Gender and Non-Timber Forest Products
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Non-Timber Forest Products
Agrodok 39 Non-timber forest products the value of wild plants Tinde van Andel This publication is sponsored by: ICCO, SNV and Tropenbos International © Agromisa Foundation and CTA, Wageningen, 2006. All rights reserved. No part of this book may be reproduced in any form, by print, photocopy, microfilm or any other means, without written permission from the publisher. First edition: 2006 Author: Tinde van Andel Illustrator: Bertha Valois V. Design: Eva Kok Translation: Ninette de Zylva (editing) Printed by: Digigrafi, Wageningen, the Netherlands ISBN Agromisa: 90-8573-027-9 ISBN CTA: 92-9081-327-X Foreword Non-timber forest products (NTFPs) are wild plant and animal pro- ducts harvested from forests, such as wild fruits, vegetables, nuts, edi- ble roots, honey, palm leaves, medicinal plants, poisons and bush meat. Millions of people – especially those living in rural areas in de- veloping countries – collect these products daily, and many regard selling them as a means of earning a living. This Agrodok presents an overview of the major commercial wild plant products from Africa, the Caribbean and the Pacific. It explains their significance in traditional health care, social and ritual values, and forest conservation. It is designed to serve as a useful source of basic information for local forest dependent communities, especially those who harvest, process and market these products. We also hope that this Agrodok will help arouse the awareness of the potential of NTFPs among development organisations, local NGOs, government officials at local and regional level, and extension workers assisting local communities. Case studies from Cameroon, Ethiopia, Central and South Africa, the Pacific, Colombia and Suriname have been used to help illustrate the various important aspects of commercial NTFP harvesting. -
BEYOND the STATUS QUO: 2015 EQB Water Policy Report
BEYOND THE STATUS QUO: 2015 EQB Water Policy Report LAKE ST. CROIX TABLE OF CONTENTS Introduction . 4 Health Equity and Water. 5 GOAL #1: Manage Water Resources to Meet Increasing Demands . .6 GOAL #2: Manage Our Built Environment to Protect Water . 14 GOAL #3: Increase and Maintain Living Cover Across Watersheds .. 20 GOAL #4: Ensure We Are Resilient to Extreme Rainfall . .28 Legislative Charge The Environmental Quality Board is mandated to produce a five year water Contaminants of Emerging Concern . .34 policy report pursuant to Minnesota Statutes, sections 103A .204 and 103A .43 . Minnesota’s Water Technology Industry . 36 This report was prepared by the Environmental Quality Board with the Board More Information . .43 of Water and Soil Resources, Department of Agriculture, Department of Employment and Economic Development, Department of Health, Department Appendices available online: of Natural Resources, Department of Transportation, Metropolitan Council, • 2015 Groundwater Monitoring Status Report and Pollution Control Agency . • Five-Year Assessment of Water Quality Degradation Trends and Prevention Efforts Edited by Mary Hoff • Minnesota’s Water Industry Economic Profile Graphic Design by Paula Bohte • The Agricultural BMP Handbook for Minnesota The total cost of preparing this report was $76,000 • Water Availability Assessment Report 2 Beyond the Status Quo: 2015 EQB Water Policy Report Minnesota is home to more than 10,000 lakes, 100,000 miles of rivers and streams, and abundant groundwater resources. However, many of these waters are not clean enough. In 2015, we took a major step toward improving our water by enacting a law that protects water quality by requiring buffers on more than 100,000 acres of land adjacent to water. -
Conservation of Asian Honey Bees Benjamin P
Conservation of Asian honey bees Benjamin P. Oldroyd, Piyamas Nanork To cite this version: Benjamin P. Oldroyd, Piyamas Nanork. Conservation of Asian honey bees. Apidologie, Springer Verlag, 2009, 40 (3), 10.1051/apido/2009021. hal-00892024 HAL Id: hal-00892024 https://hal.archives-ouvertes.fr/hal-00892024 Submitted on 1 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 40 (2009) 296–312 Available online at: c INRA/DIB-AGIB/EDP Sciences, 2009 www.apidologie.org DOI: 10.1051/apido/2009021 Review article Conservation of Asian honey bees* Benjamin P. Oldroyd1, Piyamas Nanork2 1 Behaviour and Genetics of Social Insects Lab, School of Biological Sciences A12, University of Sydney, NSW 2006, Australia 2 Department of Biology, Mahasarakham University, Mahasarakham, Thailand Received 26 June 2008 – Revised 14 October 2008 – Accepted 29 October 2008 Abstract – East Asia is home to at least 9 indigenous species of honey bee. These bees are extremely valu- able because they are key pollinators of about 1/3 of crop species, provide significant income to some of the world’s poorest people, and are prey items for some endemic vertebrates. -
