia Coli O157:H7

Total Page:16

File Type:pdf, Size:1020Kb

Encoded Genes in the Biology and Pathogenesis of Escherichia Coli O157:H7 The Pennsylvania State University The Graduate School Department of Food Science THE COMPLEX INVOLVEMENT OF PROPHAGE AND PROPHAGE- ENCODED GENES IN THE BIOLOGY AND PATHOGENESIS OF ESCHERICHIA COLI O157:H7 A Dissertation in Food Science By Chun Chen © 2012 Chun Chen Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2012 ii The dissertation of Chun Chen was reviewed and approved* by the following: Edward G. Dudley Associate Professor of Food Science Dissertation Advisor Chair of the Committee Stephen J. Knabel Professor of Food Science Robert F. Roberts Professor of Food Science Interim Head of the Department of Food Science Kenneth C. Keiler Associate Professor of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School. iii Abstract Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important foodborne pathogen, notorious for its low infectious dose and its potential to cause serious diseases such as hemorrhagic colitis and hemolytic uremic syndrome. The cattle gastrointestinal tract is the major biological reservoir of E. coli O157:H7. Whole genome sequencing of this organism identified a total of 18 prophage and 6 prophage-like elements, which make up 16% of the chromosome. These horizontally transferred genetic elements encode most of the recognized virulence factors in E. coli O157:H7, including the phage-encoded Shiga toxin (Stx) and locus of enterocyte effacement (LEE), and the pre- and post-transcriptional regulators for the expression of these virulence genes. Meanwhile, prophage regions are hot spots for genomic rearrangement in this pathogen. Therefore, the overall goal of the present study was to understand the various contributions of these prophage to the virulence and epidemiologic character of E. coli O157:H7. Stx is responsible for the serious clinical manifestations of infections in humans, and Stx2 is a subgroup that is associated with highly pathogenic strains. It has been hypothesized that both the O157:H7 strain and the susceptibility of intestinal E. coli to its phage impacts Stx2 accumulation in vivo. I quantified the phage and Stx2 production by 13 E. coli O157:H7 strains and observed dramatic strain-to-strain variability. Transduction of the stx2-encoding phage from E. coli strain EDL933 into a non-toxin producing E. coli strain (C600) demonstrated that the host background affects phage iv and toxin production. Coincubation of E. coli O157:H7 or its lytic phage pools with E. coli C600 could increase the production of Stx2 and stx2-encoding phage particles. This effect varied with the O157:H7 strain, the stx2-encoding prophage, and the presence of the phage inducing agent ciprofloxacin. Of note, phage from two E. coli O157:H7 clade 8 strains were the most infectious of those screened, while an stx2c-encoding phage possessed limited infectivity. Additionally, one clade 8 strain designated PA2 produced limited Stx2 as a pure culture, but accumulated the highest toxin level among strains tested when coincubated with C600. These results suggest that the intestinal microflora may impact the outcome of an O157:H7 infection, and that toxin production observed in pure culture might not accurately reflect the levels produced in vivo. Sp11 and Sp12 are two tandem integrated and putatively defective prophage carried by E. coli O157:H7 strain Sakai. I identified 3 classes of deletions that occur within the Sp11-Sp12 region at a frequency of ca. 7.74 × 10-4. One deletion involved a precise excision of Sp11 and the other two spanned the junction of Sp11 and Sp12. All deletions resulted in shifts in the XbaI fragment pattern observed by PFGE. Alignment of the Sp11-Sp12 DNA sequence with its corresponding regions in other E. coli O157:H7 and O55:H7 strains suggested that homologous recombination rather than integrase- mediated excision is the mechanism behind these deletions. These observations explain in part a mechanism behind the previously reported genetic instability of this genomic region of E. coli O157:H7. Data from our group suggested that the E. coli O157:H7 human isolates and isolates belonging to O serogroups that are frequently associated with foodborne v outbreaks carry more copies of