Changes in Composition of Culturable Bacteria Community in the Gut of the Formosan Subterranean Termite Depending on Rearing Conditions of the Host

Total Page:16

File Type:pdf, Size:1020Kb

Changes in Composition of Culturable Bacteria Community in the Gut of the Formosan Subterranean Termite Depending on Rearing Conditions of the Host ARTHROPOD BIOLOGY Changes in Composition of Culturable Bacteria Community in the Gut of the Formosan Subterranean Termite Depending on Rearing Conditions of the Host 1 2 3 C. HUSSENEDER, J. M. BERESTECKY, AND J. K. GRACE Ann. Entomol. Soc. Am. 102(3): 498Ð507 (2009) Downloaded from https://academic.oup.com/aesa/article/102/3/498/8634 by guest on 23 September 2021 ABSTRACT The hindgut of feeding termites that feed on wood and litter contains a diverse population of bacteria and protists that contribute to the carbon, nitrogen, and energy requirements of the termite. For understanding the ecological balance in the termite gut, detailed knowledge about the composition of the microbial gut ßora is imperative, i.e., the numbers and relative proportions of the microbial taxa and the variability in the microbial composition among different termite colonies and living conditions of termites should be described. Therefore, we isolated and enumerated eight bacterial morphotypes from the gut of the Formosan subterranean termite, Coptotermes formosanus Shiraki. Five morphotypes (three isolates of lactic acid bacteria, isolates of the family Enterobacte- riaceae and isolates belonging to the genus Dysgonomonas) were found frequently in all termite colonies. Three additional morphotypes were found sporadically and were considered to be transient ßora. We compared the proportions of the three lactic acid bacteria isolates and the Enterobacte- riaceae among three different termite colonies. Furthermore, we investigated the shift in proportions of these four major morphotypes depending on whether bacteria were isolated from freshly collected termites or from termites reared in the laboratory under seminatural conditions (in arenas on wood) or artiÞcial conditions (in petri dishes on Þlter paper). Differences in the culturable microbial composition were not signiÞcant among termite colonies, or between Þeld-collected termites and termites reared under seminatural conditions in the laboratory. However, we found signiÞcant shifts in the microbial composition between Þeld-collected termites and termites reared on Þlter paper. KEY WORDS Coptotermes, Isoptera, Rhinotermitidae, insect gut, gut symbionts Wood and litter-feeding termites (Isoptera) are of ers et al. 1982) indicate that symbionts vital for the global economic and ecological importance as decom- survival of the termite host species are within the posers of lignocellulose matter (Kambhampati and microbial community. Their roles include nitrogen Eggleton 2000). To be able to digest lignocellulose Þxation, acetogenesis, cellulose degradation, mainte- efÞciently and use lignocellulose as sole source of nance of pH and redox potential in the gut, as well as nutrition, termites harbor a morphologically and bio- preventing foreign microbes from invading (Veivers chemically diverse microbial ßora in their intestines. et al. 1982, Bauer et al. 2000, Breznak 2000). Addition- Densities of microbial populations in termite intes- ally, the bacteria composition might inßuence nest- tines are as high as 1012 per ml gut ßuid, and thus mate recognition (Matsuura 2001). similar to other herbivorous and detrivorous inverte- Because of the vital role of the gut ßora for the brates and even vertebrates (Bignell 2000). In addition termite hostÕs survival, it could be assumed that se- to protists and fungi, there is a signiÞcant community lective pressures ensure a comparable microbial com- of prokaryotes from the domains of Archaea and Eu- munity among termites of the same species, with the bacteria with densities of 109 to 1011 per ml gut ßuid most important microbe groups always present (Breznak 2000). (Schmitt-Wagner et al. 2003, Hongoh et al. 2005, Yang The majority of microbes in the termite gut are yet et al. 2005). However, not all of the gut inhabiting uncultured and unidentiÞed, and their role in termite microbes are necessarily symbionts sensu strictu (pro- nutrition is not well understood. Studies eradicating viding vital advantages to the termite host); some the termitesÕ intestinal ßora through antibiotics (Eu- microorganisms might be transient and subject to en- tick et al. 1978b, Mauldin et al. 1978) or oxygen (Veiv- vironmental factors, such as nutrition, which could lead to a considerable variation of the composition of 1 Corresponding author: Department of Entomology, Louisiana gut ßora within the same termite species. State University Agricultural Center, Baton Rouge, LA 70803. Because termites are social insects living in colonies, 2 Kapiolani Community College, Honolulu, HI 96816. 