QATS001 Agenda

Total Page:16

File Type:pdf, Size:1020Kb

QATS001 Agenda Overview of Intel® QuickAssist Technology Dr. Nash Palaniswamy Intel Corporation and Guest Speaker Richard Kaufmann HP QATS001 Agenda • Intel® QuickAssist Technology Strategy • Overview of Solutions – Intel® Embedded Processor for 2008 (Tolapai), FSB-FPGA, AAL, etc. • A viewpoint from HP* on Accelerators • Summary 2 Intel® QuickAssist Technology – Comprehensive Approach to Acceleration • Multiple accelerator and attach options with software and ecosystem support • Performance and scalability based on customer needs and priorities Comprehensive Initiative to optimize the use and deployment of accelerators on Intel® architecture platforms. 3 Design Alternatives as Diverse as Application Requirements Accelerator Accelerator Software Design Attach Models Customized Solutions Power Software Maximum Efficiency Scalability Performance 4 Intel® Embedded Processor for 2008 (Tolapai) Single Die integrates - IA 32 based Core @ 600, 1066 and 1200MHz - DDR2 memory controller (MCH) - PCI Express* Technology - Standard IA PC peripherals (ICH) - 3x Gigabit Ethernet MACs - 3x TDM high-speed serial interfaces for 12 T1/E1 or SLIC/CODEC connections - Intel® QuickAssist Integrated Accelerator Vital Statistics - 148 million transistors - 1,088-ball FCBGA w/1.092 mm pitch - 37.5 mm x 37.5 mm package Intel's first integrated x86 processor, chipset and memory controller since 1994's 80386EX 5 Intel® QuickAssist® FPGA Acceleration Platform Source : Pat Gelsinger Keynote Fall IDF 2006 1. Open Ubiquitous Standards Based Approach PCI Express* Gen1, PCI Express* Gen2, Gen 3 in the future 2. Enable third party FSB-FPGA Modules – targeted for Financial Services Industry, Oil and Gas, Life Sciences, Digital Health, etc. FSB-FPGA Modules Targeted 1H08 3. Intel® QuickAssist Technology Accelerator Geneseo – PCI Express* Abstraction Layer (AAL) that seamlessly allows Source : Intel Internal the SW to access acceleration across various technologies. Open Standards Based Attach Strategy Tightly Coupled 6 A A A A M M M M B B B B A A AM A M M B M B B B A A A A M M M M B B B B A A A A M M M M B B B B )/ )/ ) ) Modules FSB – FPGA – FSB Bensley Bensley Entry Two Entry Two Workstation Workstation that plug into ® ® Stoakley Stoakley ® ( ® ( 5000 Sequence Two Socket Two Socket 2007 ( 2007 ( Intel Intel Platform for 2008 Platform for 2008 Intel Intel Socket Platform for Socket Socket Platform for Socket (AHMs) nce, lowest latency interconnect 7 A A A A M M M M B B B B A A A A M M M M B B B B A A A A M M M M B B B B A A A A M M M M B B B B A A A A M M M M B B B B A A A A M M M M B B B B A A A A M M M M B B B B A A A A M M M M B B B B Modules FSB – FPGA – FSB processor sockets ) ) ® Intel® Xeon® Platforms – DP Server & MP Expandable Expandable Xeon Expandable Expandable 7000 Sequence for 2007 for 2007 Caneland ® Caneland ® ® ( ( Attach directly to the Front Side Bus (FSB) FSB provides the highest performa Server Platform Server Platform Intel Intel FPGA Accelerator Hardware Modules Intel - What are FSB-FPGA Accelerators? Accelerator Abstraction Layer (AAL) y AAL provides a uniform set of platform level services for using FPGA accelerators on Intel platforms - Independent of attach technology (ie: FSB, PCI Express* Technology, etc.) - Independent of the acceleration workload - Defines a common programming model - Specifies a common presentation of the services using existing interconnect interfaces Tightly coupled accelerators: FSB Loosely coupled accelerators: PCI Express 8 Intel® QuickAssist Technology Accelerator Abstraction Layer (AAL) for FPGAs Runtime awareness & management of FPGA accelerators Market Verticals Application(s) • FSI • OIL and GAS Application • LIFE SCIENCES Libraries API • DIGITAL HEALTH MKL, IPP, Accelerator Specific, …. • HPC • EDA • EMBEDDED Service • GENERAL ENTERPRISE API Intel® QuickAssist Technology Accelerator