CD De La Semaine 27
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China)
minerals Article Mineralogy and Geochemistry of Nephrite Jade from Yinggelike Deposit, Altyn Tagh (Xinjiang, NW China) Ying Jiang 1, Guanghai Shi 1,* , Liguo Xu 2 and Xinling Li 3 1 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China; [email protected] 2 Geological Museum of China, Beijing 100034, China; [email protected] 3 Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute, Xinjiang 830004, China; [email protected] * Correspondence: [email protected]; Tel.: +86-010-8232-1836 Received: 6 April 2020; Accepted: 6 May 2020; Published: 8 May 2020 Abstract: The historic Yinggelike nephrite jade deposit in the Altyn Tagh Mountains (Xinjiang, NW China) is renowned for its gem-quality nephrite with its characteristic light-yellow to greenish-yellow hue. Despite the extraordinary gemological quality and commercial significance of the Yinggelike nephrite, little work has been done on this nephrite deposit, due to its geographic remoteness and inaccessibility. This contribution presents the first systematic mineralogical and geochemical studies on the Yinggelike nephrite deposit. Electron probe microanalysis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry (ICP-MS) and isotope ratio mass spectrometry were used to measure the mineralogy, bulk-rock chemistry and stable (O and H) isotopes characteristics of samples from Yinggelike. Field investigation shows that the Yinggelike nephrite orebody occurs in the dolomitic marble near the intruding granitoids. Petrographic studies and EMPA data indicate that the nephrite is mainly composed of fine-grained tremolite, with accessory pargasite, diopside, epidote, allanite, prehnite, andesine, titanite, zircon, and calcite. Geochemical studies show that all nephrite samples have low bulk-rock Fe/(Fe + Mg) values (0.02–0.05), as well as low Cr (0.81–34.68 ppm), Co (1.10–2.91 ppm), and Ni (0.52–20.15 ppm) contents. -
Chemical Evolution of Nb-Ta Oxides and Cassiterite in Phosphorus-Rich
minerals Article Chemical Evolution of Nb-Ta Oxides and Cassiterite in Phosphorus-Rich Albite-Spodumene Pegmatites in the Kangxiwa–Dahongliutan Pegmatite Field, Western Kunlun Orogen, China Yonggang Feng 1,2,* , Ting Liang 1,2,*, Xiuqing Yang 1,2, Ze Zhang 1,2 and Yiqian Wang 1,2 1 School of Earth Science and Resources, Chang’an University, Xi’an 710054, China; [email protected] (X.Y.); [email protected] (Z.Z.); [email protected] (Y.W.) 2 Laboratory of Mineralization and Dynamics, Chang’an University, Xi’an 710054, China * Correspondence: [email protected] (Y.F.); [email protected] (T.L.) Received: 30 January 2019; Accepted: 2 March 2019; Published: 8 March 2019 Abstract: The Kangxiwa–Dahongliutan pegmatite field in the Western Kunlun Orogen, China contains numerous granitic pegmatites around a large granitic pluton (the Dahongliutan Granite with an age of ca. 220 to 217 Ma), mainly including barren garnet-, tourmaline-bearing pegmatites, Be-rich beryl-muscovite pegmatites, and Li-, P-rich albite-spodumene pegmatites. The textures, major element contents, and trace element concentrations of columbite-group minerals (CGM) and cassiterite from three albite-spodumene pegmatites in the region were investigated using a combination of optical microscopy, SEM, EPMA and LA-ICP-MS. The CGM can be broadly classified into four types: (1) inclusions in cassiterite; (2) euhedral to subhedral crystals (commonly exhibiting oscillatory and/or sector zoning and coexisting with magmatic cassiterite); (3) anhedral aggregates; (4) tantalite-(Fe)-ferrowodginite (FeSnTa2O8) intergrowths. The compositional variations of CGM and cassiterite are investigated on the mineral scale, in individual pegmatites and within the pegmatite group. -
Co-Seismic and Cumulative Offsets of the Recent Earthquakes Along The
Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet Haibing Li, Jerome van der Woerd, Zhiming Sun, Jialiang Si, Paul Tapponnier, Jiawei Pan, Dongliang Liu, Marie-Luce Chevalier To cite this version: Haibing Li, Jerome van der Woerd, Zhiming Sun, Jialiang Si, Paul Tapponnier, et al.. Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault inwestern Tibet. Gondwana Research, Elsevier, 2011, 21, pp.64-87. 10.1016/j.gr.2011.07.025. hal-00683742 HAL Id: hal-00683742 https://hal.archives-ouvertes.fr/hal-00683742 Submitted on 29 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ACCEPTED MANUSCRIPT Co-seismic and cumulative offsets of the recent earthquakes along the Karakax left-lateral strike-slip fault in western Tibet Haibing Li a,b,*, Jérôme Van der Woerd c, Zhiming Sun d, Jialiang Si a,b, Paul Tapponniere,f, Jiawei Pan a,b, Dongliang Liu a,b, Marie-Luce Chevaliera,b a State Key Laboratory of Continental Tectonic and Dynamics b Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, P.R. -
The 2015 Ms 6.5 Pishan Earthquake, Northwest Tibetan Plateau: a Folding Event in the Western Kunlun Piedmont
Research Paper GEOSPHERE The 2015 Ms 6.5 Pishan earthquake, Northwest Tibetan Plateau: A folding event in the western Kunlun piedmont 1,2 2 2 2 2 2 2 GEOSPHERE, v. 15, no. 3 Chuanyong Wu , Jianming Liu , Jin Li , Weihua Hu , Guodong Wu , Xiangde Chang , and Yuan Yao 1Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, China 2Earthquake Agency of Xinjiang Uygur Autonomous Region, Urumqi, China https://doi.org/10.1130/GES02063.1 7 figures; 2 tables ■ ABSTRACT investigate whether the Pishan earthquake generated a surface fault and what the deformation characteristics of this event are. The surface rupture caused CORRESPONDENCE: [email protected] Folding earthquakes are a popular area of research in convergent orogenic by an earthquake can provide a unique opportunity to investigate the impact of belts because they can cause destruction without an obvious surface offset. coseismic faulting on landscape evolution and to refine regional deformation CITATION: Wu, C.Y., Liu, J.M., Li, J., Hu, W.H., Wu, G.D., Chang, X.D., and Yao, Y., The 2015 Ms 6.5 Pishan The Ms 6.5 Pishan earthquake (Ms represents Richter magnitude scale), which models (Wallace, 1977; Yeats et al., 1997; Bull, 2009). The tectonic deformation earthquake, Northwest Tibetan Plateau: A folding event occurred in the western Kunlun piedmont, Northwest Tibetan Plateau, caused and uplift of the Tibetan Plateau have been popular areas of research. Two in the western Kunlun piedmont: Geosphere, v. 15, no. 3, significant property losses. Based on surface deformation data combined main models of upper crustal shortening and faulting (e.g., Tapponnier et al., p. -
The Kun Lun Shan: Desert Peaks of Central Asia
The Kun Lun Shan: Desert Peaks of Central Asia MICHAEL WARD (Plates 29, 30, 32) he gaunt, bare backbone of the Kun Lun range runs for 2250km from the Russian Pamir to western China over 30 degrees of longitude. Older than the Himalaya, it separates the plateaux of the Pamir and Tibet from the deserts of Central Asia, and it is one of the longest and least known of the world's mountain ranges, with peaks up to 7700m.4,8,17,22,5l At its western end it is joined by the Tien Shan (Celestial Mountains) that forms the northern border of the Tarim-Basin, in which lies the Takla Makan desert, and in this angle is the strategic oasis city of Kashgar (Kashi).1l,29,36,59 Here four arms of the Silk Route meet: one from the Indian sub-continent to the south, two from China to the east, by the north and south rims ofthe Tarim, and one from Europe to the west. The Silk Route is the world's oldest, longest and most important land-route, linking the civilizations of the Mediterranean with those of China and India, and for more than 5000 years it has been a conduit for ideas, religion, culture, disease, invasion and trade. 10 The Kun Lun's western portion separates the Pamir and the Central Asian plateau from the Takla Makan desert and the Lop NUr.6l At 800 E it splits into two, the northern portion becoming the Altyn Tagh, while the southern continues as the East Kun Lun, ending in the Amne Machin group. -