3 Department of Plant and Environmental Protection Sciences, the variation of the gut ßora within a species can vary University of Hawaii at Manoa, Honolulu, HI 96822. at different levels of social organization. Between ter- 0013-8746/09/0498Ð0507$04.00/0 ᭧ 2009 Entomological Society of America May 2009 HUSSENEDER ET AL.: BACTERIAL GUT FLORA OF TERMITES 499 mites within the same colony variation is supposed to Materials and Methods be low (Minkley et al. 2005), because colony members Termite Collection and Rearing. Workers and sol- live under the same conditions and commonly use the diers of C. formosanus were collected from traps made same nutrition source (Matsuura 2001). Additionally, from Douglas Þr, Pseudotsuga menziesii (Mirbel) the isolation of bacterial populations in the guts of Franco, in 2000 and 2001 from three collection sites, individual termites is constantly counteracted by the located on the campus of the University of Hawaii at exchange of gut ßuids containing microbes via proc- Manoa (Gilmore [G], Miller [M], and Publication todeal and stomodeal trophallaxis between colony [P]). Physical distance between collection sites mates and by the obligatory refaunation after molting ranged from 120 to 400 m (for a detailed map, see (McMahan 1969, Thorne 1997). However, termites of Husseneder and Grace 2001). Previous studies, using different colonies usually do not interact with each molecular genetic methods, established that termites other and therefore do not exchange microbial ßora. from these three collection sites belong to three in- In addition, geographically separated termite colonies dependent colonies (Husseneder and Grace 2001). Downloaded from https://academic.oup.com/aesa/article/102/3/498/8634 by guest on 23 September 2021 might be subjected to different ecological conditions From each colony, Ͼ250 workers and at least 20 sol- and use different nutrition sources. Different chemi- diers were collected. The composition of the cultur- cal components in the food might favor different mi- able gut ßora of termites from each of the three col- crobial groups becoming predominant (Mannesmann onies was assessed under three different rearing 1972). conditions. 1) To investigate the natural gut ßora, Þve The presumed variation in the composition of the workers of each colony were dissected within a few microbial gut ßora might explain why studies cultur- hours of removal from their colony in the Þeld. 2) To ing, identifying and enumerating microbial taxa differ investigate the gut ßora under seminatural conditions from each other even when focusing on the same host in the laboratory, we established a laboratory colony species (Mannesmann and Piechowski 1989, Taguchi composed of 100 workers and 10 soldiers from each et al. 1993, Husseneder et al. 2005, Ko¨nig et al. 2006). Þeld colony in arenas (25 by 25 cm) containing 100 g Attempts to track the factors causing variation in the of sand with 25 ml of distilled water added. The worker- microbial gut communities within termite species by to-soldier ratio mimics natural conditions (Haverty reviewing the literature are hindered by the fact that 1977). Termites were maintained on a diet of Douglas most authors did not clearly state whether the inves- Þr wafers, and Þve workers of each colony were dis- tigated termites have been collected from the same sected after seven days to isolate their gut ßora. 3) To colony, nor whether the termites have been freshly investigate the changes of gut ßora under artiÞcial collected from the Þeld or have been laboratory rearing conditions, we kept 100 workers and 10 sol- reared. In some studies, termites were laboratory diers in petri dish (90 mm diameter) arenas on a diet reared and fed either on wood or Þlter paper (Wenzel of Whatman no. 3 (70 mm diameter) Þlter paper et al. 2002). However, it has not yet been established moistened with distilled water. The paper was whether the bacterial composition changes with rear- changed every 3 d and water was added when needed. ing conditions and nutrition. After 7 d, the guts of Þve workers from each colony To put Þndings on microbial variability within the were dissected to isolate and culture the bacteria. same termite species into perspective, we investi- Isolation of Gut Bacteria. Five workers from each of the three colonies and each of the three rearing con- gated the variability of the composition of the cul- ditions were anesthetized by chilling on ice, the mouth turable gut ßora of the Formosan subterranean ter- and anus of the termites were sealed with parafÞn, and mite, Coptotermes formosanus Shiraki (Isoptera: the surface was sterilized with 70% alcohol. Guts were Rhinotermitidae). This termite is an invasive pest removed with sterile forceps. The whole hindgut por- species in the United States, inßicting extensive tion was separated from the midgut and homogenized economical damage in Hawaii and the southeastern in 1 ml of sterile distilled water with a sterile glass rod states. Shinzato et al. 2005 used culture independent in an autoclaved Eppendorf tube and then vortexed methods (16S rRNA gene sequencing) to describe for Ϸ4 min with sterile glass beads. Isolation and ho- the bacterial species composition in the gut of Jap- mogenization were performed under aerobic condi- anese C. formosanus as a Þrst step toward the un- tions. Ten-fold serial dilutions were made from ho- derstanding of the ecology of the gut of this termite. mogenates with distilled H2O and plated out in These authors found 49 phylotypes from 10 bacterial triplicates on Todd-Hewitt agar (BD Biosciences, phyla, including 39 novel phylotypes but did not Cockeysville, MD).
