Calendar No. 439
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Prepared by Textore, Inc. Peter Wood, David Yang, and Roger Cliff November 2020
AIR-TO-AIR MISSILES CAPABILITIES AND DEVELOPMENT IN CHINA Prepared by TextOre, Inc. Peter Wood, David Yang, and Roger Cliff November 2020 Printed in the United States of America by the China Aerospace Studies Institute ISBN 9798574996270 To request additional copies, please direct inquiries to Director, China Aerospace Studies Institute, Air University, 55 Lemay Plaza, Montgomery, AL 36112 All photos licensed under the Creative Commons Attribution-Share Alike 4.0 International license, or under the Fair Use Doctrine under Section 107 of the Copyright Act for nonprofit educational and noncommercial use. All other graphics created by or for China Aerospace Studies Institute Cover art is "J-10 fighter jet takes off for patrol mission," China Military Online 9 October 2018. http://eng.chinamil.com.cn/view/2018-10/09/content_9305984_3.htm E-mail: [email protected] Web: http://www.airuniversity.af.mil/CASI https://twitter.com/CASI_Research @CASI_Research https://www.facebook.com/CASI.Research.Org https://www.linkedin.com/company/11049011 Disclaimer The views expressed in this academic research paper are those of the authors and do not necessarily reflect the official policy or position of the U.S. Government or the Department of Defense. In accordance with Air Force Instruction 51-303, Intellectual Property, Patents, Patent Related Matters, Trademarks and Copyrights; this work is the property of the U.S. Government. Limited Print and Electronic Distribution Rights Reproduction and printing is subject to the Copyright Act of 1976 and applicable treaties of the United States. This document and trademark(s) contained herein are protected by law. This publication is provided for noncommercial use only. -
Technical Report
NAVAL POSTGRADUATE SCHOOL Monterey, California TECHNICAL REPORT “SEA ARCHER” Distributed Aviation Platform by Faculty Members Charles Calvano David Byers Robert Harney Fotis Papoulias John Ciezki Robert Ashton Student Members LT Joe Keller, USN LCDR Rabon Cooke, USN CDR(sel) James Ivey, USN LT Brad Stallings, USN LT Antonios Dalakos, Helenic Navy LT Scot Searles, USN LTjg Orhan Okan, Turkish Navy LTjg Mersin Gokce, Turkish Navy LT Ryan Kuchler, USN LT Pete Lashomb, USN Ivan Ng, Singapore December 2001 Approved for public release, distribution unlimited REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED December 2001 Technical Report 4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS “Sea Archer” Distributed Aviation Platform 6. AUTHOR(S) Charles Calvano, Robert Harney, David Byers, Fotis Papoulias, John Ciezki, LT Joe Keller, LCDR Rabon Cooke, CDR (sel) James Ivey, LT Brad Stallings, LT Scot Searles, LT Ryan Kuchler, Ivan Ng, LTjg Orhan Okan, LTjg Mersin Gokce, LT Antonios Dalakos, LT Pete Lashomb. -
Federal Register/Vol. 85, No. 239/Friday, December 11, 2020
80060 Federal Register / Vol. 85, No. 239 / Friday, December 11, 2020 / Notices Defense System Launcher political stability, military balance, 2. The highest level of classification of Transporter Units, twenty-five (25) economic and progress in the region. defense articles, components, and radar trucks, spare and repair parts, This proposed sale will improve the services included in this potential sale support and test equipment, recipient’s capability to meet current is CONFIDENTIAL. publications and technical and future threats by providing a 3. If a technologically advanced documentation, personnel training flexible solution to augment existing adversary were to obtain knowledge of and training equipment, U.S. surface and air defenses. The recipient the hardware and software elements, the Government and contractor will be able to employ a highly reliable information could be used to develop representatives’ technical and effective system to counter or deter countermeasures or equivalent systems, assistance, engineering and logistics maritime aggressions, coastal blockades, which might reduce system support services, and other related and amphibious