EURECA 2013 - Calculation of Aerodynamic Drag of Human Being in Various Positions Calculation of Aerodynamic Drag of Human Being in Various Positions Mun Hon Koo*, Abdulkareem Sh. Mahdi Al-Obaidi Department of Mechanical Engineering, school of Engineering, Taylor’s University, Malaysia, *Corresponding author:
[email protected] Abstract— This paper studies the aerodynamic drag of human 2. Methods being in different positions through numerical simulation using CFD with different turbulence models. The investigation 2.1. Theoretical Analysis considers 4 positions namely (standing, sitting, supine and According to Hoerner [4], the total aerodynamic drag of human squatting) which affect aerodynamic drag. Standing has the body can be classified into 2 components which are: highest drag value while supine has the lowest value. The = + numerical simulation was carried out using ANSYS FLUENT and compared with published experimental results. Where is pressure drag coefficient and is friction Aerodynamic drag studies can be applied into sports field related drag coefficient. Pressure drag is formed from the distribution of applications like cycling and running where positions optimising forces normal .to the human body surface [5]. The effects of are carried out to reduce drag and hence to perform better viscosity of the moving fluid (air) may contribute to the rising value during the competition. of pressure drag. Drag that is directly due to wall shear stress can be knows as friction drag as it is formed due to the frictional effect. The Keywords— Turbulence Models, Drag Coefficient, Human Being, friction drag is the component of the wall shear force in the direction Different Positions, CFD toward the flow, and it depends on the body surface area and the magnitude of the wall shear stress.