ileZ and argO than others. This observation supports the hypothesis that the lambdoid prophage-encoded ileZ-argN-argO operon has a regulatory effect on EHEC virulence. For the first time, I demonstrated promoter activity upstream of all seven ileZ-argN-argO operons in E. coli O157:H7 Sakai and the transcription of ileZ and argO independent of the phage late promoter. I also determined that ileZ2 encodes a functional tRNA and suggested that argN is functionally ‘redundant’. Unexpectedly, inactivation of the ileZ2-argN2-argO2 operon did not affect the production of Stx2 and the stx2-encoding phage in Sakai and phage-converted C600. These observations do not support the widespread belief that ileZ-argN-argO are required for efficient production of Stx2 and phage particles. Streptomycin binds to the ribosome of bacteria and can inhibit translation by promoting misreading of mRNA. Restrictive streptomycin-resistant (Strr) mutations increase the accuracy of the decoding process; while concomitantly decrease the rate of translation in many cases. Streptomycin is commonly used to repress the colonization resistance from intestinal microflora during investigation of the colonization and pathogenesis of E. coli O157:H7 in animal models. LEE-encoded EspA and EspB play important roles in attachment to intestinal epithelia and colonization by E. coli O157:H7. I observed a striking decrease in the secretion levels of EspA and EspB with E. coli O157:H7 Strr restrictive mutants, which carry K42T or K42I mutations in the S12 protein. However, strains carrying mutations previously defined as mildly restrictive (K87R) and non-restrictive (K42R) showed slight and indistinguishable changes in EspA and EspB secretion, respectively. Therefore, I propose that restrictive Strr mutations alter the EspA vi and EspB secretion by the bacteria and results in reduced capacity in colonizing and cause human diseases. vii TABLE OF CONTENTS List of Figures………………………………………………………………………………………………………………xiii List of Tables……………………………………………..……………………………………………………………….xvii List of Abbreviations……………………………………………………………………………………………..….…xix Acknowledgements……………………………………………………………………………………………………xxi Chapter One. Statement of the problems…………….....................................….…………………1 Chapter Two. Literature Review……………….……………………………………………………………………3 2.1 Escherichia coli O157:H7………………….….………………………............….………………..4 2.1.1 An Overview of enterohemorrhagic E. coli….....................….….……….4 2.1.2 Clinical features of E. coli O157:H7…………….....................….………….5 2.1.3 Epidemiology of E. coli O157:H7……………...................…...….……………6 2.1.4 Transmission of E. coli O157:H7…………...........….…...........………………8 2.1.5 Subtyping methods for E. coli O157:H7……...........….…...........………..9 2.1.5.1 Pulse-field gel electrophoresis…………...........…............…..10 2.1.5.2 Octamer-based genome scanning and Lineage-specific polymorphism assay…............….…...........….…...........….10 viii 2.1.5.3 Clade classification system………...........….….........…………..11 2.1.6 Pathogenesis and virulence factors of E. coli O157:H7…………….……12 2.1.6.1 The Locus for Enterocyte Effacement…...........….…...........13 2.1.6.2 Shiga toxins……………………………………….…...........….….........16 2.1.6.3 p O157…………………………………………………...........….…..........17 2.2 Bacteriophage in E. coli O157:H7…………………………………...........….…...........….18 2.2.1 An overview of bacteriophage………………………..............….…...........18 2.2.2 stx-encoding pha ge…………………………………………...........….…...........21 2.2.2.1 VT2-Sakai: an example for stx2-encoding phage….………..22 2.2.2.2 The role of stx-encoding phage in the pathogenesis of E. coli O157:H7…………...........….…...........….…...........….….......25 2.2.2.3 Quantification for stx-encoding phage............................. 26 2.2.2.3.1 Pl aque assay……………………………............….…......26 2.2.2.3.2 E lectronic microscopy………………...........….…......27 2.2.2.3.3 Quantitative PCR………………………...........….…......27 2.2.3 Phage in the phylogeny of E. coli O157:H7………...........….…...........28 2.2.3.1 The evolution of E. coli O157:H7…………………….….….........28 ix 2.2.3.2 Prophage regions as hot spots for genomic Rearrangements…………………………………………………………….30 2.3 R are c odon t RNAs……………………………...........….…...........….