M a Y 2 1 - 2 4

Total Page:16

File Type:pdf, Size:1020Kb

M a Y 2 1 - 2 4 M A Y 2 1 - 2 4 EMBASSY SUITES HOTEL RALEIGH - D U R H A M • N C Table of Contents National Conference on Urban Entomology May 21-24, 2006 Embassy Suites Hotel Raleigh-Durham, North Carolina DISTINGUISHED ACHIEVEMENT AWARD IN URBAN ENTOMOLOGY ................... 10 ARNOLD MALLIS MEMORIAL AWARD LECTURE: THE GERMAN COCKROACH: RE-EMERGENCE OF AN OLD FOE…THAT NEVER DEPARTED Coby Schal, North Carolina State University................................................................. 10 STUDENT SCHOLARSHIP AWARD PRESENTATIONS ............................................ 11 SOYBEAN OIL CONSUMPTION IN RED IMPORTED FIRE ANTS, SOLENOPSIS INVICTA BUREN (HYMENOPTERA: FORMICIDAE) Rebecca L. Baillif, Dr. Linda Hooper-Bùi, and Dr. Beverly A. Wiltz, Louisiana State University ...................................................................................................................... 11 THE RESPONSE OF THE FORMOSAN SUBTERRANEAN TERMITE TO DIFFERENT BORATE SALTS Margaret C. Gentz and J. Kenneth Grace, University of Hawai`i at Manoa .................. 11 THE MECHANISM AND FACTORS AFFECTING HORIZONTAL TRANSFER OF FIPRONIL AMONG WESTERN SUBTERRANEAN TERMITES Raj K. Saran and Michael K. Rust, University of California Riverside ........................... 12 STUDENT PAPER COMPETITION .............................................................................. 16 COMPARATIVE PROTEOMICS BETWEEN WORKER AND SOLDIER CASTES OF RETICULITERMES FLAVIPES (ISOPTERA: RHINOTERMITIDAE) C. Jerry Bowen, Robin D. Madden, Brad Kard, and Jack W. Dillwith, Oklahoma State University ...................................................................................................................... 16 TERMITE TRAIL PHEROMONE ATTRACTIVENESS AND SPECIFICITY Raj K. Saran, Jocelyn G. Millar, Michael K. Rust, University of California Riverside..... 17 PARASITISM OF SUBTERRANEAN TERMITES (ISOPTERA: RHINOTERMITIDAE: TERMITIDAE) BY ENTOMOPATHOGENIC NEMATODES (RHABDITIDA: STEINERNEMATIDAE: HETERORHABDITIDAE) H. Yu1, D. H. Gouge1, and P. Baker2, 1University of Arizona, MAC Experiment Station, 2University of Arizona, Tucson, AZ................................................................................ 21 BUGS IN BUGS: STUDIES ON THE GUT BACTERIA IN TERMITES M. Fisher1, D. Miller1, C. Brewster1, C. Husseneder2, and A. Dickerman3, 1Department of Entomology, Virginia Tech, 2Department of Entomology, LSU AgCenter, 3Virginia Bioinformatics Institute, Virginia Tech ........................................................................... 21 PEST ANT COMPLEXES OF PUERTO RICO P. Brown and D. Miller, Department of Entomology, Virginia Tech ............................... 22 - 1 - NATURAL HISTORY, COMMUNITY STRUCTURE, AND MEDICAL STATUS OF AN INVASIVE, STINGING-ANT PEST, PACHYCONDYLA CHINENSIS (EMERY), IN THE UNITED STATES Eric Paysen, Pat Zungoli, Mark Nelder, and Eric Benson, Department of Entomology, Soils, and Plant Sciences, Clemson University ............................................................. 22 ARGENTINE ANT FORAGING ACTIVITY AND INTERSPECIFIC COMPETITION IN COMPLETE VS. WORKER-ONLY COLONIES. John Brightwell and Jules Silverman, Department of Entomology, North Carolina State University ...................................................................................................................... 24 FIELD EFFICACY OF PYRETHROID AND NON-REPELLENT TREATMENT REGIMENS FOR THE CONTROL OF BED BUGS (CIMEX LECTULARIUS) David J. Moore and Dini M. Miller, Department of Entomology, Virginia Tech .............. 25 TERMITES .................................................................................................................... 