DPR Journal 2016 Corrected Final.Pmd
Bul. Dept. Pl. Res. No. 38 (A Scientific Publication) Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 ISSN 1995 - 8579 Bulletin of Department of Plant Resources No. 38 PLANT RESOURCES Government of Nepal Ministry of Forests and Soil Conservation Department of Plant Resources Thapathali, Kathmandu, Nepal 2016 Advisory Board Mr. Rajdev Prasad Yadav Ms. Sushma Upadhyaya Mr. Sanjeev Kumar Rai Managing Editor Sudhita Basukala Editorial Board Prof. Dr. Dharma Raj Dangol Dr. Nirmala Joshi Ms. Keshari Maiya Rajkarnikar Ms. Jyoti Joshi Bhatta Ms. Usha Tandukar Ms. Shiwani Khadgi Mr. Laxman Jha Ms. Ribita Tamrakar No. of Copies: 500 Cover Photo: Hypericum cordifolium and Bistorta milletioides (Dr. Keshab Raj Rajbhandari) Silene helleboriflora (Ganga Datt Bhatt), Potentilla makaluensis (Dr. Hiroshi Ikeda) Date of Publication: April 2016 © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246 E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, Bul. Dept. Pl. Res. N. 38, N. of pages, Department of Plant Resources, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Mr. B.K. Khakurel Publicity and Documentation Section Dr. K.R. Bhattarai Department of Plant Resources (DPR), Kathmandu,Ms. N. Nepal. Joshi Dr. M.N. Subedi Reviewers: Dr. Anjana Singh Ms. Jyoti Joshi Bhatt Prof. Dr. Ram Prashad Chaudhary Mr. Baidhya Nath Mahato Dr. Keshab Raj Rajbhandari Ms. Rose Shrestha Dr. Bijaya Pant Dr. Krishna Kumar Shrestha Ms. Shushma Upadhyaya Dr. Bharat Babu Shrestha Dr. Mahesh Kumar Adhikari Dr. Sundar Man Shrestha Dr. -
Irrigation Management Effects on Soil Fertility and Environmental Impacts
Irrigation Management Effects on Soil Fertility and Environmental Impacts Mike Cahn, Irrigation and Water Resources Advisor, UCCE Monterey Water Management Needs to be Factored into Soil Fertility Management Costly to build up soil fertility in organic systems Poor water management can lead to loss of nutrients (mostly N and P) Potential water quality impairments from sediment and nutrients in run-off and leachate from organic fields Organic Liquid Fertilizers* (0.1 – 7% N) Activate, Micronized Fertall Liquid Iron Aqua Power Liquid Fish Fertall Liquid MB Azomite Fertall Liquid Zinc Biolink Organic 0/5/5 HFPC Hydrolyzed Fish Powder Biolink Organic 5/5/5 Maxicrop Kelp Extract Biolink•5-1-1 Organic liquidMicronutrients costs $9.6Micro Hume per lb of N Cranford's Micronized Compost Micro Phos Diamond•13-0-0 K Solution dry grade Gypsumcosts $4 Multi-Ke-Min per lb of N Earth Juice Bloom 0/3/1 Neptune's Harvest Liquid Fish Earth Juice Catalyst Nutra Min Earth Juice Grow 2/1/1 Omega 1/5/5 Eco-Hydro•A substantial fish Liquid amountOmega 6/6/6of the N Eco-Nereo Kelp and Humic Acids Phytamin 800 Eco-Polycould 21 mciro be Shrimp in mineralSolubor form Boron (12-50%) Feather Tea Sulfate of Potash, Diamond K Soluble Fertall Liquid Chelate Calcium *Organic Material Research Institute, National Organic Program Compost sources of Nitrogen • $1.5 - $2 per lb of N (1.4% N product) Cover Crops as a Source of Nitrogen •100 – 150 lb of N/acre in above ground Biomass •Production costs of $150 – $200/acre for a winter cover crop •$1-2 per lb of Nitrogen •Roughly -
The Soil Fertility and Drainage Indexes: 2 United States Forest Service, Fort Collins, CO Taxonomically Based, Ordinal Estimates of Relative Soil Properties Bradley A
1 Michigan State University, East Lansing, MI The Soil Fertility and Drainage Indexes: 2 United States Forest Service, Fort Collins, CO taxonomically based, ordinal estimates of relative soil properties Bradley A. Miller1, Randall J. Schaetzl1, Frank Krist Jr.2 Validation of the Soil Fertility Index Among other validation approaches with different data sets, 2009 crop yield data for 11 Midwestern states were used to evaluate the FI. In a GIS, we determined the soils and crops in particular fields, and thus were able to ascertain the mean FI value per soil, per crop, per county. These crop specific, mean, county level FI values were then compared with the county yield values reported by USDA-NASS. Statewide summaries of these data produced correlations among yields of specific crops and FI values that were all positive. Below are selected examples. Illinois Crop Rs value Corn 0.73 Soybeans 0.75 Winter Wheat 0.78 Minnesota Crop Rs value Corn 0.29 Soybeans 0.23 Oats 0.80 Sugar Beets 0.24 Low Soil Fertility Index Soil Drainage Index This poster introduces a new, ordinally based, Soil Fertility Index (FI). The above map shows the FI for the lower 48 states. The FI uses family-level The map above shows the natural, inherent, soil wetness of the lower 48 states, as determined by the ordinally based Soil Taxonomy information, i.e., interpretations of taxonomic features or properties that tend to be associated with natural low or high soil Natural Soil Drainage Index (DI). The DI is intended to reflect the amount of water that a soil can supply to growing plants under Wisconsin fertility, to rank soils from 0 (least fertile) to 19 (most fertile). -