…………………………33 2.3.1 An overview of codon bias…………...........….…...........……………………33 2.3.2 Rare codon and bacterial virulence….............….…..........................34 2.3.2.1 The influence of leuX on the virulence of uropathogenic E. coli……...........….…...........….…...........….…................….….....37 2.3.2.2 The influence of fimU on the virulence of S. enterica serovar Typhimurium……................….…...........….….....37 2.3.3 ileZ-argN-argO tRNA gene operons………………..............….…...........38 2.4 Using streptomycin in E. coli O157:H7 animal study…..............….…...........….42 2.4.1 A b rief review of prokaryotic translation………..............….…...........42 2.4.2 S treptomycin a nd s treptomycin-resistance…….............….…...........43 2.4.2.1 An introduction to streptomycin…….….............….…........43 2.4.2.2 Different streptomycin-resistant mutations in E. coli….45 2.4.3 Application of Strr E. coli O157:H7 in animal infection study…………47 2.5 C onclusion…………………………………...........….…...........….………………………………..50
Recommended publications
  • Protists and the Wild, Wild West of Gene Expression
    MI70CH09-Keeling ARI 3 August 2016 18:22 ANNUAL REVIEWS Further Click here to view this article's online features: • Download figures as PPT slides • Navigate linked references • Download citations Protists and the Wild, Wild • Explore related articles • Search keywords West of Gene Expression: New Frontiers, Lawlessness, and Misfits David Roy Smith1 and Patrick J. Keeling2 1Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7; email: [email protected] 2Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4; email: [email protected] Annu. Rev. Microbiol. 2016. 70:161–78 Keywords First published online as a Review in Advance on constructive neutral evolution, mitochondrial transcription, plastid June 17, 2016 transcription, posttranscriptional processing, RNA editing, trans-splicing The Annual Review of Microbiology is online at micro.annualreviews.org Abstract This article’s doi: The DNA double helix has been called one of life’s most elegant structures, 10.1146/annurev-micro-102215-095448 largely because of its universality, simplicity, and symmetry. The expression Annu. Rev. Microbiol. 2016.70:161-178. Downloaded from www.annualreviews.org Copyright c 2016 by Annual Reviews. Access provided by University of British Columbia on 09/24/17. For personal use only. of information encoded within DNA, however, can be far from simple or All rights reserved symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukary- otes).
    [Show full text]
  • |||||||III US005478731A United States Patent (19) 11 Patent Number: 5,478,731
    |||||||III US005478731A United States Patent (19) 11 Patent Number: 5,478,731 Short 45 Date of Patent: Dec. 26,9 1995 54). POLYCOS VECTORS 56 References Cited 75) Inventor: Jay M. Short, Encinitas, Calif. PUBLICATIONS (73 Assignee: Stratagene, La Jolla, Calif. Ahmed (1989), Gene 75:315-321. 21 Appl. No.: 133,179 Evans et al. (1989), Gene 79:9-20. 22) PCT Filed: Apr. 10, 1992 Primary Examiner-Mindy B. Fleisher Assistant Examiner-Philip W. Carter 86 PCT No.: PCT/US92/03012 Attorney, Agent, or Firm-Albert P. Halluin; Pennie & S371 Date: Oct. 12, 1993 Edmonds S 102(e) Date: Oct. 12, 1993 57 ABSTRACT 87, PCT Pub. No.: WO92/18632 A bacteriophage packaging site-based vector system is describe that involves cloning vectors and methods for their PCT Pub. Date: Oct. 29, 1992 use in preparing multiple copy number bacteriophage librar O ies of cloned DNA. The vector is based on a DNA segment Related U.S. Application Data that comprises a nucleotide sequence defining a bacterioph 63 abandoned.continuationin-part of ser, No. 685.215,y Apr 12, 1991, ligationage packaging means usedsite locatedto concatamerize between twofragments termining of DNA 6 having compatible ligation means. Methods for preparing a (51) Int. Cl. ............................... C12N 1/21; C12N 7/01; concatameric DNA for packaging cloned DNA segments, C12N 15/10; C12N 15/11 and for packaging the concatamers to produce a library are 52 U.S. Cl. ................ 435/914; 435/1723; 435/252.33; also described. 435/235.1; 435/252.3; 536/23.1 58) Field of Search .............................. 435/91.32, 172.3, 435/320.1,914, 252.33, 252.3, 235.1; 536/23.1 18 Claims, 1 Drawing Sheet U.S.