28 COMPARISON OF THE RELATIVE ABUNDANCE OF SUBTERRANEAN TERMITE SPECIES (ISOPTERA: RHINOTERMITIDAE: RETICULITERMES) OCCURRING IN WOODLANDS AND URBAN AREAS OF MISSOURI Olga P. Pinzon and Richard M. Houseman, Division of Plant Sciences-Entomology, University of Missouri .................................................................................................... 28 RETICULITERMES FLAVIPES (ISOPTERA: RHINOTERMITIDAE) ON A NATIVE TALLGRASS PRAIRIE 1 2 2 2 2, 1 K. S. Brown , B. M. Kard , G. H. Broussard , M. P. Smith , and A. L. Smith City of New Orleans Mosquito and Termite Control Board, 2Dept. of Entomology and Plant Pathology, Oklahoma State University.......................................................................... 29 DIRECT OBSERVATION OF TASK SPECIFICITY IN RETICULITERMES FLAVIPES Jeff Whitman and Brian Forschler, Department of Entomology, University of Georgia . 33 TERMITE CULTURE METHODS S. Wise and B.T. Forschler, Department of Entomology, University of Georgia............ 33 NEUROPEPTIDE F IN ZOOTERMOPSIS NEVADENSIS (ISOPTERA: TERMOPSIDAE) Andrew Nuss, Mark Brown, and Brian Forschler, Department of Entomology, University of Georgia ..................................................................................................................... 34 INSECTICIDE TRANSFER IN SOCIAL INSECTS........................................................ 35 INTRODUCTION: BRIEF LITERATURE REVIEW, OVERVIEW OF BIOLOGICAL RELEVANT TRANSFER WORK Mark A. Coffelt1 and Michael K. Rust2, Dupont Crop Protection1, Department of Entomology, University of California Riverside2 ............................................................ 35 LESS MAY BE MORE: HOW CONCENTRATION IMPACTS EFFICACY OF TRANSFER B. Thorne and N. Breisch, Department of Entomology, University of Maryland ............ 39 HORIZONTAL AND VERTICAL TRANSFER OF FIPRONIL WITHIN FUNCTIONAL COLONIES - 2 - X.P. Hu, D. Song, and W. Presley, Department of Entomology and Plant Pathology, Auburn University.......................................................................................................... 39 INSECTICIDE TRANSFER AS A FACTOR IN THE CONTROL THE WESTERN YELLOWJACKET, VESPULA PENSYLVANICA (SAUSSURE) Donald A. Reierson, M. K. Rust, and R. S. Vetter, Department of Entomology, University of California Riverside ................................................................................................... 45 INSECTICIDE TRANSFER IN ANTS Daniel R. Suiter, Department of Entomology, University of Georgia ............................. 46 MOSQUITO MANAGEMENT IN STORMWATER CONTROL PONDS........................ 47 MOSQUITOES OCCURRING IN STORMWATER CATCHMENT AND RETENTION FACILITIES B. Harrison, North Carolina Department of Environmental and Natural Resources ...... 47 DISEASES ASSOCIATED WITH MOSQUITOES BREEDING IN STORMWATER CATCHMENT AND RETENTION FACILITIES N. Newton, North Carolina Department of Environmental and Natural Resources ....... 47 MANAGEMENT OPTIONS FOR MOSQUITOES PRODUCED IN STORMWATER CATCHMENT AND RETENTION FACILITIES C. Apperson, North Carolina State University ............................................................... 47 TERMITES .................................................................................................................... 48 FIELD STUDIES USING SIGHTS AND SOUNDS FOR LOCATING TERMITES WITH MINIMAL DISTURBANCE Lisa Stabler and Brian Forschler, Department of Entomology, University of Georgia ... 