Recommended publications
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Dysgonomonas Gen. Nov. to Accommodate Dysgonomonas Gadei Sp. Nov., an Organism Isolated from a Human Gall Bladder, and Dysgonomo
    International Journal of Systematic and Evolutionary Microbiology (2000), 50, 2189–2195 Printed in Great Britain Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3) Tor Hofstad,1 Ingar Olsen,2 Emenike R. Eribe,2 Enevold Falsen,3 Matthew D. Collins4 and Paul A. Lawson4 Author for correspondence: Paul A. Lawson. Tel: j44 118 935 7224. Fax: j44 118 935 7222. e-mail: p.a.lawson!reading.ac.uk 1 Department of Results of a polyphasic taxonomic study on an unknown Gram-negative, Microbiology and facultatively anaerobic, coccobacillus-shaped organism isolated from an Immunology, University of Bergen, The Gade infected human gall bladder are presented. Phenotypic and molecular Institute, N-5021, Bergen, taxonomic studies revealed the organism to be close to, but distinct from, Norway organisms designated CDC (Centers for Disease Control and Prevention) group 2 Department of Oral DF-3. The unknown bacterium was readily distinguished from reference strains Biology, Dental Faculty, of Bacteroides, Prevotella, Porphyromonas and related taxa by 16S rRNA gene University of Oslo, N-0316 Oslo, Norway sequencing, biochemical tests, analysis of cellular long-chain fatty acids and electrophoretic analysis of whole-cell proteins. Based on the results of the 3 Culture Collection, Department of Clinical present study, it is proposed that the unknown bacterium be classified in a Bacteriology, University of new genus, Dysgonomonas,asDysgonomonas gadei sp. nov. (type strain CCUG Go$ teborg, Go$ teborg, 42882T l CIP 106420T). In addition, a new species, Dysgonomonas S-413 46, Sweden capnocytophagoides sp.
    [Show full text]
  • Development and Role of the Indigenous Gut Microbiota Of
    Development and role of the indigenous gut microbiota of Spodoptera littoralis Dissertation To Fulfill the Requirements for the Degree of ,,doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty of Biology and Pharmacy of the Friedrich Schiller University Jena by Beng-Soon Teh (M.Sc) born on 12.02.1985 in Penang, Malaysia Gutachter: 1. …. 2. …. 3. …. Tag der öffentlichen Verteidigung: Fluorescent GFP-tagged Enterococcus mundtii TABLE of CONTENTS Abbreviations and symbols 1. Introduction .......................................................................................................... 1 1.1 Host-microbiota symbiosis interactions ........................................................... 1 1.1.1 Insect-bacteria symbiosis interactions ........................................................ 2 1.2 Physiological conditions and stresses in the gut environment of insects ......... 3 1.3 Contributions of the gut microbiome ................................................................ 5 1.4 Diversity of the gut microbiota in insects ......................................................... 6 1.5 Model organism: Spodoptera littoralis ............................................................. 9 1.6 The physiology of lactic acid bacteria ............................................................ 10 1.6.1 General characteristics of enterococci ...................................................... 11 1.7 Colonization of enterococci in insects ............................................................ 14
    [Show full text]
  • Recherche De Bactéries Lactiques Autochtones Capables De Mener La Fermentation De Fruits Tropicaux Avec Une Augmentation De L’Activité Antioxydante