Beekeeping and Sustainable Livelihoods
ISSN 1810-0775 Beekeeping and sustainable livelihoods Second edition )$2'LYHUVLÀFDWLRQERRNOHW Diversification booklet number 1 Second edition Beekeeping and sustainable livelihoods Martin Hilmi, Nicola Bradbear and Danilo Mejia Rural Infrastructure and Agro-Industries Division Food and Agriculture Organization of the United Nations Rome 2011 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views of FAO. ISBN 978-92-5-107062-8 All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Office of Knowledge Exchange, Research and Extension, FAO, Viale delle Terme di Caracalla, 00153 Rome, Italy. -
The Case of Honey in Zambia the Case
Small-scale with outstanding economic potential enterprises woodland-based In some countries, honey and beeswax are so important the term ‘beekeeping’ appears in the titles of some government ministries. The significance of honey and beeswax in local livelihoods is nowhere more apparent than in the Miombo woodlands of southern Africa. Bee-keeping is a vital source of income for many poor and remote rural producers throughout the Miombo, often because it is highly suited to small scale farming. This detailed Non-Timber Forest Product study from Zambia examines beekeeping’s livelihood role from a range of perspectives, including market factors, production methods and measures for harnessing beekeeping to help reduce poverty. The caseThe in Zambia of honey ISBN 979-24-4673-7 Small-scale woodland-based enterprises with outstanding economic potential 9 789792 446739 The case of honey in Zambia G. Mickels-Kokwe G. Mickels-Kokwe Small-scale woodland-based enterprises with outstanding economic potential The case of honey in Zambia G. Mickels-Kokwe National Library of Indonesia Cataloging-in-Publication Data Mickels-Kokwe, G. Small-scale woodland-based enterprises with outstanding economic potential: the case of honey in Zambia/by G. Mickels-Kokwe. Bogor, Indonesia: Center for International Forestry Research (CIFOR), 2006. ISBN 979-24-4673-7 82p. CABI thesaurus: 1. small businesses 2. honey 3. beekeeping 4. commercial beekeeping 5. non- timber forest products 6. production 7. processing 8. trade 9.government policy 10. woodlands 11. case studies 12. Zambia I. Title © 2006 by CIFOR All rights reserved. Published in 2006 Printed by Subur Printing, Jakarta Design and Layout by Catur Wahyu and Eko Prianto Cover photo by Mercy Mwape of the Forestry Department of Zambia Published by Center for International Forestry Research Jl. -
Eastern Himalayas
JANUARY 2013 Eastern Himalayas A quarterly newsletter of the ATREE Eastern Himalayas / Northeast India Programme VOLUME 1, ISSUE 3 © Urbashi© Pradhan/ATREE The old man and the bees “I would get irritated by the buzzing of bees visiting the orange orchard during flowering season. It was unbearable!” recalls Pratap baje (grandfather), sipping his tea on a cold winter morning. “So many bees…so many different kinds! This whole valley would smell so good with the aroma of orange flowers. It was as if someone had sprayed some perfume!” The old farmer in his 80s was my host in the village I asked him about bees in the wild and he recalled of Zoom, Sikkim. Memories seemed to flash across the days when he would go honey hunting with his wrinkled face as he spoke. “I had three hives friends in the dense forest patches nearby. “If you and they would be full of honey this season. One go now you will not even find a dead bee. A bottle was attacked by a malsapro (yellow-throated of honey costs five hundred rupees today. marten).” He then pointed to an ageing orange Everything is gone," he says in a resigned manner. tree. “In 1974 (confirms the year with his wife) this He thinks the use of pesticides killed both harmful very tree yielded 5218 fruits. We sat and counted and useful insects and that there is no food for bees each one of them. Now even a mature tree does in the wild because the forests have been cleared. not yield more than 1500. -
An Abstract of the Thesis Of