    [Show full text]
  • Lessons from Nature: Microrna-Based Shrna Libraries
    PERSPECTIVE Lessons from Nature: microRNA-based shRNA libraries methods Kenneth Chang1, Stephen J Elledge2 & Gregory J Hannon1 Loss-of-function genetics has proven essential for interrogating the functions of genes .com/nature e and for probing their roles within the complex circuitry of biological pathways. In .natur many systems, technologies allowing the use of such approaches were lacking before w the discovery of RNA interference (RNAi). We have constructed first-generation short hairpin RNA (shRNA) libraries modeled after precursor microRNAs (miRNAs) and second- http://ww generation libraries modeled after primary miRNA transcripts (the Hannon-Elledge oup libraries). These libraries were arrayed, sequence-verified, and cover a substantial portion r G of all known and predicted genes in the human and mouse genomes. Comparison of first- and second-generation libraries indicates that RNAi triggers that enter the RNAi pathway lishing through a more natural route yield more effective silencing. These large-scale resources b Pu are functionally versatile, as they can be used in transient and stable studies, and for constitutive or inducible silencing. Library cassettes can be easily shuttled into vectors Nature that contain different promoters and/or that provide different modes of viral delivery. 6 200 © RNAi is an evolutionarily conserved, sequence-specific than a decade elapsed between the discovery of the first gene-silencing mechanism that is induced by dsRNA. miRNA, Caenorhabditis elegans lin-4 (refs. 11,12) and Each dsRNA silencing trigger is processed into 21–25 bp the achievement of at least a superficial understanding dsRNAs called small interfering RNAs (siRNAs)1–3 by of the biosynthesis, processing and mode of action of Dicer, a ribonuclease III family (RNase III) enzyme4.
    [Show full text]
  • Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site Madhuri Jonnalagadda Western Kentucky University
    Western Kentucky University TopSCHOLAR® Masters Theses & Specialist Projects Graduate School 12-2008 Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site Madhuri Jonnalagadda Western Kentucky University Follow this and additional works at: http://digitalcommons.wku.edu/theses Part of the Cell and Developmental Biology Commons, Genetics Commons, Immunopathology Commons, and the Molecular Genetics Commons Recommended Citation Jonnalagadda, Madhuri, "Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration Site" (2008). Masters Theses & Specialist Projects. Paper 42. http://digitalcommons.wku.edu/theses/42 This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information, please contact [email protected]. SITE DIRECTED MUTAGENESIS OF BACTERIOPHAGE HK639 AND IDENTIFICATION OF ITS INTEGRATION SITE A Thesis presented to The faculty of the Department of Biology Western Kentucky University Bowling Green, Kentucky. In Partial Fulfillment Of the Requirement for the Degree Master of Science By Madhuri Jonnalagadda December, 2008 Site Directed Mutagenesis of Bacteriophage HK639 and Identification of its Integration Site Date Recommended 12/4/08 Dr.Rodney A. King Director of Thesis __Dr.Jeffery Marcus Dr. Sigrid Jacobshagen _____________________________________ Dean, Graduate Studies and Research Date DEDICATION I would like to dedicate my thesis to my dear father Dr. J. Padmanabha Rao, my mother, Dr.V. Lakshmi, my sister Dr. J. Sushma for their support and encouragement. i ACKNOWLEDGEMENTS I wish to express my heartfelt gratitude to my graduate committee in the Department of Biology, Western Kentucky University. Primarily, I am thankful to my advisor, Dr.