Acharya, Alka 251–253, 255 Acquiescence 119–120, 167–169
Index Acharya, Alka 251–253, 255 Boundaries 23, 30, 33, 115–119, 150, 157–158, acquiescence 119–120, 167–169 160, 166, 176, 190 Addis, J.M. 218–221 brics 274–276 Afghanistan 25, 37, 77, 139, 142, 145, 157, 189, Bum La 245, 247 198, 268, 274 Burma 8, 37–38, 40–41, 65–66, 68, 72, 83, aggression 5, 8, 13, 15, 22–23, 33, 41, 46, 97–98, 106, 116, 120–121, 134, 138–139, 53–54, 59–60, 70, 73–74, 80, 82, 86, 142, 149, 160, 198, 232 89–90, 92, 95–96, 98, 118, 124, 130, 133, 145, 182, 184, 191, 193, 196, 198, 202–203, Cairo Conference of non-aligned 77, 139–140 208, 212–213, 235, 237, 240–241, 249, Cambodia 62, 134, 139, 243, 269 302, 305 Ceylon 37–38, 65–66, 72, 75, 90, 128, 133–134, Aksai Chin 9, 111, 115, 119, 124, 125, 135, 162, 140, 188 165, 169–171, 173–175, 201, 205, 214, 217, Chamdo 19, 22, 24, 29, 46–47 221, 224, 232, 234, 243 Changchenmo valley 162 Ali, Mohammed 36, 66 Chaudhury, Lt. gen. J.N. 218, 224 Amban (Chinese) 9–10, 21, 24, 117, 153 Chen, Ivan (Chinese plenipotentiary at Anthony, F 49 Simla) 17, 20, 32, 122 Antony, A.K. 261 Chen Yi 126, 183, 237, 309 arbitration 72, 74, 79, 81, 138, 167–168 Chiang Kai-shek 29, 38, 40, 96, 141, 290–291 Ardagh, Sir John 172–173 China’s Five-point Policy 300 Ashoka, Emperor 54–55 Chinese incursions 257 asean 266, 268, 271, 275, 278 Chipchap river 126 Asian Infrastructure Investment Bank 276 Chola incident 239 Asian Relations Conference (New Chou En-lai x, 43, 50, 55, 59, 67–70, 72–73, Delhi 1947) 30, 39, 67 83–84, 94, 96–97, 99, 107, 109–110, 112, Assam 14–15, 29, 31, 35, 109, 125, 131, 163, 114, 129, 132–133, 137–138, 142, 144, 160, 177–178, 199, 201, 204, 219, 228, 231, 191, 193, 195, 198, 220–221, 231, 241, 245, 238, 245, 261, 290 251, 260, 291, 305, 309 Ayub Khan 145 Clinton, President Bill 249 Ayyangar, M.A. -
Initial Environment Examination (DRAFT)
Initial Environment Examination (DRAFT) Project Number: 49307-002 October 2017 People’s Republic of China: Xinjiang Hetian Comprehensive Urban Development and Environmental Improvement Project Prepared by the Xinjiang Uyghur Autonomous Region Hetian Municipal Government for the Asian Development Bank. CURRENCY EQUIVALENTS (as of 16 October 2017) Currency unit – yuan (CNY) CNY1.00 = $0.1522 $1.00 = CNY6.5723 ABBREVIATIONS ADB - Asian Development Bank AP - Affected person BOD5 - 5-day biochemical oxygen demand CO2 - carbon dioxide CO2eq - carbon dioxide equivalent COD - chemical oxygen demand CRVA - climate risk and vulnerability assessment EA - executing agency EEM - external environmental monitor EMS - environmental monitoring station EHS - environmental, health and safety EIA - environmental impact assessment EIRF - environmental impact registration form EMP - environmental management plan EPB - Environmental Protection Bureau FSR - feasibility study report FYP - five-year plan HDEP - high density polyethylene IA - implementing agency LIEC - loan implementation environmental consultant O&M - operation and maintenance PAM - project administration manual PIU - project implementation unit PLG - project leading group PMO - project management office SPS - Safeguard Policy Statement WTP - water treatment plant WWTP - wastewater treatment plant WEIGHTS AND MEASURES dB - decibel cm - centimeter ha - hectare km – kilometer km2 – square kilometer m2 – square meter m3 – cubic meter mg/L - milligram per liter NOTE In this report, “$” refers to United -
Constraints of Molybdenite Re–Os and Scheelite Sm–Nd Ages on Mineralization Time of the Kukaazi Pb–Zn–Cu–W Deposit, Western Kunlun, NW China