assaults. This effectiveness or be used in the elements of logistics support. capability will easily integrate into development of a system with similar or (iv) Military Department: Navy (TW-P- existing force infrastructure. The advanced capabilities. LHX) recipient will have no difficulty 4. A determination has been made (v) Prior Related Cases, if any: TW-P- absorbing these systems into its armed that the recipient can provide LGV, TW-P-LGN, TW-P-LGL forces. substantially the same degree of (vi) Sales Commission, Fee, etc., Paid, The proposed sale of this equipment protection for the sensitive technology Offered, or Agreed to be Paid: None and support will not alter the basic (vii) Sensitivity of Technology being released as the U.S. -
Air & Space Power Journal
July–August 2013 Volume 27, No. 4 AFRP 10-1 Senior Leader Perspective The Air Advisor ❙ 4 The Face of US Air Force Engagement Maj Gen Timothy M. Zadalis, USAF Features The Swarm, the Cloud, and the Importance of Getting There First ❙ 14 What’s at Stake in the Remote Aviation Culture Debate Maj David J. Blair, USAF Capt Nick Helms, USAF The Next Lightweight Fighter ❙ 39 Not Your Grandfather’s Combat Aircraft Col Michael W. Pietrucha, USAF Building Partnership Capacity by Using MQ-9s in the Asia-Pacific ❙ 59 Col Andrew A. Torelli, USAF Personnel Security during Joint Operations with Foreign Military Forces ❙ 79 David C. Aykens Departments 101 ❙ Views The Glass Ceiling for Remotely Piloted Aircraft ❙ 101 Lt Col Lawrence Spinetta, PhD, USAF Funding Cyberspace: The Case for an Air Force Venture Capital Initiative ❙ 119 Maj Chadwick M. Steipp, USAF Strategic Distraction: The Consequence of Neglecting Organizational Design ❙ 129 Col John F. Price Jr., USAF 140 ❙ Book Reviews Master of the Air: William Tunner and the Success of Military Airlift . 140 Robert A. Slayton Reviewer: Frank Kalesnik, PhD Selling Air Power: Military Aviation and American Popular Culture after World War II . 142 Steve Call Reviewer: Scott D. Murdock From Lexington to Baghdad and Beyond: War and Politics in the American Experience, 3rd ed . 144 Donald M. Snow and Dennis M. Drew Reviewer: Capt Chris Sanders, USAF Beer, Bacon, and Bullets: Culture in Coalition Warfare from Gallipoli to Iraq . 147 Gal Luft Reviewer: Col Chad T. Manske, USAF Global Air Power . 149 John Andreas Olsen, editor Reviewer: Lt Col P. -
Chapter 2 HISTORY and DEVELOPMENT of MILITARY LASERS
History and Development of Military Lasers Chapter 2 HISTORY AND DEVELOPMENT OF MILITARY LASERS JACK B. KELLER, JR* INTRODUCTION INVENTING THE LASER MILITARIZING THE LASER SEARCHING FOR HIGH-ENERGY LASER WEAPONS SEARCHING FOR LOW-ENERGY LASER WEAPONS RETURNING TO HIGHER ENERGIES SUMMARY *Lieutenant Colonel, US Army (Retired); formerly, Foreign Science Information Officer, US Army Medical Research Detachment-Walter Reed Army Institute of Research, 7965 Dave Erwin Drive, Brooks City-Base, Texas 78235 25 Biomedical Implications of Military Laser Exposure INTRODUCTION This chapter will examine the history of the laser, Military advantage is greatest when details are con- from theory to demonstration, for its impact upon the US cealed from real or potential adversaries (eg, through military. In the field of military science, there was early classification). Classification can remain in place long recognition that lasers can be visually and cutaneously after a program is aborted, if warranted to conceal hazardous to military personnel—hazards documented technological details or pathways not obvious or easily in detail elsewhere in this volume—and that such hazards deduced but that may be relevant to future develop- must be mitigated to ensure military personnel safety ments. Thus, many details regarding developmental and mission success. At odds with this recognition was military laser systems cannot be made public; their the desire to harness the laser’s potential application to a descriptions here are necessarily vague. wide spectrum of military tasks. This chapter focuses on Once fielded, system details usually, but not always, the history and development of laser systems that, when become public. Laser systems identified here represent used, necessitate highly specialized biomedical research various evolutionary states of the art in laser technol- as described throughout this volume. -