Abstraction Layer • Accelerator Abstraction Services • Uniform Accelerator Interface • Front-side bus, Intel® QuickPath Interconnect, PCI Express* Gen1, Gen2 or Gen3 Physical Interconnect Accelerators e.g.: Crypto, FPGAs, XML etc 9 FPGA Acceleration Platform - Summary y Intel is defining QuickAssist Technology and enabling FPGA, tool and hardware vendors, to provide customers with a complete solution for integrating FSB-FPGA acceleration into their applications - Comprehensive Approach To Acceleration - Flexible Hardware Configuration - Zero-Copy Programming Model - Simple AFU Interface, flexible design choices - Using AAL protects your software investment 10 A viewpoint from HP on Accelerators - Richard Kaufmann y Types of accelerators y Markets that could use accelerators y HP’s programs on accelerators and ongoing work on Intel® platforms y State of the industry 11 Intel® QuickAssist Technology Summary - Ease Deployment of Accelerators on Intel® platforms. - Accelerated platforms based on open industry efforts and standards. - Encompasses Industry and Intel solutions. - Intel has differentiated silicon products & platforms benefiting many of these workloads now & in the future - Strong ecosystem support. - Leadership SW Architectures to enable ease of deployment. 12 12 Additional sources of information on this topic: y Other Sessions / Chalk Talks / Labs – QATS002 – Intel® QuickAssist Technology Components. y For an overview of Intel® Embedded Processor for 2008 (Tolapai) with Intel® QuickAssist Acceleration Technology go to: www.intel.com/go/soc y Accelerators in Action: Visit the I/O & Application Acceleration Community in the showcase to see technology demonstrations from Intel and other industry-leading companies y More Web-based info: http://www.intel.com/go/quickassist 13 Session Presentations - PDFs The PDF of this Session presentation is available from our IDF Content Catalog: https://intel.wingateweb.com/SHchina/catalog/controller/catalog These can also be found from links on www.intel.com/idf 14 Please Fill out the Session Evaluation Form Put in your lucky draw coupon to win the prize at the end of the track! You must be present to win! Thank You for your input, we use it to improve future Intel Developer Forum events 15 Legal Disclaimer y INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS. y Intel may make changes to specifications and product descriptions at any time, without notice. y All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. y Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request. y Tolapai and other code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user y Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance. y Intel, Intel Inside, Intel QuickAssist Technology and the Intel logo are trademarks of Intel Corporation in the United States and other countries. y *Other names and brands may be claimed as the property of others. y Copyright © 2008 Intel Corporation. 16 Risk Factors This presentation contains forward-looking statements that involve a number of risks and uncertainties. These statements do not reflect the potential impact of any mergers, acquisitions, divestitures, investments or other similar transactions that may be completed in the future, with the exception of the Numonyx transaction. Our forward-looking statements for 2008 reflect the expectation that the Numonyx transaction will close during the first quarter. The information presented is accurate only as of today’s date and will not be updated. In addition to any factors discussed in the presentation, the important factors that could cause actual results to differ materially include the following: Factors that could cause demand to be different from Intel's expectations include changes in business and economic conditions, including conditions in the credit market that could affect consumer confidence; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns, including order cancellations; and changes in the level of inventory at customers. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term
