Factors That Affect Abundance and Distribution of Submerged and // Floating Macrophytes in Lake Naivasha, Kenya
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hunters Or Farmers? Microbiome Characteristics Help Elucidate the Diet Composition in an Aquatic Carnivorous Plant
Sirová et al. Microbiome (2018) 6:225 https://doi.org/10.1186/s40168-018-0600-7 RESEARCH Open Access Hunters or farmers? Microbiome characteristics help elucidate the diet composition in an aquatic carnivorous plant Dagmara Sirová1,2*† ,Jiří Bárta2†, Karel Šimek1,2, Thomas Posch3,Jiří Pech2, James Stone4,5, Jakub Borovec1, Lubomír Adamec6 and Jaroslav Vrba1,2 Abstract Background: Utricularia are rootless aquatic carnivorous plants which have recently attracted the attention of researchers due to the peculiarities of their miniaturized genomes. Here, we focus on a novel aspect of Utricularia ecophysiology—the interactions with and within the complex communities of microorganisms colonizing their traps and external surfaces. Results: Bacteria, fungi, algae, and protozoa inhabit the miniature ecosystem of the Utricularia trap lumen and are involved in the regeneration of nutrients from complex organic matter. By combining molecular methods, microscopy, and other approaches to assess the trap-associated microbial community structure, diversity, function, as well as the nutrient turn-over potential of bacterivory, we gained insight into the nutrient acquisition strategies of the Utricularia hosts. Conclusions: We conclude that Utricularia traps can, in terms of their ecophysiological function, be compared to microbial cultivators or farms, which center around complex microbial consortia acting synergistically to convert complex organic matter, often of algal origin, into a source of utilizable nutrients for the plants. Keywords: Algae, Bacteria, Ciliate bacterivory, Digestive mutualism, Fungi, Herbivory, Nutrient turnover, Plant– microbe interactions, Protists, Utricularia traps Background microbial communities clearly play a significant role in Plant-associated microorganisms have long been plant ecophysiology, but many of the underlying mech- recognized as key partners in enhancing plant nutrient anisms governing these looser associations still remain acquisition, mitigating plant stress, promoting growth, unexplored [2]. -
Biodiversity in Sub-Saharan Africa and Its Islands Conservation, Management and Sustainable Use
Biodiversity in Sub-Saharan Africa and its Islands Conservation, Management and Sustainable Use Occasional Papers of the IUCN Species Survival Commission No. 6 IUCN - The World Conservation Union IUCN Species Survival Commission Role of the SSC The Species Survival Commission (SSC) is IUCN's primary source of the 4. To provide advice, information, and expertise to the Secretariat of the scientific and technical information required for the maintenance of biologi- Convention on International Trade in Endangered Species of Wild Fauna cal diversity through the conservation of endangered and vulnerable species and Flora (CITES) and other international agreements affecting conser- of fauna and flora, whilst recommending and promoting measures for their vation of species or biological diversity. conservation, and for the management of other species of conservation con- cern. Its objective is to mobilize action to prevent the extinction of species, 5. To carry out specific tasks on behalf of the Union, including: sub-species and discrete populations of fauna and flora, thereby not only maintaining biological diversity but improving the status of endangered and • coordination of a programme of activities for the conservation of bio- vulnerable species. logical diversity within the framework of the IUCN Conservation Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitoring 1. To participate in the further development, promotion and implementation the status of species and populations of conservation concern. of the World Conservation Strategy; to advise on the development of IUCN's Conservation Programme; to support the implementation of the • development and review of conservation action plans and priorities Programme' and to assist in the development, screening, and monitoring for species and their populations. -
Effects of Human Activities on the Hydrology And