    [Show full text]
  • MORC1 Represses Transposable Elements in the Mouse Male Germline
    ARTICLE Received 12 Sep 2014 | Accepted 7 Nov 2014 | Published 12 Dec 2014 DOI: 10.1038/ncomms6795 OPEN MORC1 represses transposable elements in the mouse male germline William A. Pastor1,*, Hume Stroud1,*,w, Kevin Nee1, Wanlu Liu1, Dubravka Pezic2, Sergei Manakov2, Serena A. Lee1, Guillaume Moissiard1, Natasha Zamudio3,De´borah Bourc’his3, Alexei A. Aravin2, Amander T. Clark1,4 & Steven E. Jacobsen1,4,5 The Microrchidia (Morc) family of GHKL ATPases are present in a wide variety of prokaryotic and eukaryotic organisms but are of largely unknown function. Genetic screens in Arabidopsis thaliana have identified Morc genes as important repressors of transposons and other DNA-methylated and silent genes. MORC1-deficient mice were previously found to display male-specific germ cell loss and infertility. Here we show that MORC1 is responsible for transposon repression in the male germline in a pattern that is similar to that observed for germ cells deficient for the DNA methyltransferase homologue DNMT3L. Morc1 mutants show highly localized defects in the establishment of DNA methylation at specific classes of transposons, and this is associated with failed transposon silencing at these sites. Our results identify MORC1 as an important new regulator of the epigenetic landscape of male germ cells during the period of global de novo methylation. 1 Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, 4028 Terasaki Life Sciences Building, 610 Charles E. Young Drive East, Los Angeles, California 90095, USA. 2 Division of Biology and Biochemical Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, California 91125, USA. 3 Unite´ de ge´ne´tique et biologie du de´veloppement, Instititute Curie, CNRS UMR3215, INSERM U934, Paris 75005, France.
    [Show full text]
  • The Roles of Moron Genes in the Escherichia Coli Enterobacteria Phage Phi-80
    THE ROLES OF MORON GENES IN THE ESCHERICHIA COLI ENTEROBACTERIA PHAGE PHI-80 Yury V. Ivanov A Dissertation Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2012 Committee: Ray A. Larsen, Advisor Craig L. Zirbel Graduate Faculty Representative Vipa Phuntumart Scott O. Rogers George S. Bullerjahn © 2012 Yury Ivanov All Rights Reserved iii ABSTRACT Ray Larsen, Advisor The TonB system couples cytoplasmic membrane-derived proton motive force energy to drive ferric siderophore transport across the outer membrane of Gram-negative bacteria. While much effort has focused on this process, how energy is harnessed to provide for transport of ligands remains unknown. Several bacterial viruses (“phage”) are known to require the TonB system to irreversibly adsorb (i.e., establish infection) in the model organism Escherichia coli. One such phage is φ80, a “cousin” of the model temperate phage λ. Determining how φ80 is using the TonB system for infection should provide novel insights to the mechanisms of TonB-dependent processes. It had long been known that recombination between λ and φ80 results in a λ-like phage for whom TonB is now required; and this recombination involved the λ J gene, which encodes the tail-spike protein required for irreversible adsorption of λ to E. coli. Thus, we suspected that a φ80 homologue of the λ J gene product was responsible for the TonB dependence of φ80. While φ80 has long served as a tool for assaying TonB activity, it has not received the scrutiny afforded λ.
    [Show full text]
  • Generalization of Genetic Code Expansion
    Generalization of Genetic Code Expansion The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Stork, Devon. 2020. Generalization of Genetic Code Expansion. Doctoral dissertation, Harvard University Graduate School of Arts and Sciences. Citable link https://nrs.harvard.edu/URN-3:HUL.INSTREPOS:37368951 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HARVARD UNIVERSITY Graduate School of Arts and Sciences DISSERTATION ACCEPTANCE CERTIFICATE The undersigned, appointed by the Department of Molecular and Cellular Biology have examined a dissertation entitled Generalization of Genetic Code Expansion presented by Devon Stork candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance. Signature Richard Losick (Sep 15, 2020 15:40 EDT) Typed name: Prof. Richard Losick Vlad Denic Signatur Vlad Denic (Sep 17, 2020 14:52 EDT) Typed name: Prof. Vladimir Denic Signature Abhishek Chatterjee (Sep 23, 2020 13:28 EDT) Typed name: Prof. Abhishek Chatterjee Signature Typed name: Prof. Signature Typed name: Prof. Date: September 15, 2020 Generalization of Genetic Code Expansion A dissertation presented by Devon Stork to The Department of Molecular and Cellular Biology In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biochemistry Harvard University Cambridge, Massachusetts September 2020 © 2020 Devon Stork All rights reserved Dissertation Advisors: Dr.