Recommended publications
  • System Design for Telecommunication Gateways
    P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS Alexander Bachmutsky Nokia Siemens Networks, USA A John Wiley and Sons, Ltd., Publication P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come SYSTEM DESIGN FOR TELECOMMUNICATION GATEWAYS Alexander Bachmutsky Nokia Siemens Networks, USA A John Wiley and Sons, Ltd., Publication P1: OTE/OTE/SPH P2: OTE FM BLBK307-Bachmutsky August 30, 2010 15:13 Printer Name: Yet to Come This edition first published 2011 C 2011 John Wiley & Sons, Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Intel's Core 2 Family
    Intel’s Core 2 family - TOCK lines References Dezső Sima Vers. 1.0 Januar 2019 Contents (1) • 1. Introduction • 2. The Core 2 line • 3. The Nehalem line • 4. The Sandy Bridge line • 5. The Haswell line • 6. The Skylake line • 7. The Kaby Lake line • 8. The Kaby Lake Refresh line • 9. The Coffee Lake line • 10. The Coffee Lake line Refresh Contents (2) • 11. The Cannon Lake line (outlook) • 12. Sunny Cove • 13. References 13. References 12. References (1) [1]: Singhal R., “Next Generation Intel Microarchitecture (Nehalem) Family: Architecture Insight and Power Management, IDF Taipeh, Oct. 2008, http://intel.wingateweb.com/taiwan08/ published/sessions/TPTS001/FA08%20IDFTaipei_TPTS001_100.pdf [2]: Bryant D., “Intel Hitting on All Cylinders,” UBS Conf., Nov. 2007, http://files.shareholder.com/downloads/INTC/0x0x191011/e2b3bcc5-0a37-4d06- aa5a-0c46e8a1a76d/UBSConfNov2007Bryant.pdf [3]: Fisher S., “Technical Overview of the 45 nm Next Generation Intel Core Microarchitecture (Penryn),” IDF 2007, ITPS001, http://isdlibrary.intel-dispatch.com/isd/89/45nm.pdf [4]:Pabst T., The New Athlon Processor: AMD Is Finally Overtaking Intel, Tom's Hardware, August 9, 1999, http://www.tomshardware.com/reviews/athlon-processor,121-2.html [5]: Carmean D., “Inside the Pentium 4 Processor Micro-architecture,” Aug. 2000, http://people.virginia.edu/~zl4j/CS854/pda_s01_cd.pdf [6]: Shimpi A. L. & Clark J., “AMD Opteron 248 vs. Intel Xeon 2.8: 2-way Web Servers go Head to Head,” AnandTech, Dec. 17 2003, http://www.anandtech.com/showdoc.aspx?i=1935&p=1 [7]: Völkel F., “Duel of the Titans: Opteron vs. Xeon : Hammer Time: AMD On The Attack,” Tom’s Hardware, Apr.
    [Show full text]
  • Michael Eisenstadt David Pollock How the United States Benefits from Its
    A WASHINGTON INSTITUTE STRATEGIC REPORT How the United States Benefits from Its Alliance with Israel Michael Eisenstadt David Pollock STRATEGIC REPORT 7 Michael Eisenstadt David Pollock ASSET TEST How the United States Benefits from Its Alliance with Israel STRATEGIC REPORT 7 SEPTEMBER 2012 All rights reserved. Printed in the United States of America. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. © 2012 by The Washington Institute for Near East Policy The Washington Institute for Near East Policy, 1828 L Street NW, Suite 1050, Washington, DC 20036. COVER: Detail from die photo of Intel ‘s Tolapai System on Chip (SoC ). Computer processors developed by Intel’s Israel R&D center account for 40 percent of the company’s revenues worldwide. Contents About the Authors v Acknowledgments vii Executive Summary ix 1 | Introduction 1 2 | The Enduring Strategic Logic 3 3 | Cooperation on Hard Security Issues 10 4 | Cooperation on Soft Security Challenges 30 5 | Future Challenges 51 6 | Conclusion 57 ILLUSTRATIONS Fig. 1a | Arab-U.S. Ties Trend 5 Fig. 1b | Israel-U.S. Ties Trend 5 Fig. 2a | U.S. Exports to Israel (2011) 31 Fig. 2b | U.S. Imports from Israel (2011) 31 Fig. 2c | U.S. Exports to Saudi Arabia (2011) 31 Fig. 2d | U.S. Imports from Saudi Arabia (2011) 31 TABLES Table 1 | Select Israel-Origin Systems in Recent Use by the U.S. Military 18 Table 2 | Select U.S.