EFFECTS OF HUMAN ACTIVITIES ON THE HYDROLOGY AND ECOLOGY OF CHASSA DAMBO IN SINDA AREA, EASTERN PROVINCE, ZAMBIA by Khadija Mvula A dissertation submitted to the University of Zambia in partial fulfilment of the requirements of the degree of Master of Science in Geography University of Zambia Lusaka 2015 DECLARATION I, Khadija Mvula, declare that this dissertation represents my own work and that it has not been submitted for a degree, diploma or other qualification at this or any other University. Name: __________________________________________ Signature: _______________________________________ Date: ___________________________________________ ii COPYRIGHT All rights reserved. No part of this dissertation may be reproduced, stored in retrieval system, or transmitted in any form or by any means; electronic, mechanical, photocopying, recording, or otherwise, without the prior permission in writing from the Author or the University of Zambia. (C) Khadija Mvula 2015 iii APPROVAL iv ABSTRACT Dambos are depressions that are waterlogged and grass covered and these are surrounded by savanna woodland. In Zambia, there is no clear legislation on the protection, conservation and management of wetlands including dambos. Therefore, the aim of this study was to examine the physical characteristics of Chassa dambo in Sinda, Eastern Province of Zambia and assess how these characteristics have been affected by human activities for the purpose of finding a lasting solution. The objectives were to: (i) describe the physical characteristics of Chassa dambo in terms of geomorphology, morphology, soils, hydrology, ecology and vegetation cover; (ii) determine the uses of Chassa dambo and the agricultural activities in the area; (iii) assess the effects of human activities on the geomorphology, morphology, soils, hydrology, ecology and vegetation cover of Chassa dambo; and (iv) to assess ways for sustainable use of Chassa dambo. -
Annotated Bibliography
ANNOTATED BIBLIOGRAPY OF SELECTED PUBLICATIONS RELATED TO HYDROLOGIC EFFECTS OF WET MEADOW RESTORATION IN THE SIERRA NEVADA DRAFT VERSION 1.5 Revised August 19, 2011 Barry Hill, Hydrologist, USDA Forest Service Pacific Southwest Region ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Introduction Meadow restoration has many potential benefits, including improved water quality, streamflow regimen, flood attenuation, aquatic and terrestrial habitats, aesthetics, and forage production, and reduction of forest fuels. Although most of these benefits enjoy wide public support, the effects of restoration on downstream surface flows remain controversial owing to the temporary retention and increased evapotranspiration of water in restored meadow aquifers. Restoration of eroded wet meadows in the Sierra Nevada is a goal of the USDA Forest Service Pacific Southwest Region. The National Environmental Policy Act requires that the “best available science” be used to assess potential effects of proposed restoration projects on National Forests. This bibliography summarizes selected references that may be useful for analyzing the effects of proposed meadow restoration projects on downstream baseflows. It is intended to aid National Forest hydrologists on interdisciplinary teams charged with analyzing effects of alternative approaches to meadow restoration, and to provide background information for our ongoing meadow hydrology assessment in the Sierra Nevada. This bibliography is divided into 9 major topics (A to I). Each major topic has a short introductory paragraph. Titles within each topic are listed alphabetically by author and numbered sequentially for ease of reference. For each publication, I have provided a web link and a brief summary of results relevant to effects of restoration on streamflow. Publications are listed under only a single major topic, but may have relevance for others as well. -
'Structure and Function of African Floodplains"
AaMTS/FARA Library File Publication 'Structure and Function of African Floodplains" MsJ. Gaudet Opited from: .Il of the East Africa Natural History Society and National Museum 82, No. 199 Xch 1992). .1' PAA -QA -P JOURNAL OF THE EAST AFRICA NATURAL HISTORY SOCIETY AND NATIONAL MUSEUM March 1992 Volume 82 No 199 STRUCTURE AND FUNCTION OF AFRICAN FLOODPLAINS JOHN J. GAUDET* United States Agency for International Development, ABSTRACT In Africa, floodplains often cover enormous aueas. They represent aformidable dry season refuge for the indigenous flora and fauna, but at the same time they have a large potentil for the intensive, highly productive agricuture and hydropower production so desperately needed in Africa. The main topographic features ofthe larger floodplains are reviewed in this paper, along with ageneral insight irno water