Missile Guidance and Control
CHAPTER 4 MISSILE GUIDANCE AND CONTROL INTRODUCTION in the interest of terminology standardization and to assist common understanding, we shall call the In the preceding chapters you learned that the complete system within a missile that steers and essential parts a guided missile needs to perform stabilizes it a guidance and control system. properly are: Depending on your experience with missiles, you 1. Airframe and control surfaces. may take exception to this designation. And if you 2. Propulsion system. do, there is good reason for it. The reason is shown 3. Warhead system. in figure 4-1. For example, if you have worked on 4. Guidance and control system. the Tartar or Terrier missiles you will consider the In addition, in chapter 2 you studied the basic fire system that guides and controls a missile to be its control problem, and learned how some of the steering system. On the other hand, a Talos GMM forces of nature affect the trajectory of a guided would call it a guidance and control system. We missile as it flies to its intended target. In chapter 3 will stick with the latter designation - not because you learned how wings and fins steer a missile and we favor Talos but because most manuals, and keep it pointed along its flight path. The use of many Navy publications, use this term. interior control devices by missiles without exterior control surfaces (or limited ones) was described SUBSYSTEMS AND COMPONENTS briefly. The different types of guidance systems used in missiles are inertial, command, beam-rider, In figure 4-2 we show that the complete system and homing guidance. -
Downloaded April 22, 2006
SIX DECADES OF GUIDED MUNITIONS AND BATTLE NETWORKS: PROGRESS AND PROSPECTS Barry D. Watts Thinking Center for Strategic Smarter and Budgetary Assessments About Defense www.csbaonline.org Six Decades of Guided Munitions and Battle Networks: Progress and Prospects by Barry D. Watts Center for Strategic and Budgetary Assessments March 2007 ABOUT THE CENTER FOR STRATEGIC AND BUDGETARY ASSESSMENTS The Center for Strategic and Budgetary Assessments (CSBA) is an independent, nonprofit, public policy research institute established to make clear the inextricable link between near-term and long- range military planning and defense investment strategies. CSBA is directed by Dr. Andrew F. Krepinevich and funded by foundations, corporations, government, and individual grants and contributions. This report is one in a series of CSBA analyses on the emerging military revolution. Previous reports in this series include The Military-Technical Revolution: A Preliminary Assessment (2002), Meeting the Anti-Access and Area-Denial Challenge (2003), and The Revolution in War (2004). The first of these, on the military-technical revolution, reproduces the 1992 Pentagon assessment that precipitated the 1990s debate in the United States and abroad over revolutions in military affairs. Many friends and professional colleagues, both within CSBA and outside the Center, have contributed to this report. Those who made the most substantial improvements to the final manuscript are acknowledged below. However, the analysis and findings are solely the responsibility of the author and CSBA. 1667 K Street, NW, Suite 900 Washington, DC 20036 (202) 331-7990 CONTENTS ACKNOWLEGEMENTS .................................................. v SUMMARY ............................................................... ix GLOSSARY ………………………………………………………xix I. INTRODUCTION ..................................................... 1 Guided Munitions: Origins in the 1940s............. 3 Cold War Developments and Prospects ............ -
Energy Sustainability Manual