Acta Geochim (2018) 37(1):47–59 https://doi.org/10.1007/s11631-017-0205-z ORIGINAL ARTICLE Constraints of molybdenite Re–Os and scheelite Sm–Nd ages on mineralization time of the Kukaazi Pb–Zn–Cu–W deposit, Western Kunlun, NW China 1 1,2 1 1 Chengbiao Leng • Yuhui Wang • Xingchun Zhang • Jianfeng Gao • 1,3 4 Wei Zhang • Xinying Xu Received: 29 March 2017 / Revised: 3 July 2017 / Accepted: 20 July 2017 / Published online: 26 July 2017 Ó Science Press, Institute of Geochemistry, CAS and Springer-Verlag GmbH Germany 2017 Abstract The Kukaazi Pb–Zn–Cu–W polymetallic similar REE patterns and Sm/Nd ratios to those of the deposit, located in the Western Kunlun orogenic belt, is a coeval granitoids in the region. Moreover, they also have newly discovered skarn-type deposit. Ore bodies mainly similar Sr and Nd isotopes [87Sr/86Sr = 0.7107–0.7118; occur in the forms of lenses and veins along beddings of the eNd(t) =-4.1 to -4.0] to those of such granitoids, imply- Mesoproterozoic metamorphic rocks. Three ore blocks, KI, ing that the tungsten-bearing fluids in the Kukaazi deposit KII, and KIII, have been outlined in different parts of the probably originate from the granitic magmas. Our results Kukaazi deposit in terms of mineral assemblages. The KI first defined that the Early Paleozoic granitoids could lead to ore block is mainly composed of chalcopyrite, scheelite, economic Mo–W–(Cu) mineralization at some favorable pyrrhotite, sphalerite, galena and minor pyrite, arsenopyrite, districts in the Western Kunlun orogenic belt and could be and molybdenite, whereas the other two ore blocks are prospecting exploration targets. -
Early Modern European Explorers at the Kuen-Lun, China, Mountain Jade Deposits
Early Modern European Explorers at the Mountain Jade Quarries in the Kun Lun Mountains in Xinjiang, China Hermann Schlagintweit and Ferdinand Stoliczka next to a map of ancient Turkestan by A.Petermann, printed 1877 in Gotha, Germany by Herbert Giess Zürich Switzerland 1 Part III 5.0 - The Kun Lun Mountains The Kun Lun range is one of the longest mountain chains in Asia, extending more than 3000 kilometers. It runs southwards beside the Pamir range then curves to the east, forming the border range of northern Tibet. The range has over 200 peaks higher than 6000m. The three highest peaks are the Kongur Tagh (7719m), the Dongbei (7625m) and the famous Muztagata (7546m). The mountain range formed at the northern edge of the Indian plate during its collision, in the late Triassic, with the Eurasian Plate and which resulted in the closing the Paleotethys Ocean. The Kun Lun range stretches along the southern edge of what is now called the Tarim basin and the infamous Takla Makan or the “Sand buried houses” desert Kun Lun range at the southern edge of the Tarim basis The Kun Lun Mountains are well known in the Chinese mythology and believed to be a Taoist paradise. It is considered to be one of the ten continents and three islands of Taoist cosmology. The first to visit this paradise was, according to the legends, King Mu (1001-947 BC) of the Zhou Dynasty. He supposedly discovered there the Jade palace of Huang-Di, the mythical Yellow Emperor and meet Hsi Wang Mu, the Royal Mother of the West which had also her mythical abode in these mountains. -
Clashes of Universalisms: Xinjiang, Tianxia and Changing World Order in 19Th Century
Clashes of Universalisms: Xinjiang, tianxia and Changing World Order in 19th Century Zhiguang Yin 1 The history of Xinjiang, or in a geographic sense, the region including predominately the Zhungarian Basin, Tarim Basin, and Turpan basin, is contested. 1 However, this contestation has affected not only the territorial, spatial and political-economic configuration of the region of Xinjiang/’Chinese Turkistan’; it also affected China’s own conception of world order. From 1759 to 1884, Qing Empire changed its understanding of the strategic significance of “Xinjiang” region. By investigating the Chinese shifting political understanding of its western border in the context of 19th-century European colonial expansion, this paper hopes to demonstrate that challenges emerged in “marginal” regions like Xinjiang help to shape Qing’s understanding of the emerging new world order based on the principle of modern international law. Originated in the European historical context, the discourse of international law gave a particular focus on “real international person,” which is constituted by a clearly defined sovereign territory and people settled on it.2 This discourse gained its universality through the political confrontations among Chinese, Russian, and British Empires starting from 19th century. During this process, the traditional Confucius “tianxia” (under heaven) world-view, which emphasizes cultural recognition began to ebb away. We could also see that the languages of ethnicity and national independence were used pragmatically through the process of colonial expansion against the Qing’s administrative authority in these peripheral regions. The case of Xinjiang provides us a window to review the historical process in which the Eurocentric universalism of international law acquiring its universality. -
Age and Origin of High Ba–Sr Appinite–Granites at the Northwestern
Available online at www.sciencedirect.com Gondwana Research 13 (2008) 126–138 www.elsevier.com/locate/gr Age and origin of high Ba–Sr appinite–granites at the northwestern margin of the Tibet Plateau: Implications for early Paleozoic tectonic evolution of the Western Kunlun orogenic belt ⁎ Hai-Min Ye a, Xian-Hua Li b, Zheng-Xiang Li c, Chuan-Lin Zhang a, a Nanjing Institute of Geology and Mineral Resources, China Geological Survey, Nanjing 210016, China b Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China c Institute of Geoscience Research (TIGeR), Department of Applied Geology, Curtin University of Technology, GPO Box U1987, Perth WA 6845, Australia Received 10 May 2007; received in revised form 3 August 2007; accepted 5 August 2007 Available online 7 September 2007 Abstract The Buya appinite–granite is a typical high Ba–Sr granite emplaced at the northern West Kunlun orogenic belt along the northwestern margin of the Tibetan Plateau. The granite is dated at ca. 430 Ma using the SHRIMP U–Pb zircon method. It consists of alkaline feldspar granites with coeval appinite enclaves. The granite possesses high SiO2 (69.77–72.69%), K2O (4.44–5.10%) and total alkalinity (K2O+Na2O=8.80–9.92%), Sr (655–1100 ppm), Ba (1036–1433 ppm) and LREE, and low HREE and HFSE contents and insignificant negative Eu anomalies. Consequently, # the samples have very high Sr/Y (74–141) and (La/Yb)N (37–96) ratios. On the other hand, they have low MgO (or Mg ), Cr and Ni contents and low radiogenic Nd isotopes (ɛNd(T)=−8.4 to −10.4). -
493-495 Baiping.P65
Synopsis Sustainably Managing Montane Forests in Arid Mountain Regions: The Oytag Valley of West Kunlun The Oytag valley, about 100 km west of Kashi (Kashgar), is one of the few valleys with forests in the Kunlun Mountains. It underwent severe forest destruction in the late 1950s, and about only one fourth of the natural forest remains. Since the early 1980s, forest conservation and artificial regeneration have been carried out in the valley. In arid mountain regions, forests only de- such as stabilizing highland/lowland hy- velop on slopes with a relatively humid drological system, reducing natural disas- climate, and usually a limited area. To the ters, ensuring oases development down- local people, these forests are rare re- stream, etc. Consequently, sustainably sources and of special value. The ecology managing these mountain forests looms of these forests is often very fragile. It is especially large in northwestern arid very difficult or even impossible for these China. forests to recover if they are seriously de- The Kunlun Mountain range, lies be- stroyed. As a result, sustainably manag- tween the world famous Tibetan Plateau ing these forests is important for the lo- and the low-lying Tarim Basin, and is one cal and downstream people and environ- of the most extensive extremely high and ment. In the vast northwestern arid China, arid mountain ranges in the world. It is desert landscape dominates, and extensive characterized by an arid climate and desert arid mountain areas (e.g. the Kunlun, landscape (1). The annual rainfall is 61.3 Tianshan, Qilian, etc.) and deserts (e.g.