relations, nutrient dynamics, productivity, species distribution and changes in vegetation induced by present management practice. The question israised of whether floodplains will survive in the face of development, and acall is made for alternative management strategies. INTRODUCTION The.inland water habitats of Africa make up about 450,000 kin' of the contiaent (Table I). These habitats include seasonally inundated wetlands, such as swamp fore:;, peatland, mangrove swamp, inland herbaceous swamp and floodplain, as well as permanent wator habitats. The habitat of most concern ti us bete is the floodplain, which is any region along the course of a river where large -seasonal variation in rainfall results in overbank flooding into the surrounding plains. Some of these flooded plains are enormous and are equal in size to the world's larges lakes (rables I & 2). -
Photosynthetic Co2 Affinity of Aquatic Carnivorous
PHOTOSYNTHETIC CO 2 AFFINITY OF AQUATIC CARNIVOROUS PLANTS GROWING UNDER NEARLY -NATURAL CONDITIONS AND IN VITRO LUBOMÍR ADAMEC • Institute of Botany • Academy of Sciences of the Czech Republic • Section of Plant Ecology • Dukelská 135 • CZ-379 82 Tˇreboˇn • Czech Republic • [email protected] KAMIL PÁSEK • Na Svobodˇe 143/22 • Dobroslavice • CZ-747 94 Dˇehylov • Czech Republic • [email protected] Keywords: chemistry: photosynthesis, Aldrovanda , Utricularia . Abstract Net photosynthetic rate of aquatic carnivorous plants in standing waters can sometimes be limited by low concentration of free CO 2. As net photosynthetic rate of terrestrial plants growing in vitro is great- ly reduced, as compared to the same plants grown naturally, it could be assumed that photosynthetic CO 2 affinity in aquatic carnivorous plants growing in vitro will be reduced. The aim of this study was to com- pare values of CO 2 compensation point of photosynthesis in several strains of Aldrovanda vesiculosa and in 13 aquatic Utricularia species, both in plants growing under nearly-natural conditions in containers or aquaria and in vitro . The dependence of CO 2 compensation point on growth conditions is discussed. Introduction About 50 species of the genera Aldrovanda and Utricularia are submerged aquatic or amphibious carnivorous plants (Juniper et al. 1989; Taylor 1989; Guisande et al. 2007). Aquatic carnivorous plants (ACPs) usually grow in shallow standing dystrophic (humic) waters which are usually poor in inorganic N and P, but commonly also in K (Adamec 1997a). They are rootless and take up all necessary nutrients through their shoots, either directly from water or from prey. Very rapid growth of ACPs in nutrient-poor habitats requires ecophysiological adaptations that enable the plants to gain limiting mineral nutrients. -
Colloque Lomé Jour 2
Colloque multi-acteur sur la gestion durable des ressources naturelles, En particulier dans les écosystèmes de mangroves Conférence débat : Collaborations scientifiques ente institutions académiques et acteurs de terrain Université de Lomé, Togo 20 février 2019 Organisé dans le cadre du projet Expertise Universitaire - Mangroves Avec la participation de : Prof. Romain GLELE KAKAÏ Forestier, Biométricien - Faculty of Agronomic Sciences, Université Abomey-Calavi, Bénin [email protected] Prof. Atsu Kudzo GUELLY Professeur Biologie végétale, Chef du Département de Botanique, Université de Lomé, Togo [email protected] Vincent HENIN (Louvain Coopération) Chargé de projets, Expert sécurité alimentaire et économique Louvain Coopération, Belgique [email protected] Hajaniaina ANDRIANAVALONARIVO RATSIMBAZAFY Doctorant Systems Ecology & Resource Management Unit Université Libre de Bruxelles, Belgique [email protected] CONFERENCE – DEBAT 1. Etat des lieux de la recherche sur les mangroves en Afrique et présentation des gaps 2. Modalités pratiques et partenariales. 8h30 – 10h00 Colloque multi-acteurs sur la gestion durable des ressources naturelles, en particulier dans les écosystèmes de mangroves, Université de Lomé, Togo les 19 - 22 février 2019 Les mangroves d’Afrique de l’Ouest : état des lieux et perspectives Prof. Romain GLELE KAKAÏ Laboratoire de Biomathématiques et d’Estimations Forestières Faculté des Sciences Agronomiques Université d’Abomey-Calavi www.labef-uac.org Background Trend in publications Conservation -
Plan De Gestion Du Lac Dem, Site Ramsar N°1882 Region Du Centre Nord, Burkina Faso