    THÈSE Pour l’obtention du titre de Docteur de l’Université de La Réunion Spécialité : Agroalimentaire, Biotechnologies alimentaires et Sciences des aliments Recherche de bactéries lactiques autochtones capables de mener la fermentation de fruits tropicaux avec une augmentation de l’activité antioxydante Par Amandine FESSARD Soutenue publiquement le 27 Novembre 2017 Composition du jury : Dr. M-C CHAMPOMIER-VERGES Directrice de recherche, INRA Rapporteur Pr. Emmanuel COTON Professeur, Université de Bretagne Rapporteur Dr. Christine ROBERT DA SILVA Maître de conférences, Université de la Réunion Examinatrice Pr. Theeshan BAHORUN Professeur, Université de Maurice Examinateur Pr. Fabienne REMIZE Professeur, Université de la Réunion Directrice Pr Emmanuel BOURDON Professeur, Université de la Réunion Co-directeur A Fabrice et à ma famille… Remerciements Ces travaux de thèse ont été réalisés au sein de l’UMR QUALISUD (UMR C-95, Université de La Réunion, CIRAD, Université de Montpellier, Montpellier SupAgro, Université d’Avignon et des Pays de Vaucluse), dirigé par Monsieur Dominique PALLET et ont été financés par la Région Réunion et les fonds Européens (FEDER). Je tiens à adresser à la Région Réunion mes plus sincères remerciements pour l’obtention de cette allocation de recherche et de m’avoir permis de réaliser ce travail pendant trois ans. A Monsieur Dominique PALLET, Je vous remercie de m’avoir accueilli au sein de votre UMR QUALISUD et de m’avoir donné un avis favorable pour mon recrutement en tant qu’ATER. A Madame Fabienne REMIZE, Fabienne, je te remercie du fond du cœur d’avoir excellement dirigé ces travaux de thèse, de m’avoir enseigné tout ce que tu sais sur les bactéries lactiques et la fermentation pendant presque 4 ans.
    [Show full text]
  • M a Y 2 1 - 2 4
    M A Y 2 1 - 2 4 EMBASSY SUITES HOTEL RALEIGH - D U R H A M • N C Table of Contents National Conference on Urban Entomology May 21-24, 2006 Embassy Suites Hotel Raleigh-Durham, North Carolina DISTINGUISHED ACHIEVEMENT AWARD IN URBAN ENTOMOLOGY ................... 10 ARNOLD MALLIS MEMORIAL AWARD LECTURE: THE GERMAN COCKROACH: RE-EMERGENCE OF AN OLD FOE…THAT NEVER DEPARTED Coby Schal, North Carolina State University................................................................. 10 STUDENT SCHOLARSHIP AWARD PRESENTATIONS ............................................ 11 SOYBEAN OIL CONSUMPTION IN RED IMPORTED FIRE ANTS, SOLENOPSIS INVICTA BUREN (HYMENOPTERA: FORMICIDAE) Rebecca L. Baillif, Dr. Linda Hooper-Bùi, and Dr. Beverly A. Wiltz, Louisiana State University ...................................................................................................................... 11 THE RESPONSE OF THE FORMOSAN SUBTERRANEAN TERMITE TO DIFFERENT BORATE SALTS Margaret C. Gentz and J. Kenneth Grace, University of Hawai`i at Manoa .................. 11 THE MECHANISM AND FACTORS AFFECTING HORIZONTAL TRANSFER OF FIPRONIL AMONG WESTERN SUBTERRANEAN TERMITES Raj K. Saran and Michael K. Rust, University of California Riverside ........................... 12 STUDENT PAPER COMPETITION .............................................................................. 16 COMPARATIVE PROTEOMICS BETWEEN WORKER AND SOLDIER CASTES OF RETICULITERMES FLAVIPES (ISOPTERA: RHINOTERMITIDAE) C. Jerry Bowen, Robin D. Madden, Brad Kard, and Jack W. Dillwith, Oklahoma State
    [Show full text]
  • Using Oxygen and Biopreservation As Hurdles to Improve Safety Of
    USING OXYGEN AND BIOPRESERVATION AS HURDLES TO IMPROVE SAFETY OF COOKED FOOD DURING STORAGE AT REFRIGERATION TEMPERATURES By NYDIA MUNOZ A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Biological Systems Engineering MAY 2018 © Copyright by NYDIA MUNOZ, 2018 All Rights Reserved © Copyright by NYDIA MUNOZ, 2018 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of NYDIA MUNOZ find it satisfactory and recommend that it be accepted. Shyam Sablani, Ph.D., Chair Juming Tang, Ph.D. Gustavo V. Barbosa-Cánovas, Ph.D. ii ACKNOWLEDGMENT My special gratitude to my advisor Dr. Shyam Sablani for taking me as one his graduate students and supporting me through