48 SUPPRESSION OF A SUBTERRANEAN TERMITE COMMUNITY. (ISOPTERA, RHINOTERMITIDAE, RETICULITERMES SPP) USING THE SENTRICON® TERMITE COLONY ELIMINATION SYSTEM: A CASE STUDY IN CHATSWORTH, CALIFORNIA, USA Gail M. Getty1, Christopher W. Solek2, Ronald J. Sbragia3, Michael I. Haverty4, and Vernard R. Lewis2, 1Division of Insect Biology, Department of Environmental Science, Policy and Management, University of California, Berkeley, 2Division of Insect Biology, Department of Environmental Science, Policy and Management, University of California, Berkeley, 3Dow AgroSciences, 4U.S. Department of Agriculture, Forest Service.......... 48 SEASONAL VARIATION IN TIME TO TERMITE COLONY ELIMINATION USING RECRUIT™ IV BAIT IN OHIO Nicola T. Gallagher and Susan C. Jones, Department of Entomology, The Ohio State University ...................................................................................................................... 54 EFFICACY OF THE ADVANCE® TERMITE BAIT SYSTEM IN OHIO Susan C. Jones and Nicola T. Gallagher, Department of Entomology, The Ohio State University ...................................................................................................................... 54 THE INFLUENCE OF THE TRANSMISSION OF ACETAMIPRID ON THE MORTALITY OF SUBTERRANEAN TERMITE POPULATIONS Jim Ballard, Tom Anderson, FMC Corporation.............................................................. 55 - 3 - THE IMPACT OF IMIDACLOPRID ON SUBTERRANEAN TERMITE (RETICULITERMES SPP.) COLONIES LOCATED INSIDE AND AROUND RESIDENTIAL STRUCTURES IN CENTRAL NORTH CAROLINA Vince Parman1,2 and Edward L. Vargo1, 1Department of Entomology, North Carolina State University, 2Bayer Environmental Science........................................................... 56 USE OF FIPRONIL IN EXTERIOR PERIMETER-LOCALIZED INTERIOR TREATMENTS FOR SUBTERRANEAN TERMITE CONTROL IN NEW MEXICO Jack D. Root1 and Robert Davis2, North & Root Consulting1 and BASF Specialty Products2....................................................................................................................... 57 STRUCTURAL AND GENERAL PEST CONTROL CERTIFICATION IN OKLAHOMA K.T. Shelton, J.T. Criswell, and B.M. Kard, Oklahoma State University........................ 57 URBAN AND PUBLIC HEALTH................................................................................... 61 ASPECTS OF CREVICE PREFERENCE BY RECLUSE SPIDERS, LOXOSCELES SPP. (ARANEAE: SICARIIDAE) Richard S.
Recommended publications
  • Resasco Etal 2014 Plosone.Pdf (1.045Mb)
    Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Resasco, Julian, Shannon L. Pelini, Katharine L. Stuble, Nathan J. Sanders, Robert R. Dunn, Sarah E. Diamond, Aaron M. Ellison, Nicholas J. Gotelli, and Douglas J. Levey. 2014. “Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages.” Edited by Martin Heil. PLoS ONE 9 (2) (February 4): e88029. doi:10.1371/journal.pone.0088029. http://dx.doi.org/10.1371/ journal.pone.0088029. Published Version doi:10.1371/journal.pone.0088029 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11857773 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Using Historical and Experimental Data to Reveal Warming Effects on Ant Assemblages Julian Resasco1*†, Shannon L. Pelini2, Katharine L. Stuble 3‡, Nathan J. Sanders3§, Robert R. Dunn4, Sarah E. Diamond4¶, Aaron M. Ellison5, Nicholas J. Gotelli6, Douglas J. Levey7 1Department of Biology, University of Florida, Gainesville, FL 32611, USA 2Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA 3Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA 4Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA 5Harvard University, Harvard Forest, Petersham, MA 01366 USA 6Department of Biology, University of Vermont, Burlington, VT 05405 USA 7National Science Foundation, Arlington, VA 22230, USA † Current address: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA ‡ Current address: Oklahoma Biological Survey, 111 E.