PLAN DE GESTION DU LAC DEM, SITE RAMSAR N°1882 REGION DU CENTRE NORD, BURKINA FASO Un cadre de planification de la gestion intégrée pour la conservation et l'utilisation rationnelle Draft 1 : Document de travail Déc embre 2013 i « Le Lac Dem offre une gamme de services écosystémiques qui constituent la base de la sécurité écologique de la région et les moyens de subsistance des communautés riveraines. Etant un écosystème dynamique, la zone humide est également soumise à l'influence de divers facteurs naturels ainsi qu’humains. La gestion intégrée du bassin versant abritant le Lac Dem est crucial pour le maintien de la riche diversité biologique et la productivité de la zone humide. Ce type de gestion permet de parvenir à une utilisation rationnelle des ressources par les communautés ». Coordination auteurs Dr Paul OUEDRAOGO (Ing. Des Eaux & Forêt; Ecologue) Dr Emmanuel M. HEMA (Ing. Des Eaux & Forêt; Ecologue) Contributeurs Dr Paul OUEDRAOGO (Ing. Des Eaux & Forêt; Ecologue) Dr Emmanuel M. HEMA (Ing. Des Eaux & Forêt; Ecologue) Mlle Aïcha TAPSOBA (Economiste environnementaliste) M. Eric C. R. BAYALA (Géographe environnementaliste) M. Parfait GNOUMOU (Hydrobiologiste) Prof. François de Charles OUEDRAOGO (Géographe) M. M. Equipe de Planification et de conseil M. Mamadou HONADJA, SP/CONEDD Dr. Lambert OUÉDRAOGO, SG/MEDD M. Bobodo dit Blaise SAWADOGO, Coordonateur COGEL Point Focal National Dr Paul OUEDRAOGO (Ing. Des Eaux & Forêt; Ecologue) Revue par les pairs Prof. Jean-Marie OUADBA, INERA/DPF Prof. Jean-Noël PODA, CNRST Dr. Louis SAWADOGO, INERA/DPF Prof. François de Charles OUEDRAOGO, Université Ouaga 2 Dr Alexia DUFOUR, Convention de Ramsar Mme Clarisse HONADJA, UICN-Burkina Coordination Dr Salif OUEDRAOGO, Ministre de l’Environnement et du DD M. -
Biodiversity Assessment for Three Mpika Wetlands of the Sab Project
BIODIVERSITY ASSESSMENT FOR THREE MPIKA WETLANDS OF THE SAB PROJECT A study commissioned by Wetland Action Conducted by Moses A. Nyirenda (BSc, MSc), October 2008 The SAB project is a demonstration project of the Wetlands and Poverty Reduction Project of Wetlands International and it is carried out with financial support from Wetlands International under its Wetlands and Poverty Reduction Project financed by the Dutch Ministry of Foreign Affairs (DGIS). ACKNOWLEDGEMENTS Many people have assisted in this work. In particular I would like to thank Mr. Sam Simwinga and Humphrey Munyenyembe who participated in the risky work with long walks in the three dambos as we collected GPS coordinates using the first principles in land survey. The project staff, Jonas Sampa and Ernest Cheepa, deserve my thanks as well. I am particularly thankful to the Community Development Facilitators in the three dambos who participated in the field work. My many thanks go to the community members, the users of the dambos , who freely took time off from their busy schedules to share their history, experiences and knowledge with the study team for two consecutive days in each of the dambos. Their information was so valuable in compiling this report. Lastly, I would like to thank the University of Zambia, Biology Department for the identification of some of the grass species. Moses Amos Nyirenda October 2008 1 Table of Contents ACKNOWLEDGEMENTS........................................................................................................................... -
And Other Submersed Aquatic Macrophytes in Lake Bisina and Other Ugandan Lakes
Journal of East African Natural History 101(1): 29–66 (2012) CHIRONOMIDAE (INSECTA: DIPTERA) COLLECTED FROM HYDRILLA VERTICILLATA (HYDROCHARITACEAE) AND OTHER SUBMERSED AQUATIC MACROPHYTES IN LAKE BISINA AND OTHER UGANDAN LAKES Robert S. Copeland International Centre of Insect Physiology and Ecology, P.O. Box 30772, Nairobi 00100, Kenya [email protected] Brian Gidudu, Fred Wanda National Fisheries Resources Research Institute, P.O. Box 343, Jinja, Uganda [email protected]; [email protected] John H. Epler 461 Tiger Hammock Road, Crawfordville, FL 32327, USA [email protected] James P. Cuda Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA [email protected] William A. Overholt Indian River Research and Education Center, University of Florida Fort Pierce, Florida, USA [email protected] ABSTRACT A survey of the aquatic weed Hydrilla verticillata was conducted in selected Kenyan and Ugandan lakes, and emerging chironomid adults were collected from samples of Hydrilla and seven other aquatic macrophytes. Hydrilla was absent from Lake Victoria, in sites where it previously occurred. Hydrilla was found in four of nine lakes examined in Uganda, i.e. Bisina, Kyoga, Bunyonyi and Mutanda. From 7424 collected