AN ABSTRACT OF THE THESIS OF Brenda M Kellar for the degree of Master of Arts in Applied Anthropology presented on May 4. 2004. Title: One Methodology for the Incorporation of Entomological Material in the Discipline of Historic Archaeology Using the Honey Bee (Apis mellifera L.) as a Test Subject. Abstract approved:. Redacted for Privacy David R. Brauner Using the honey bee (Apis mellifera L.) this thesis shows that entomological information and material can be retrieved using current historical archaeological methods. Historical archaeology has the ability to uncover connections between arenas as varied, and seemingly isolated, as the honey bee, the environment, and human cultures. By focusing on one of these arenas, the honey bee in this thesis, we can learn about the forces that drive change within all these arenas. Additionally, historical archaeology can help us to trace the affects of change outside the source, so that a change in the honey bee population is understood to affect both human cultures and the environment. © Copyright by Brenda M Kellar May 4, 2004 All Rights Reserved One Methodology for the Incorporation of Entomological Material in the Discipline of Historic Archaeology Using the Honey Bee (ApismellferaL.) as a Test Subject. By Brenda M Kellar A THESIS Submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Arts Presented May 4, 2004 Commencement June 2005 Master of Arts thesis of Brenda M Kellar presented on May 4. 2004. APPROVED: Redacted for Privacy Major Professor, representing Applied Anthropology Redacted for Privacy Chair of the Department of Anthropology Redacted for Privacy Deanof the Gdduat School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. -
Soil Ph and Soil Fertility
Soil pH and Soil Fertility Dave Wilson Research Agronomist March 7, 2013 Environmental factors influencing plant growth – Which can we manage? 1. Temperature 2. Moisture Supply 3. Radiant Energy (Sunlight: quality, intensity & duration) 4. Composition of the atmosphere 5. Gas content of the soil 6. Soil reaction (Soil pH) Degree of acidity or alkalinity 7. Biotic factors (Plant variety type- genetics, soil biology) 8. Supply of mineral nutrient elements What is pH? • pH can be viewed as an abbreviation for Power of concentration of Hydrogen ion in solution • pH = - [log (H+)] in solution, The pH of a soil is a measure of hydrogen ion activity or concentration ([H+]) in the soil solution. Impact of soil PH changes As the H+ activity increases, soil pH decreases. As the soil pH decreases, most desirable crop nutrients become less available while others, often undesirable, become more available and can reach toxic levels. Total pH scale: 0 ------------------------------ 7 -------------------------------- 14 Acid Neutral Basic or Alkaline The relative availability of Nutrients as a function of pH Color coded chart of relative nutrient availability with change in pH. The darker the blue the more available the nutrient Logarithmic Scale of pH Total pH scale: 10x 0 ---1----2----3----4-----5-----6----- 7 -----8-----9----10-----11-----12-----13--- 14 100x Acid Neutral Basic or Alkaline • Hydrogen activity is mathematically expressed as a negative logarithm: • pH = -log[H+]. Because of the logarithmic scale, one unit decrease in pH implies a 10 -
Comb the Honey: Bee Interface Design by Ri Ren
Comb the Honey: Bee Interface Design by Ri Ren Ph.D., Central Academy of Fine Arts (2014) S.M., Saint-Petersburg Herzen State University (2010) B.A.,Tsinghua University (2007) Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning in partial fulfillment of the requirements for the degree of Master of Science in Media Arts and Sciences at the Massachusetts Institute of Technology May 2020 © Massachusetts Institute of Technology, 2020. All rights reserved. Author ………………………………………………………………………………………………………… Program in Media Arts and Sciences May 2020 Certified by ……………………………………………………………………………………………………………… Neri Oxman Associate Professor of Media Arts and Sciences Accepted by ……………………………………………………………………………………………………………… Tod Machover Academic Head, Program in Media Arts and Sciences 2 Comb the Honey: Bee Interface Design by Ri Ren Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning on May 2020 in partial fulfillment of the requirements for the degree of Master of Science in Media Arts and Sciences Abstract: The overarching goal of the thesis is to understand the mechanisms by which complex forms are created in biological systems and how the external environment and factors can influence generations over different scales of space, time, and materials. My research focuses on Nature’s most celebrated architects — bees — and their architectural masterpiece — the honeycomb. Bee honeycombs are wax-made cellular structures of hexagonal prismatic geometries. Within the comb, bees form their nests, grow their larvae, and store honey and pollen. They operate as a “social womb” informed, at once, by communal (genetic) makeup and environmental forces. Resource sharing, labor division, and unique communication methods all contribute to the magic that is the bee “Utopia.” Given that the geometrical, structural, and material make up of honeycombs is informed by the environment, these structures act as environmental footprints, revealing, as a time capsule, the history of its external environment and factors.