    [Show full text]
  • Manual: Lambda ZAP-CMV XR Library Construction
    Lambda ZAP-CMV XR Library Construction Kit INSTRUCTION MANUAL Catalog #200448 BN #200448-12 Revision A.01 For In Vitro Use Only 200448-12 LIMITED PRODUCT WARRANTY This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product. ORDERING INFORMATION AND TECHNICAL SERVICES United States and Canada Agilent Technologies Stratagene Products Division 11011 North Torrey Pines Road La Jolla, CA 92037 Telephone (858) 373-6300 Order Toll Free (800) 424-5444 Technical Services (800) 894-1304 Internet [email protected] World Wide Web www.stratagene.com Europe Location Telephone Fax Technical Services Austria 0800 292 499 0800 292 496 0800 292 498 Belgium 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 15775 0800 15740 0800 15720 France 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 919 288 0800 919 287 0800 919 289 Germany 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 182 8232 0800 182 8231 0800 182 8234 Netherlands 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 023 0446 +31 (0)20 312 5700 0800 023 0448 Switzerland 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 563 080 0800 563 082 0800 563 081 United Kingdom 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 917 3282 0800 917 3283 0800 917 3281 All Other Countries Please contact your local distributor.
    [Show full text]
  • Murine Cytomegalovirus Encodes a Mir-27 Inhibitor Disguised As a Target
    Murine cytomegalovirus encodes a miR-27 inhibitor disguised as a target Valentina Libria,1, Aleksandra Helwakb,1, Pascal Miesenc, Diwakar Santhakumara,d, Jessica G. Borger a, Grzegorz Kudlab, Finn Greye, David Tollerveyb, and Amy H. Bucka,d,2 aCentre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom; bWellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom; cDepartment of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, 6500 HB, Nijmegen, The Netherlands; dDivision of Pathway Medicine, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom; and eThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom Edited* by Norman R. Pace, University of Colorado, Boulder, CO, and approved November 29, 2011 (received for review September 1, 2011) Individual microRNAs (miRNAs) are rapidly down-regulated during involved (16). A small nuclear RNA (snRNA) in Herpesvirus conditions of cellular activation and infection, but factors mediat- saimiri (HVS), HSUR-1, was recently shown to bind to miR-27 ing miRNA turnover are poorly understood. Infection of mouse and mediate its degradation (17). However, no homolog of cells with murine cytomegalovirus (MCMV) induces the rapid HSUR-1 has been identified in other viral families. miRNA down-regulation of an antiviral cellular miRNA, miR-27. Here, we turnover mechanisms in animals remain poorly characterized identify a transcript produced by MCMV that binds to miR-27 and (18). The aim of this work was to identify miR-27 interaction sites mediates its degradation.
    [Show full text]
  • Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and Their Suppression
    Viruses 2013, 5, 619-653; doi:10.3390/v5020619 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Article Phage Lambda P Protein: Trans-Activation, Inhibition Phenotypes and their Suppression Sidney Hayes *, Craig Erker, Monique A. Horbay, Kristen Marciniuk, Wen Wang and Connie Hayes Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, S7N 5E5 Canada; E-Mails: [email protected] (S.H.); [email protected] (C.E.); [email protected] (M.A.H.); [email protected] (K.M.); [email protected] (W.W.); [email protected] (C.H.) * Author to whom correspondence should be addressed; [email protected]; Tel.: +1-306-966-4307; Fax: +1-306-966-4298. Received: 4 December 2012; in revised form: 21 January 2013 / Accepted: 29 January 2013 / Published: 6 February 2013 Abstract: The initiation of bacteriophage λ replication depends upon interactions between the oriλ DNA site, phage proteins O and P, and E. coli host replication proteins. P exhibits a high affinity for DnaB, the major replicative helicase for unwinding double stranded DNA. The concept of P-lethality relates to the hypothesis that P can sequester DnaB and in turn prevent cellular replication initiation from oriC. Alternatively, it was suggested that P-lethality does not involve an interaction between P and DnaB, but is targeted to DnaA. P-lethality is assessed by examining host cells for transformation by ColE1-type plasmids that can express P, and the absence of transformants is attributed to a lethal effect of P expression. The plasmid we employed enabled conditional expression of P, where under permissive conditions, cells were efficiently transformed.