chironomid adults, 43 species were identified, 21 (49%) representing new Ugandan records. Thirty-nine (91%) of the species were found on Hydrilla. Three species represent probable undescribed taxa. At our primary site, Lake Bisina, the genera Tanytarsus and Dicrotendipes dominated the chironomid community, comprising 76% of emerged adults. A species accumulation curve for chironomid species associated with Lake Bisina macrophytes suggested that further plant sampling would uncover additional species. Polypedilum wittei, formerly considered for possible biological control of Hydrilla, was not specific to that plant, emerging from six of the seven other species of submersed macrophytes we sampled. -
The Global Status of Mires and Peatlands
Methods (last updated 27-01-2004) The IMCG Global Peatland Database is still in a preliminary phase of development. Many of the available sources have not yet been included, various correction options have not yet been applied to the data, and summarizing conclusions have not yet been drawn. In presenting the present incomplete data we hope to stimulate further inventory and increase awareness of the global peatland resource. 1 Definitions “It remains only to point out that without a precise definition of the concept of peatland any useful peatland statistics cannot be collected and that all cartographic exercises and statistical studies of the area and distribution of peatland carried out without such definition (as well as all concludions based on these) must be handled with appropriate care.” C.A. Weber 1902/2002. International peatland terminology is acknowledged to be in a state of confusion (Joosten & Clarke 2002). The same terms are used for expressing totally different concepts. To give some examples: • Shrier (1985) uses the term “mire” as an equivalent to “peat resources” or “peat deposits”, whereas e.g. Rydin et al. (1999) define “mires” as “wetlands with a vegetation which usually forms peat”. Consequently Rydin et al (1999) exclude, for example, all alder swamp forests from their “mire” concept, even if the soil is peat, and inspite of the fact that some alder forests do show extremely high peat accumulation rates (Barthelmes 2001). • The Russian word “boloto” is actually a geographical term that characterizes a specific landscape with specific vegetation, humidity, and soil processes. “Torfjannyje boloto” can be equalled with a “boloto on a peatland”, independent of whether the prevalent vegetation can produce peat or not. -
Better Management Practices Manual for Smallholders Farming Tilapia in Pond-Based Systems in Zambia
Photo credit: Chosa Mweemba/WorldFish credit: Photo Better management practices manual for smallholders farming tilapia in pond-based systems in Zambia Led by Funded by Better management practices manual for smallholders farming tilapia in pond-based systems in Zambia Authors Kyra Hoevenaars MSc1 and Jonas Wiza Ng’ambi PhD2 Authors’ Affiliations 1 AquaBioTech Group, Naggar Street, Targa Gap, Mosta, Malta 2 ECOFISH, Plot No. 4322, Ngwerere Road (off Great North Road) Lusaka, Zambia Citation This publication should be cited as: Hoevenaars K and Ng’ambi JW. 2019. Better management practices manual for smallholders farming tilapia in pond-based systems in Zambia. Penang, Malaysia: CGIAR Research Program on Fish Agri-Food Systems. Manual: FISH-2019-07. Acknowledgments The authors would like to express their sincere thanks to the WorldFish team for their assistance and support during the development of this training manual: Dr. Steve Cole, Tabitha Mulilo, Mercy Sichone, Chrispin Chikani, Dr. Mary Lundeba and Henry Kanyembo. We would also like to acknowledge the contribution of Dr. Libakeni Nabiwa from Musika. We wish to thank stakeholders who took time to attend the feedback workshop in Kasama: Gondwe Haggai, Biggie Mbao, Nelson Siwale, Daka Precious from the Depart of Fisheries, Godfrey Sichalwe (Mpende Fisheries), Mulenga Felix (Kamuco Cooperative), Ketani Phiri (Skretting Zambia), Richard Mulenga (Mulemwa agro), Minamba Ronald (Mulemwa agro), Ndala Shanda (Kasama farmer), Natasha Mhende (Musika), Jephthah Chanda (Musika), Chisi M. Victor (Musika) and Rodney Pandala (Horizon Aquaculture). The production of this manual was made possible through funding from the Norwegian Agency for Development Cooperation (Norad) under the Aquaculture Technical Vocational and Entrepreneurship project, whose implementation is being led by WorldFish in partnership with Musika, Natural Resource Development College and Blueplanet.