    [Show full text]
  • Intel in 1968, Became President and CEO in 1975, Chairman in 1979, Chairman Emeritus in 1997
    [Beginning of recorded material] [Music] [Video] Pat Gelsinger: There is no person on the planet that I would be more pleased to introduce than our next speaker. And as you come to IDF, technology, technologists, great innovation, profound insights, and who better to speak on such topics than Gordon Moore? Gordon co-founded Intel in 1968, became president and CEO in 1975, chairman in 1979, chairman emeritus in 1997. You know, he was the guy who sort of codified what we today call Moore's Law, , this insight that's become not just an insight, but the very nature of our industry's heartbeat and direction. I remember some of my personal interactions with Gordon very early on. And one time we were struggling on the 46th compaction, so this is back when, , we were struggling to make a 1.2 million transistor chip. Myself was leading the design team for that. [Youssef A. El-Mansy] was leading the process technology for it. And we were struggling with this low-yield problem. And were running all sorts of experiments and struggling with trying to figure this out. And Gordon summons me to his office along with Youssef, , on this problem. I felt like I was going and seeing God, right, you know, walk in, the Gordon Moore, right? And Gordon started shelling us with questions. Have you run this experiment? Have you tried that? And so on. And by this point Gordon was not a practicing technologist for quite a number of years, so we felt like we were sort of pacifying the old man, Intel Developers' Forum, 8.18.07, Afternoon Session Page 2 , by answering his questions.
    [Show full text]
  • SMI GPU Roadmap Update
    SMI GPU Roadmap Update October, 2009 Agenda . Company Overview . GPU Roadmap . GPU Technology and Success Story . GPU Selection Guide . GPU Software Driver and Design Tool . Why Choose SMI? About Silicon Motion . Founded in Nov. 1995 . Market Position: A global leader in microcontrollers for NAND flash storage and low-power multimedia devices . Mission: Silicon Motion is a leading fabless semiconductor company that provides universally compatible, high- performance, low-power semiconductor solutions for the multimedia electronics markets. 3 Pacific Rim Operations Support Global Focus Beijing, China Seoul, Korea Yokohama, Japan Shanghai, China Milpitas, CA Jhubei, Taiwan Shenzhen, China Headquarters: Jhubei, Taiwan Other Operations: Seoul (KOR), Milpitas (US), Shenzhen, Shanghai, Beijing (CN), Shin Yokohama (JP), and Taipei (TW) Employees: 600+ (400+ Engineers) Distributors: N. America, Europe, China, Singapore, Taiwan, Korea, Singapore Our Products >>Mobile Storage >>Multimedia SoC >>Mobile Communications • Flash Card Controllers • Portable Multimedia SoC • Mobile TV Tuner IC • Mobile TV SoC • Solid State Drive Controllers • PC Camera Controllers (tuner + demodulator) • USB Flash Drive Controllers • Embedded Graphics • CDMA RF ICs • Embedded Flash Controllers • Electronic Toll Collection System RF ICs • Card Reader Controllers Embedded GPU Roadmap SM107 SM502 SM502 4 MB 8 MB 0 MB •2D Engine •2D Engine Main RISC •Host/PCI interface •Host/PCI interface •4MB Int. SDRAM •8MB Int. SDRAM Interface •1280x1024 •1280x1024 •CRT& DVO •CRT& DVO •I/O Peripherals (limited) •I/O Peripherals •15x15mm BGA •19x19mm BGA •MP •MP SM718 SM718 16 MB 0 MB SM712 SM722 SM750 SM750 •PCI & 16/32b Host I/F 4 MB 8 MB 16 MB 0 MB •2D Engine •16MB Int. DDR •1920x1440 •2D Engine •2D/3D Engine •2D Engine •CRT& Dual-D •PCI interface •PCI/AGP interface •1 lane PCI-E Main X86 •17x17mm BGA •4MB Int.