    [Show full text]
  • “Sockets” Or Are Articulated, As Are the Primary D Or SD GIELIS, C
    VOLUME 60, NUMBER 2 97 “sockets” or are articulated, as are the primary D or SD GIELIS, C. 2000. Division of the Pterophoridae into tribes (Lepi- setae. doptera). Quadrifina 3: 57-60. GIELIS, C. 2003. Pterophoridae & Alucitoidea - In: World Catalogue While tribal placement of Cosmoclostis in of Insects 4: 1-198. Pterophorini can be supported, additional species need HEINRICH, C. 1916. On the taxonomic value of some larval characters to be examined, to ascertain larval and pupal characters in the Lepidoptera. Proc. Entomol. Soc. Wash. 18: 154-164. HAO, S.-L., LI, H.-H. , & WU, C.-S. 2004. First record of the genus entirely unique to the genus Cosmoclostis. Continuing Cosmoclostis Meyrick from China, with descriptions of two new studies of larval and pupal structure will provide species (Lepidoptera, Pterophoridae). Acta Zoo. Sinica 29(1): additional insight into the relationships between and 142-146. MATTHEWS, D.L. & LOTT, T.A. 2005. Larval Hostplants of the within tribes and subfamilies of this group. Pterophoridae (Lepidoptera: Pterophoroidea). Mem. Amer. En- tomol. Inst. 76: 1-324. We thank Marianne Horak, Australian National Insect Collection, MEYRICK, E. 1886. On the classification of the Pterophoridae. Trans. for arranging the loan of the described specimens. George Mathew, Entom. Soc. Lond. 1886: 1-21. Kerala Forest Institute, India, provided comparative larval material of MOSHER, E. 1916. A classification of the Lepidoptera based on char- Cosmoclostis leucomochla. We also thank Terry A. Lott, J. Howard acters of the pupa. Bull. Ill. State Lab. Nat. Hist. 12(2): 18-153, Frank, and Donald W. Hall for reviewing the manuscript.
    [Show full text]
  • Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use
    NAPPO Discussion Document DD 04: Wooden and Bamboo Commodities Intended for Indoor and Outdoor Use Prepared by members of the Pest Risk Analysis Panel of the North American Plant Protection Organization (NAPPO) December 2011 Contents Introduction ...........................................................................................................................3 Purpose ................................................................................................................................4 Scope ...................................................................................................................................4 1. Background ....................................................................................................................4 2. Description of the Commodity ........................................................................................6 3. Assessment of Pest Risks Associated with Wooden Articles Intended for Indoor and Outdoor Use ...................................................................................................................6 Probability of Entry of Pests into the NAPPO Region ...........................................................6 3.1 Probability of Pests Occurring in or on the Commodity at Origin ................................6 3.2 Survival during Transport .......................................................................................... 10 3.3 Probability of Pest Surviving Existing Pest Management Practices .......................... 10 3.4 Probability
    [Show full text]
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Drywood Termite, Cryptotermes Cavifrons Banks (Insecta: Blattodea: Kalotermitidae)1 Angela S
    EENY279 Drywood Termite, Cryptotermes cavifrons Banks (Insecta: Blattodea: Kalotermitidae)1 Angela S. Brammer and Rudolf H. Scheffrahn2 Introduction moisture requirements than those of C. brevis. A 2002 termite survey of state parks in central and southern Termites of the genus Cryptotermes were sometimes called Florida found that 45 percent (187 of 416) of all kaloter- powderpost termites because of the telltale heaps of fecal mitid samples taken were C. cavifrons. pellets (frass) that accumulate beneath infested wood. Fecal pellets of Cryptotermes, however, are similar in size and shape to other comparably sized species of Kalotermitidae. Identification All are now collectively known as drywood termites. The Because termite workers are indistinguishable from each most economically significant termite in this genus, Cryp- other to the level of species, most termite keys rely on totermes brevis (Walker), commonly infests structures and characteristics of soldiers and alates (winged, unmated was at one time known as the “furniture termite,” thanks reproductives) for species identification. to the frequency with which colonies were found in pieces of furniture. A member of the same genus that might be Like all kalotermitids, the pronotum of the C. cavifrons mistaken for C. brevis upon a first, cursory examination is soldier is about as wide as the head. The head features a C. cavifrons, a species endemic to Florida. large cavity in front (hence the species name, cavifrons), nearly circular in outline from an anterior view, shaped Distribution and History almost like a bowl. The rest of the upper surface of the head is smooth, as contrasted with the head of C.