my Ph.D. study and research. His guidance helped me in all the time of research and writing of this thesis. At the same time, I would like to thank my committee members Dr. Juming Tang and Dr. Gustavo V. Barbosa-Cánovas for their valuable suggestions on my research and allowing me to use their respective laboratories and instruments facilities. I am grateful to Mr. Frank Younce, Mr. Peter Gray and Ms. Tonia Green for training me in the use of relevant equipment to conduct my research, and their technical advice and practical help. Also, the assistance and cooperation of Dr. Helen Joyner, Dr. Barbara Rasco, and Dr. Meijun Zhu are greatly appreciated. I am grateful to Dr. Kanishka Buhnia for volunteering to carry out microbiological counts by my side as well as his contribution and critical inputs to my thesis work.
    [Show full text]
  • Termite Gut Microbes As Tools and Targets for Termite Control
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2017 Termite Gut Microbes as Tools and Targets for Termite Control Chinmay Vijay Tikhe Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Tikhe, Chinmay Vijay, "Termite Gut Microbes as Tools and Targets for Termite Control" (2017). LSU Doctoral Dissertations. 4393. https://digitalcommons.lsu.edu/gradschool_dissertations/4393 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. TERMITE GUT MICROBES AS TOOLS AND TARGETS FOR TERMITE CONTROL A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology By Chinmay Vijay Tikhe B.Sc. Microbiology, University of Pune, 2008 M.Sc. Microbiology, University of Pune, 2010 August 2017 Acknowledgments I would like thank my major advisor Dr. Claudia Husseneder for giving me the opportunity to conduct this research. Without her encouragement and support, this research wouldn’t have been possible. I will be always grateful for the trust and the intellectual freedom I received during this research. I would also like to thank Dr. Lane Foil, Dr. Chris Gissendanner and Dr. William Doerrler for serving on my PhD committee.
    [Show full text]
  • Dr. Claudia Husseneder
    Claudia Husseneder Dr. Claudia Husseneder Professor (100% Research Appointment) Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences Bldg. Baton Rouge, LA 70803 Ph: 225-578-1819 Email: [email protected] Professional Experience 2013-pres. Professor, Entomology, Louisiana State University Agricultural Center (100% Research) 2008-2013 Associate Professor, Entomology, Louisiana State University Agricultural Center (100% Research) 2003-2008 Assistant Professor, Entomology, Louisiana State University Agricultural Center (100% Research) 1998-2003 Research Scientist, Plant & Environmental Protection Sciences, Univ. of Hawaii 1994-1998 Research Assistant, Dept. of Animal Physiology, Univ. of Bayreuth, Germany Education 07/14/1998 Doctor of Natural Sciences (Ph.D.) University of Bayreuth, Germany 05/13/1994 Diploma Biology (M.S.) University of Bayreuth, Germany 04/11/1990 Pre-diploma Biology (B.S.) University of Bayreuth, Germany Page 1 of 51 Claudia Husseneder – Research Activities Research and Creative Activity Listings of research publications (published items only) Shorter works (invited reviews, chapters or essays in books) 1. Vargo, E. L. and Husseneder, C. 2011. Genetic structure of termite colonies and populations. In: Biology of termites: A modern synthesis. Bignell, D., Roisin, Y., and Lo, N. (eds.). Springer, Dordrecht, Heidelberg, London, New York. p. 321-347. 2. Vargo, E. L., and Husseneder, C. 2009. Biology of subterranean termites: Insights from molecular studies of Reticulitermes and Coptotermes. Annu. Rev. Entomol. 54: 379-403. Impact Factor 13.73 3. Husseneder, C., and Collier, R. E. 2009. Paratransgenesis for termite control. In: Insect Symbiosis Vol. 3. Bourtzis, K. and Miller, T.A. (eds.). CRC Press LLC, Boca Raton, Florida. p. 361-376.