    [Show full text]
  • Intel® Quickassist Technology Components
    Intel® QuickAssist Technology Components Neal Oliver, PhD Principal Engineer Intel Corporation QATS002 Agenda • Intel® QuickAssist Architecture Overview • Selected Intel® QuickAssist Architecture Components • Intel® Embedded Processor for 2008 (Tolapai) • Hardware Architecture • Software Architecture • Use Cases • Intel® QuickAssist FSB-FPGA Accelerator Platform (FAP) • System Architecture • Accelerator Hardware Module (AHM) • Design Flow • Intel® QuickAssist Technology Accelerator Abstraction Layer (AAL) • AAL services and features • Software Architecture Intel’sSingle responseChip Solutions to customer - VPN/Firewall need for acceleration on2 Intel platforms Intel® QuickAssist Technology – Comprehensive Approach to Acceleration • Multiple accelerator and attach options with software and ecosystem support • Performance and scalability based on customer needs and priorities Intel’s response to customer need to deploy accelerators on Intel® architecture platforms. 3 Intel® Embedded Processor for 2008 (Tolapai) Single Die integrates - IA 32 based Core @ 600, 1066 and 1200MHz - DDR2 memory controller (MCH) - PCI Express* Technology - Standard IA PC peripherals (ICH) - 3x Gigabit Ethernet MACs - 3x TDM high-speed serial interfaces for 12 T1/E1 or SLIC/CODEC connections - Intel® QuickAssist Integrated Accelerator Vital Statistics - 148 Million transistors - 1,088-ball FCBGA w/1.092 mm pitch - 37.5 mm x 37.5 mm package SingleSystem-on-Chip Chip Solutions (SoC) - VPN/Firewall enabling performant, effective4 system solutions Intel® Embedded Processor
    [Show full text]
  • Valpont.Com, a Technology Content Platform Valpont.Com, a Technology Content Platform
    Valpont.com, a Technology Content Platform Valpont.com, a Technology Content Platform Software Development for Embedded Multi-core Systems Valpont.com, a Technology Content Platform This page intentionally left blank Valpont.com, a Technology Content Platform Software Development for Embedded Multi-core Systems A Practical Guide Using Embedded Intel ® Architecture Max Domeika AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Newnes is an imprint of Elsevier Valpont.com, a Technology Content Platform Cover image by iStockphoto Newnes is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK Copyright © 2008, Elsevier Inc. All rights reserved. Intel® and Pentium® are registered trademarks of Intel Corporation. *Other names and brands may be the property of others. The author is not speaking for Intel Corporation. This book represents the opinions of author. Performance tests and ratings are measured using specifi c computer systems and/or components and refl ect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or software design or confi guration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit Intel Performance Benchmark Limitations. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 3.2
    The Intel x86 Microarchitectures Map Version 3.2 8086 (1978, 3 µm) 80386 (1985, 1.5 to 1 µm) P6 (1995, 0.50 to 0.35 μm) Skylake (2015, 14 nm) NetBurst (2000 , 180 to 130 nm) Series: Alternative Names: iAPX 386, 386, i386 Alternative Names: i686 Alternative Names: SKL (Desktop and Mobile), SKX (Server) (Note : all U and Y processors are MCPs) P5 (1993, 0.80 to 0.35 μm) Alternative Names: Pentium 4, Pentium IV, P4 • 16-bit data bus: Series: Series: Pentium Pro (used in desktops and servers) Series: Alternative Names: Pentium, Series: 8086 (iAPX 86) • Desktop/Server: i386DX Variant: Klamath (1997, 0.35 μm) • Desktop: Desktop 6th Generation Core i5 (i5-6xxx, S-H) 80586, 586, i586 • Desktop: Pentium 4 1.x (except those with a suffix, Willamette, 180 nm), Pentium 4 2.0 (Willamette, 180 • 8-bit data bus: • Desktop lower-performance: i386SX Alternative Names: Pentium II, PII • Desktop higher-performance: Desktop 6th Generation Core i7 (i7-6xxx, S-H), Desktop 7th Generation Core i7 X (i7-7xxxX, X), Desktop 7th Series: nm) 8088 (iAPX 88) • Mobile: i386SL, 80376, i386EX, Series: Pentium II 233/266/300 steppings C0 and C1 (Klamath, used in desktops) Generation Core i9 X (i7-7xxxXE, i7-7xxxX, X), Desktop 9th Generation Core i7 X (i7-9xxxX, X, 14 nm++?), Desktop 9th Generation Core i9 X • Desktop/Server: P5, P54C • Desktop higher-performance: Pentium 4 1.xA (Northwood, 130 nm), Pentium 4 2.x (except 2.0, 2.40A, i386CXSA, i386SXSA, i386CXSB New instructions: Deschutes (1998, 0.25 to 0.18 μm) (i7-9xxxXE, i7-9xxxX, X, 14 nm++?), Xeon W-3175X (W, 14 nm++?)