    [Show full text]
  • Electronic Supplement
    Electronic Supplement Scheme of lambda phage structure and protein components Head Tail gpA gpG gpB gpH gpC gpI gpD gpJ gpE gpK gpFⅡ gpL gpW gpM gpT gpU gpV gpZ Preparation of Lambda phage The procedure for preparing lambda phage was adapted from protocols in Molecular Cloning: A Laboratory Manual [38]. Materials ‐ media and buffer E.coli bacteria strain LE392 and lambda phage strain were purchased from Promega (Madison, WI). Sterilized Luria Bertani (LB) medium (10 g trypton, 5 g yeast extract and 10 g NaCl / liter, pH=7.5) was used for bacterial and phage cultivation, as well as for the plaque assay. Sterilized SM solution (5.8 g of NaCl, 2 g of MgSO4∙ 7H2O, 50 ml of 1 M Tris‐HCl at pH=7.5, and 5 ml of 2% Gelatin / liter) was employed as suspension buffer for lambda phage. Agar solution (7 g agar in one liter of LB medium, pH=7.5) was prepared for multiple usage throughout the procedure. Agar solution condensed in Petri dishes is referred to as bottom agar/agar plate, while agar solution stored in bottles for further use is top agar. Bacterial growth The bacteria strain LE392 was streaked on agar plate and incubated at 37 °C overnight. Then a single bacterial colony was picked from the streaked plate and incubated with 50 ml of LB medium in the presence of 0.2% maltose overnight for bacterial growth. After centrifugation of bacterial culture, the supernatant was discarded and bacterial cell pellet was resuspended with 10 mM MgSO4 to a final concentration of OD600 = 1.0 (optical density measured at 600 nm).
    [Show full text]
  • Domestication of Lambda Phage Genes Into a Putative Third Type of Replicative Helicase Matchmaker
    GBE Domestication of Lambda Phage Genes into a Putative Third Type of Replicative Helicase Matchmaker Pierre Bre´ zellec1,Marie-Agne`s Petit2, Sophie Pasek3, Isabelle Vallet-Gely4, Christophe Possoz4,and Jean-Luc Ferat1,4,* 1Universite de Versailles Saint-Quentin en Yvelines UFR des Sciences, France 2Micalis Institute, INRA, AgroParisTech, Universite´ Paris-Saclay, Jouy-en-Josas, France 3Atelier de Bioinformatique, UMR 7205 ISYEB, CNRS-MNHN-UPMC-EPHE, Muse´ um d’Histoire Naturelle, Paris, France 4Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Universite´ Paris-Saclay, 91198, Gif-sur-Yvette cedex, France *Corresponding author: E-mail: [email protected]. Accepted: June 26, 2017 Abstract At the onset of the initiation of chromosome replication, bacterial replicative helicases are recruited and loaded on the DnaA-oriC nucleoprotein platform, assisted by proteins like DnaC/DnaI or DciA. Two orders of bacteria appear, however, to lack either of these factors, raising the question of the essentiality of these factors in bacteria. Through a phylogenomic approach, we identified a pair of genes that could have substituted for dciA. The two domesticated genes are specific of the dnaC/dnaI-anddciA-lacking organisms and apparently domesticated from lambdoid phage genes. They derive from kO and kP and were renamed dopC and dopE, respectively. DopE is expected to bring the replicative helicase to the bacterial origin of replication, while DopC might assist DopE in this function. The confirmation of the implication of DopCE in the handling of the replicative helicase at the onset of replication in these organisms would generalize to all bacteria and therefore to all living organisms the need for specific factors dedicated to this function.
    [Show full text]