    [Show full text]
  • Genomic Characterization of the Uncultured Bacteroidales Family S24-7 Inhabiting the Guts of Homeothermic Animals Kate L
    Ormerod et al. Microbiome (2016) 4:36 DOI 10.1186/s40168-016-0181-2 RESEARCH Open Access Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals Kate L. Ormerod1, David L. A. Wood1, Nancy Lachner1, Shaan L. Gellatly2, Joshua N. Daly1, Jeremy D. Parsons3, Cristiana G. O. Dal’Molin4, Robin W. Palfreyman4, Lars K. Nielsen4, Matthew A. Cooper5, Mark Morrison6, Philip M. Hansbro2 and Philip Hugenholtz1* Abstract Background: Our view of host-associated microbiota remains incomplete due to the presence of as yet uncultured constituents. The Bacteroidales family S24-7 is a prominent example of one of these groups. Marker gene surveys indicate that members of this family are highly localized to the gastrointestinal tracts of homeothermic animals and are increasingly being recognized as a numerically predominant member of the gut microbiota; however, little is known about the nature of their interactions with the host. Results: Here, we provide the first whole genome exploration of this family, for which we propose the name “Candidatus Homeothermaceae,” using 30 population genomes extracted from fecal samples of four different animal hosts: human, mouse, koala, and guinea pig. We infer the core metabolism of “Ca. Homeothermaceae” to be that of fermentative or nanaerobic bacteria, resembling that of related Bacteroidales families. In addition, we describe three trophic guilds within the family, plant glycan (hemicellulose and pectin), host glycan, and α-glucan, each broadly defined by increased abundance of enzymes involved in the degradation of particular carbohydrates. Conclusions: “Ca. Homeothermaceae” representatives constitute a substantial component of the murine gut microbiota, as well as being present within the human gut, and this study provides important first insights into the nature of their residency.
    [Show full text]
  • Contents Topic 1. Introduction to Microbiology. the Subject and Tasks
    Contents Topic 1. Introduction to microbiology. The subject and tasks of microbiology. A short historical essay………………………………………………………………5 Topic 2. Systematics and nomenclature of microorganisms……………………. 10 Topic 3. General characteristics of prokaryotic cells. Gram’s method ………...45 Topic 4. Principles of health protection and safety rules in the microbiological laboratory. Design, equipment, and working regimen of a microbiological laboratory………………………………………………………………………….162 Topic 5. Physiology of bacteria, fungi, viruses, mycoplasmas, rickettsia……...185 TOPIC 1. INTRODUCTION TO MICROBIOLOGY. THE SUBJECT AND TASKS OF MICROBIOLOGY. A SHORT HISTORICAL ESSAY. Contents 1. Subject, tasks and achievements of modern microbiology. 2. The role of microorganisms in human life. 3. Differentiation of microbiology in the industry. 4. Communication of microbiology with other sciences. 5. Periods in the development of microbiology. 6. The contribution of domestic scientists in the development of microbiology. 7. The value of microbiology in the system of training veterinarians. 8. Methods of studying microorganisms. Microbiology is a science, which study most shallow living creatures - microorganisms. Before inventing of microscope humanity was in dark about their existence. But during the centuries people could make use of processes vital activity of microbes for its needs. They could prepare a koumiss, alcohol, wine, vinegar, bread, and other products. During many centuries the nature of fermentations remained incomprehensible. Microbiology learns morphology, physiology, genetics and microorganisms systematization, their ecology and the other life forms. Specific Classes of Microorganisms Algae Protozoa Fungi (yeasts and molds) Bacteria Rickettsiae Viruses Prions The Microorganisms are extraordinarily widely spread in nature. They literally ubiquitous forward us from birth to our death. Daily, hourly we eat up thousands and thousands of microbes together with air, water, food.