    [Show full text]
  • Power TECH FOCUS O
    www.elettronica-plus.it COVER STORY Conrad punta sul servizio e potenzia la spedizione in 24 ore Power TECH FOCUS O E Il risveglio delle reti neurali VERTICAL MAGAZINE VERTICAL GIUGNO/LUGLIO 2016 - N° 455 - e 4,50 Mensile di elettronica professionale, componenti, strumentazione e tecnologie Velocità x Spedizione 24h Tekkie = Elettronica In caso di mancato recapito inviare al CMP/CPO di Roserio-Milano per la restituzione al mittente previo pagaamento resi al CMP/CPO di Roserio-Milano per la restituzione al mittente previo In caso di mancato recapito inviare SUM Copertina di MA Conrad Business Supplies N° 455 realizzata GIUGNO/LUGLIO 2016 RY da Franco Tedeschi Accanto ai big, vi sono varie mettente ambito dell’intel- piccole società che operano ligenza artificiale che trova nel settore delle reti neurali potenziali e innumerevoli e di ciò che viene definito applicazioni in un ampio “machine learning”, un pro- TECH-FOCUS spettro di realtà odierne 8 ADVERTISERS 10 WE SPEAK ABOUT 15 EDITORIAL 18 Conrad punta sul servizio e potenzia COVER STORY la spedizione in 24 ore - Massimo Valtorta 22 Memorie prossime venture - Peter Lieberwirth TECH INSIGHT 24 L’evoluzione dei System-on-a-Chip - Andrea Cattania 26 Un tool di progettazione veramente completo - Alessandro Nobile ANALOG/MIXED SIGNAL 28 Come realizzare un amplificatore audio in classe D - Steve Bowling TECH-FOCUS 32 Il risveglio delle reti neurali - Paolo De Vittor 38 La sicurezza delle reti si trasferisce dal dominio software a quello hardware - Ryan Kenny DIGITAL 42 Utilizzo di Sram veloci
    [Show full text]
  • The Intel X86 Microarchitectures Map Version 4.1
    The Intel x86 Microarchitectures Map Version 4.1 8086 (1978, 3 µm) P5 (1993, 0.80 to 0.35 μm) Willamette (2000, 180 nm) Skylake (2015, 14 nm to 14 nm++) 80386 (1985, 1.5 to 1 µm) P6 (1995, 0.50 to 0.35 μm) Alternative Names: Alternative Names: Pentium, Alternative Names: NetBurst, Pentium 4, Pentium IV, P4, , Pentium 4 180 nm Alternative Names: SKL (Desktop and Mobile), SKX (Server) (The Desktop 9th Generation Core processors have the same security fixes as CSL)(All Alternative Names: iAPX 386, 386, i386 Alternative Names: i686 MCS-86 80586, 586, i586 Series: U and Y processors have on-package PCH) Series: Series: Pentium Pro (used in desktops and servers) Series: Series: • Desktop: Pentium 4 1.x (except those with a suffix), Pentium 4 2.0 Series: • Desktop/Server: i386DX Variant: Klamath (1997, 0.35 μm) • 16-bit data bus: • Desktop/Server: P5, P54C • Desktop lower-performance: Celeron 1.x (where x is a single digit between 5-9, except Celeron 1.6 SL7EZ, • Desktop: Desktop 6th Generation Core i5 (i5-6xxx, S-H, 14 nm) • Desktop lower-performance: i386SX Alternative Names: Pentium II, PII 8086 (iAPX 86) • Desktop/Server higher- Willamette-128), Celeron 2.0 SL68F • Desktop higher-performance: Desktop 6th Generation Core i7 (i7-6xxx, S-H , 14 nm), Desktop 7th Generation Core i7 X (i7-7xxxX, X, 14 nm+), • Mobile: i386SL, 80376, i386EX, Series: Pentium II 233/266/300 steppings C0 and C1 (Klamath, used in desktops) • 8-bit data bus: performance: P54CQS, P54CS • Server: Foster (Xeon), Foster-MP (Xeon) Desktop 7th Generation Core i9 X (i9-7xxxXE,
    [Show full text]
  • Pegasus: Coordinated Scheduling for Virtualized Accelerator-Based Systems