    [Show full text]
  • Effects of Landscape, Intraguild Interactions, and a Neonicotinoid on Natural Enemy and Pest Interactions in Soybeans
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2016 EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS Hannah J. Penn University of Kentucky, [email protected] Author ORCID Identifier: http://orcid.org/0000-0002-3692-5991 Digital Object Identifier: https://doi.org/10.13023/ETD.2016.441 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Penn, Hannah J., "EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS" (2016). Theses and Dissertations-- Entomology. 30. https://uknowledge.uky.edu/entomology_etds/30 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]
  • Wood-‐Destroying Organism Inspection
    InterNACHI Wood-Destroying Organism Inspection Student Course Materials InterNACHI free online course is at http://www.nachi.org/wdocourse.htm. Wood-Destroying Organism Inspection The purpose of the course is to define and teach good practice for: 1) conducting a wood-destroying organism inspection of a building; and 2) performing treatment applications for the control of wood-destroying organisms. This course provides information, instruction, and training for the wood-destroying organism inspector and commercial pesticide applicator studying to become certified. The student will learn how to identify and report infestation of wood-destroying organisms that may exist in a building using a visual examination. The student will learn the best practices for treatment applications to control infestation. The course is designed primarily for wood-destroying organism inspectors, building inspection professionals, and commercial treatment applicators. STUDENT VERIFICATION & INTERACTIVITY Student Verification By enrolling in this course, the student hereby attests that he or she is the person completing all course work. He or she understands that having another person complete the course work for him or her is fraudulent and will immediately result in expulsion from the course and being denied completion. The courser provider reserves the right to make contacts as necessary to verify the integrity of any information submitted or communicated by the student. The student agrees not to duplicate or distribute any part of this copyrighted work or provide other parties with the answers or copies of the assessments that are part of this course. Communications on the message board or forum shall be of the person completing all course work.
    [Show full text]
  • Effects of Prescribed Fire and Social Insects on Saproxylic Beetles in A
    www.nature.com/scientificreports OPEN Efects of prescribed fre and social insects on saproxylic beetles in a subtropical forest Michael D. Ulyshen1 ✉ , Andrea Lucky2 & Timothy T. Work3 We tested the immediate and delayed efects of a low-intensity prescribed fre on beetles, ants and termites inhabiting log sections cut from moderately decomposed pine trees in the southeastern United States. We also explored co-occurrence patterns among these insects. Half the logs were placed at a site scheduled for a prescribed fre while the rest were assigned to a neighboring site not scheduled to be burned. We then collected insects emerging from sets of logs collected immediately after the fre as well as after 2, 6, 26 and 52 weeks. The fre had little efect on the number of beetles and ants collected although beetle richness was signifcantly higher in burned logs two weeks after the fre. Both beetle and ant communities difered between treatments, however, with some species preferring either burned or unburned logs. We found no evidence that subterranean termites (Reticulitermes) were infuenced by the fre. Based on co-occurrence analysis, positive associations among insect species were over two times more common than negative associations. This diference was signifcant overall as well for ant × beetle and beetle × beetle associations. Relatively few signifcant positive or negative associations were detected between termites and the other insect taxa, however. Dead wood is one of the most important resources for biodiversity in forests worldwide, supporting diverse and interacting assemblages of invertebrates, fungi and prokaryotes1,2. In addition to many species that oppor- tunistically beneft from dead wood, about one third of all forest insect species are saproxylic, meaning they are strictly dependent on this resource at some stage in their life cycle, and many of them have become threatened in intensively managed landscapes3,4.