    [Show full text]
  • Ipregled Istraživanja…
    Microbiota of spontaneously fermented game meat sausages Žgomba Maksimović, Ana Doctoral thesis / Disertacija 2019 Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Zagreb, Faculty of Agriculture / Sveučilište u Zagrebu, Agronomski fakultet Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:204:465763 Rights / Prava: In copyright Download date / Datum preuzimanja: 2021-10-08 Repository / Repozitorij: Repository Faculty of Agriculture University of Zagreb University of Zagreb FACULTY OF AGRICULTURE Ana Žgomba Maksimović MICROBIOTA OF SPONTANEOUSLY FERMENTED GAME MEAT SAUSAGES DOCTORAL THESIS Zagreb, 2018 Sveučilište u Zagrebu AGRONOMSKI FAKULTET Ana Žgomba Maksimović MIKROBIOTA SPONTANO FERMENTIRANIH KOBASICA OD MESA DIVLJAČI DOKTORSKI RAD Zagreb, 2018 University of Zagreb FACULTY OF AGRICULTURE Ana Žgomba Maksimović MICROBIOTA OF SPONTANEOUSLY FERMENTED GAME MEAT SAUSAGES DOCTORAL THESIS Supervisor: Assoc. Prof. Mirna Mrkonjić Fuka, PhD. Zagreb, 2018 Sveučilište u Zagrebu AGRONOMSKI FAKULTET Ana Žgomba Maksimović MIKROBIOTA SPONTANO FERMENTIRANIH KOBASICA OD MESA DIVLJAČI DOKTORSKI RAD Mentorica: Izv. prof. dr.sc. Mirna Mrkonjić Fuka Zagreb, 2018 Bibliography data Scientific area: Biotechnical sciences Scientific field: Agriculture Branch of science: Production and processing of animal products Institution: University of Zagreb, Faculty of Agriculture, Department of Microbiology Supervisor: Assoc. Prof. Mirna Mrkonjić Fuka, PhD. Number of pages: 166 Number of images: 15 Number of tables: 36 Number of appendixes: 5 Number of references: 217 Date of oral examination: 01.03.2019. The members of the PhD defence committee: 1. Assist. Prof. Ivica Kos, PhD 2. Prof. Blaženka Kos, PhD 3. Prof. Danijel Karolyi, PhD The work will be deposit in: National and University Library of Zagreb, Street Hrvatske bratske zajednice 4 p.p.
    [Show full text]
  • Pyrosequencing Reveals a Shift in Symbiotic Bacteria Populations Across Life Stages of Bactrocera Dorsalis
    Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis Awawing A. Andongma1, Lun Wan1, Yong-Cheng Dong1, Ping li2, Nicolas Desneux3, Jennifer A. White4, Chang-Ying Niu1* SUPPLEMENTARY INFORMATION Supplementary sheet 1 (S1): Bacteria Taxonomy and abundance in gut of different developmental stages of Bactrocera dorsalis OTU totalseq BDE BD1L BD3L BDP BDF BDM kingdom phylum class order family genus Otu001 18360 2723 2838 1441 6 4420 6932 Bacteria(100) Firmicutes(100) Bacilli(100) Lactobacillales(100) Enterococcaceae(100) unclassified(100) Otu002 6472 954 867 1437 3214 0 0 Bacteria(100) Proteobacteria(100) Betaproteobacteria(100) Burkholderiales(100) Comamonadaceae(100) Comamonas(100) Otu003 4890 897 1116 962 7 1671 237 Bacteria(100) Proteobacteria(100) Gammaproteobacteria(100) unclassified(100) unclassified(100) unclassified(100) Otu004 4048 655 807 745 1 1313 527 Bacteria(100) Proteobacteria(100) Deltaproteobacteria(100) Desulfovibrionales(94) unclassified(94) unclassified(94) Otu005 3977 737 759 1110 1286 63 22 Bacteria(100) Proteobacteria(100) Gammaproteobacteria(100) Enterobacteriales(100) Enterobacteriaceae(100) unclassified(91) Otu006 1367 245 230 218 0 285 389 Bacteria(100) Firmicutes(100) Bacilli(100) Lactobacillales(100) Streptococcaceae(100) Lactococcus(100) Otu007 1353 232 219 402 500 0 0 Bacteria(100) Proteobacteria(100) Betaproteobacteria(100) Burkholderiales(100) Comamonadaceae(100) unclassified(100) Otu008 1109 216 189 247 2 291 164 Bacteria(100) Bacteroidetes(100) Flavobacteria(100)
    [Show full text]