    Pegasus: Coordinated Scheduling for Virtualized Accelerator-based Systems Vishakha Gupta Karsten Schwan Niraj Tolia Georgia Institute of Technology Georgia Institute of Technology Maginatics Vanish Talwar Parthasarathy Ranganathan HP Labs HP Labs Abstract higher level programming APIs [19, 28]. Unfortunately, Heterogeneous multi-cores—platforms comprised of technically, this implies that drivers rather than operating both general purpose and accelerator cores—are becom- systems or hypervisors determine how accelerators are ing increasingly common. While applications wish to shared, which restricts scheduling policies and thus, the freely utilize all cores present on such platforms, operat- optimization criteria applied when using such heteroge- ing systems continue to view accelerators as specialized neous systems. devices. The Pegasus system described in this paper uses A driver-based execution model can not only poten- an alternative approach that offers a uniform resource tially hurt utilization, but also make it difficult for appli- usage model for all cores on heterogeneous chip mul- cations and systems to obtain desired benefits from the tiprocessors. Operating at the hypervisor level, its novel combined use of heterogeneous processing units. Con- scheduling methods fairly and efficiently share acceler- sider, for instance, an advanced image processing ser- ators across multiple virtual machines, thereby making vice akin to HP’s Snapfish [32] or Microsoft’s Photo- accelerators into first class schedulable entities of choice Synth [25] applications, but offering additional compu- for many-core applications. Using NVIDIA GPGPUs tational services like complex image enhancement and coupled with x86-based general purpose host cores, a watermarking, hosted in a data center. For such appli- Xen-based implementation of Pegasus demonstrates im- cations, the low latency responses desired by end users proved performance for applications by better managing require the combined processing power of both general combined platform resources.
    [Show full text]
  • Parallelism for the Masses “Opportunities and Challenges” ©Intel Corporation 2 Parallelismparallelism Isis Here…Here… and and Growing!Growing!
    ParallelismParallelism forfor thethe Masses:Masses: OpportunitiesOpportunities andand ChallengesChallenges Andrew A. Chien Vice President of Research Intel Corporation Carnegie Mellon University Parallel Thinking Seminar OctobeOctoberr 2299, 2008 OutlineOutline • Is Parallelism a crisis? • Opportunities in Parallelism • Expectations and Challenges • Moving Parallel Programming Forward • What’s Going on at Intel • Questions Parallelism for the Masses “Opportunities and Challenges” ©Intel Corporation 2 ParallelismParallelism isis here…here… And And Growing!Growing! Future: 100+ Larrabee: 12-32 Nehalem: 8+ Dunnington (6) Core2 Quad (4) Number of Cores Core 2 Duo (2) 2006 20072008 2009 2010 … 2015 Parallelism for the Masses “Opportunities and Challenges” ©Intel Corporation 3 Q.Q. IsIs parallelismparallelism aa crisis?crisis? A.A. Parallelism Parallelism isis anan opportunity.opportunity. Parallelism for the Masses “Opportunities and Challenges” ©Intel Corporation 4 Parallelism is a key driver for Energy and Performance Dual-Core 1.73x Performance 1.73x Power 1.13x 1.00x 1.02x 0.87x 0.51x Over-clocked Design Dual-core (+20%) Frequency Underclocked (-20%) Parallelism for the Masses “Opportunities and Challenges” ©Intel Corporation 5 Unified IA and Parallelism Vision – a Foundation Across Platforms PERFORMANCE Integration Options Example: Graphics Notebook, Desktop and Server Canmore, Tolapai, Atom Intel® Core™ 2, i7 Parallelism for the Masses “Opportunities and Challenges” POWER Visual Computing, Gaming ©Intel Corporation 6 Opportunity in Low-power
    [Show full text]