    [Show full text]
  • Comparing the Diversity, Geographic Distribution
    COMPARING THE DIVERSITY, GEOGRAPHIC DISTRIBUTION, AND INTRASPECIFIC VARIATION OF SUBTERRANEAN TERMITES (RETICULITERMES: ISOPTERA: RHINOTERMITIDAE) OCCURRING IN WOODLANDS AND URBAN ENVIRONMENTS OF MISSOURI USING MORPHOLOGY AND 16S mtDNA Olga Patricia Pinzon Dr. Richard Houseman Dissertation supervisor ABSTRACT Subterranean termite species in the genus Reticulitermes are ecologically and economically important in the United States. At least six species of the genus Reticulitermes are native from North American forests where they feed on cellulose materials. In urban environments they feed upon dead wood, and therefore infest and destroy man-made wooden structures. Missouri is considered to have a moderate risk for termite infestations when compared with the states of the southeast part of the country. Despite their ecological and economic importance, Missouri’s subterranean termite faunal composition and geographic distribution is not well known. Diversity, geographic distribution, and genetic variability of Reticulitermes species within Missouri were studied from approximately 600 samples of termite colonies collected during 2004 and 2005 in nine conservation areas, nine cities located near these conservation areas, and from home infestations occurring at many different locations within the state. Reticulitermes flavipes (Kollar), Reticulitermes virginicus (Banks), Reticulitermes tibialis Banks and Reticulitermes hageni Banks were found occurring in Missouri. Reticulitermes flavipes and R. hageni were the most abundant species. Reticulitermes
    [Show full text]
  • Hymenoptera: Formicidae) Inferred from Morphological and Genetic Evidence
    Zoological Studies 58: 11 (2019) doi:10.6620/ZS.2019.58-11 Open Access Cryptic Diversity in the Widespread Asian Ant Crematogaster rothneyi (Hymenoptera: Formicidae) Inferred from Morphological and Genetic Evidence Shingo Hosoishi1,* and Kazuo Ogata1 1Institute of Tropical Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 Japan. *Correspondence: E-mail: [email protected] (Hosoishi) Received 28 January 2019 / Accepted 7 May 2019 / Published 24 June 2019 Communicated by John Wang The myrmicine species Crematogaster rothneyi is one of the most widely distributed ants in Asia, but it has rarely been collected in the field. Its distribution range covers South and SoutheastAsia, extending approximately 5,000 km from India in the west to Sulawesi in the east. Despite this wide distribution range, C. rothneyi has been treated as a single taxonomic species, and no combined morphological or molecular analysis has been conducted to assess whether any intraspecific variation exists. The sequence divergences of C. rothneyi populations, mainly obtained from Southeast Asia, were investigated by analyzing 387 bp and 175 bp sequences of the 12S ribosomal RNA and cytochrome c oxidase subunit (COI) genes, respectively. Phylogenetic analysis indicated that the C. rothneyi populations were separated into three groups: group I from Thailand and Cambodia, group II from Bangladesh and Myanmar, and group III from Krakatau and Sulawesi. Groups II and III were recovered as a single clade, sister to group I. The interspecific divergences were 7.3% to 8.5% for 12S and 14.5% to 23.3% for COI between most C. rothneyi specimens and Cambodian specimens, while divergence for 12S was 3.5% between Thai and Cambodian specimens.
    [Show full text]
  • Coleoptera) 69 Doi: 10.3897/Zookeys.481.8294 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 481: 69–108 (2015) The Bostrichidae of the Maltese Islands( Coleoptera) 69 doi: 10.3897/zookeys.481.8294 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The Bostrichidae of the Maltese Islands (Coleoptera) Gianluca Nardi1, David Mifsud2 1 Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale “Bosco Fontana”, Sede di Bosco Fontana – Corpo Forestale dello Stato, Strada Mantova 29, I-46045 Marmirolo (MN), Italy 2 Institute of Earth Systems, Division of Rural Sciences and Food Systems, University of Malta, Msida MSD 2080, Malta Corresponding author: Gianluca Nardi ([email protected]) Academic editor: C. Majka | Received 17 June 2014 | Accepted 6 January 2015 | Published 4 February 2015 http://zoobank.org/4AB90367-FE56-41C0-8825-16E953E46CEC Citation: Nardi G, Mifsud D (2015) The Bostrichidae of the Maltese Islands (Coleoptera). ZooKeys 481: 69–108. doi: 10.3897/zookeys.481.8294 Abstract The Bostrichidae of the Maltese Islands are reviewed. Ten species are recorded with certainty from this Archipelago, of which 6 namely, Trogoxylon impressum (Comolli, 1837), Amphicerus bimaculatus (A.G. Olivier, 1790), Heterobostrychus aequalis (Waterhouse, 1884), Sinoxylon unidentatum (Fabricius, 1801), Xyloperthella picea (A.G. Olivier, 1790) and Apate monachus Fabricius, 1775 are recorded for the first time. Two of the mentioned species (H. aequalis and S. unidentatum) are alien and recorded only on the basis of single captures and the possible establishment of these species is discussed. Earlier records of Scobicia pustulata (Fabricius, 1801) from Malta are incorrect and should be attributed to S. chevrieri (A. Villa & J.B. Villa, 1835).
    [Show full text]