Energy Usage, GHG Reduction, Effi ciency and Load Management Manual Brewers Association Energy Usage, GHG Reduction, Effi ciency and Load Management Manual Energy Usage, GHG Reduction, Effi ciency and Load Management Manual 1 2 BrewersAssociation.org table of contents Acknowledgements . .4 Best Practices - Kitchen Area . 39 Introduction . .5 Best Practices - Dining Room . 40 Section 1: Sector Profi le – Energy Use in Breweries . .6 Best Practices - Parking Lot/Outdoor Seating . 40 1.1 Overview of Current Energy Use/Greenhouse Gas 3.5 Concerts and Events . 41 Performance and Trends . 6 Section 4: Onsite Renewable Energy . .42 1.2 Regulatory Drivers . 7 4.1 Technology and Use Application Review . 43 1.3 Non-Regulatory Drivers – Image/brand, community ties. 7 4.2 Fuel Availability . 43 1.4 Risks and Opportunities – Energy/Greenhouse 4.3 Fuel Supply and Cost . 43 Gas Reduction . 8 4.4 Size Selection and Infrastructure Impacts. 44 Section 2: Data Management . .9 4.5 Cost and Savings Review . 44 2.1 Data Collection . 9 4.6 Renewable Energy Certifi cates . 45 2.2 Ensuring accuracy . 11 Section 5: Brewery Case Studies . .46 2.3 Benchmarking – Key Performance Indicators (KPIs) . 11 5.1 Usage and Reduction . 46 2.4 Guidelines for Setting Measureable Goals and Objectives . .13 Boulevard Brewing Company – Kansas City, Missouri . 46 Section 3: Usage & Reduction Best Practices . .15 Deschutes Brewery – Bend, Oregon . 46 3.1 Brewing . 16 Harpoon Brewery – Boston, Massachusetts . 47 Best Practices – CO2 Recovery Systems . 16 New Belgium Brewing Company – Fort Collins, Colorado . 47 3.2 Packaging. 18 Sierra Nevada Brewing Company – Chico, California . 47 Best Practices - Variable Speed Drives . -
2018 Workshop on Autonomy for Future NASA Science Missions
NOTE: This document was prepared by a team that participated in the 2018 Workshop on Autonomy for Future NASA Science Missions. It is for informational purposes to inform discussions regarding the use of autonomy in notional science missions and does not specify Agency plans or directives. 2018 Workshop on Autonomy for Future NASA Science Missions: Output and Results Table of Contents Introduction .................................................................................................................................... 2 Summary: Post-Workshop Findings ................................................................................................ 3 The Astrophysics Design Reference Mission Report ...................................................................... 5 The Earth Design Reference Mission Report ................................................................................ 16 The Heliophysics Design Reference Mission Report ..................................................................... 30 The Mars Design Reference Mission Report ................................................................................ 43 The Moon Design Reference Missions Report ............................................................................. 57 The Ocean Worlds Design Reference Mission Report .................................................................. 74 Small Bodies Design Reference Mission Report ........................................................................... 91 Venus Design Reference Mission Report -
Usafalmanac ■ Gallery of USAF Weapons
USAFAlmanac ■ Gallery of USAF Weapons By Susan H.H. Young The B-1B’s conventional capability is being significantly enhanced by the ongoing Conventional Mission Upgrade Program (CMUP). This gives the B-1B greater lethality and survivability through the integration of precision and standoff weapons and a robust ECM suite. CMUP will include GPS receivers, a MIL-STD-1760 weapon interface, secure radios, and improved computers to support precision weapons, initially the JDAM, followed by the Joint Standoff Weapon (JSOW) and the Joint Air to Surface Standoff Missile (JASSM). The Defensive System Upgrade Program will improve aircrew situational awareness and jamming capability. B-2 Spirit Brief: Stealthy, long-range, multirole bomber that can deliver conventional and nuclear munitions anywhere on the globe by flying through previously impenetrable defenses. Function: Long-range heavy bomber. Operator: ACC. First Flight: July 17, 1989. Delivered: Dec. 17, 1993–present. B-1B Lancer (Ted Carlson) IOC: April 1997, Whiteman AFB, Mo. Production: 21 planned. Inventory: 21. Unit Location: Whiteman AFB, Mo. Contractor: Northrop Grumman, with Boeing, LTV, and General Electric as principal subcontractors. Bombers Power Plant: four General Electric F118-GE-100 turbo fans, each 17,300 lb thrust. B-1 Lancer Accommodation: two, mission commander and pilot, Brief: A long-range multirole bomber capable of flying on zero/zero ejection seats. missions over intercontinental range without refueling, Dimensions: span 172 ft, length 69 ft, height 17 ft. then penetrating enemy defenses with a heavy load Weight: empty 150,000–160,000 lb, gross 350,000 lb. of ordnance. Ceiling: 50,000 ft. Function: Long-range conventional bomber. -
Worldwide Equipment Guide
WORLDWIDE EQUIPMENT GUIDE TRADOC DCSINT Threat Support Directorate DISTRIBUTION RESTRICTION: Approved for public release; distribution unlimited. Worldwide Equipment Guide Sep 2001 TABLE OF CONTENTS Page Page Memorandum, 24 Sep 2001 ...................................... *i V-150................................................................. 2-12 Introduction ............................................................ *vii VTT-323 ......................................................... 2-12.1 Table: Units of Measure........................................... ix WZ 551........................................................... 2-12.2 Errata Notes................................................................ x YW 531A/531C/Type 63 Vehicle Series........... 2-13 Supplement Page Changes.................................... *xiii YW 531H/Type 85 Vehicle Series ................... 2-14 1. INFANTRY WEAPONS ................................... 1-1 Infantry Fighting Vehicles AMX-10P IFV................................................... 2-15 Small Arms BMD-1 Airborne Fighting Vehicle.................... 2-17 AK-74 5.45-mm Assault Rifle ............................. 1-3 BMD-3 Airborne Fighting Vehicle.................... 2-19 RPK-74 5.45-mm Light Machinegun................... 1-4 BMP-1 IFV..................................................... 2-20.1 AK-47 7.62-mm Assault Rifle .......................... 1-4.1 BMP-1P IFV...................................................... 2-21 Sniper Rifles..................................................... -
Test and Evaluation Trends and Costs for Aircraft and Guided Weapons
CHILD POLICY This PDF document was made available CIVIL JUSTICE from www.rand.org as a public service of EDUCATION the RAND Corporation. ENERGY AND ENVIRONMENT HEALTH AND HEALTH CARE Jump down to document6 INTERNATIONAL AFFAIRS NATIONAL SECURITY The RAND Corporation is a nonprofit POPULATION AND AGING research organization providing PUBLIC SAFETY SCIENCE AND TECHNOLOGY objective analysis and effective SUBSTANCE ABUSE solutions that address the challenges TERRORISM AND facing the public and private sectors HOMELAND SECURITY TRANSPORTATION AND around the world. INFRASTRUCTURE Support RAND Purchase this document Browse Books & Publications Make a charitable contribution For More Information Visit RAND at www.rand.org Explore RAND Project AIR FORCE View document details Limited Electronic Distribution Rights This document and trademark(s) contained herein are protected by law as indicated in a notice appearing later in this work. This electronic representation of RAND intellectual property is provided for non- commercial use only. Permission is required from RAND to reproduce, or reuse in another form, any of our research documents. This product is part of the RAND Corporation monograph series. RAND monographs present major research findings that address the challenges facing the public and private sectors. All RAND mono- graphs undergo rigorous peer review to ensure high standards for research quality and objectivity. Test and Evaluation Trends and Costs for Aircraft and Guided Weapons Bernard Fox, Michael Boito, John C.Graser, Obaid Younossi Prepared for the United States Air Force Approved for public release, distribution unlimited The research reported here was sponsored by the United States Air Force under Contract F49642-01-C-0003.