Calculation of Aerodynamic Drag of Human Being in Various Positions Calculation of Aerodynamic Drag of Human Being in Various Positions Mun Hon Koo*, Abdulkareem Sh

Total Page:16

File Type:pdf, Size:1020Kb

Calculation of Aerodynamic Drag of Human Being in Various Positions Calculation of Aerodynamic Drag of Human Being in Various Positions Mun Hon Koo*, Abdulkareem Sh EURECA 2013 - Calculation of Aerodynamic Drag of Human Being in Various Positions Calculation of Aerodynamic Drag of Human Being in Various Positions Mun Hon Koo*, Abdulkareem Sh. Mahdi Al-Obaidi Department of Mechanical Engineering, school of Engineering, Taylor’s University, Malaysia, *Corresponding author: [email protected] Abstract— This paper studies the aerodynamic drag of human 2. Methods being in different positions through numerical simulation using CFD with different turbulence models. The investigation 2.1. Theoretical Analysis considers 4 positions namely (standing, sitting, supine and According to Hoerner [4], the total aerodynamic drag of human squatting) which affect aerodynamic drag. Standing has the body can be classified into 2 components which are: highest drag value while supine has the lowest value. The = + numerical simulation was carried out using ANSYS FLUENT and compared with published experimental results. Where is pressure drag coefficient and is friction Aerodynamic drag studies can be applied into sports field related drag coefficient. Pressure drag is formed from the distribution of applications like cycling and running where positions optimising forces normal .to the human body surface [5]. The effects of are carried out to reduce drag and hence to perform better viscosity of the moving fluid (air) may contribute to the rising value during the competition. of pressure drag. Drag that is directly due to wall shear stress can be knows as friction drag as it is formed due to the frictional effect. The Keywords— Turbulence Models, Drag Coefficient, Human Being, friction drag is the component of the wall shear force in the direction Different Positions, CFD toward the flow, and it depends on the body surface area and the magnitude of the wall shear stress. 1. Introduction The performance of human being in various positions is strongly 2.2. Numerical Simulation affected by the resistance they experience in which the resistance The numerical simulation in the present work is carried out using consists of aerodynamic drag. Aerodynamic drag, a resistance force ANSYS FLUENT 14.0. According to Chowdhurry [6], the human that acts upon a body moving through fluid like air and that is body parts can be simplified due to the configuration and size of opposite to the direction of motion of the body [1, 2]. In sports field human body is way too complex. Therefore, a simplified model of that competing with speed, aerodynamic drag is one of the important human body with the average height and frontal area was drawn factors. The lower the value of drag coefficient, the lower the using SolidWorks as shown in Fig. 2 (a). The model is then imported aerodynamic drag of the positions. into the virtual wind tunnel for computational studies as shown in Fig. The main idea of this paper is to investigate the effects of 2 (b) aerodynamic drag of human in different position theoretically and numerically. The total drag is majorly formed by pressure drag and friction drag due to the skin friction of the human body. In speed performing sports like cycling, cyclist often optimize the positions to reduce their drag by conducting experiment using wind tunnel. The measurement of human body flow can be said is time consuming and field tests are very difficult to set up. Even the experts in the related field can only optimize the positions to reduce drag by trial and error Therefore, computational fluid dynamic (CFD) is one of the alternative techniques to be carried out to investigate the aerodynamic drag. However, since the accuracy of numerical 2 (a) simulation method needs to be verified, published experimental data 2 (b) are used to compare and to justify the CFD results. Usually the Fig. 2 (a) Simplified Human Body (b) computational domain and maximum allowable errors in predicting the drag can range boundary condition. between10-12%. The wind tunnel experiment investigation of Steady 3D Reynolds-averaged Navier-Stokes (RANS) is used in various positions of human was published by Schmitt [3]. The results combination with turbulence models such as k-ε and k-ω with the low- can be used to validate the values obtain from CFD simulation. Fig. Reynolds number modeling (LRNM) together is used. The four 1 shows the 4 body positions to be studies during the research. turbulence model to be carried out in the study is standard k- ε model, realizable k-ω model, standard k-ω model and lastly shear stress transport (SST) k-ω model. There is no universally proved that which turbulence model is the most accurate flow for every study case [7]. Only steady flow is performed as the studies of flow of transient can be very complicated and hard to predict. In this study case, the velocity inlet will be set at 10 m/s which is almost equivalent to 38 km/h as this input boundary condition is the normal speed for a casual cycling speed. Fig.1 (a) Standing (b) Sitting (c) Squatting (d) Supine. [4] 99 EURECA 2013 - Calculation of Aerodynamic Drag of Human Being in Various Positions 3. Results limitations when solving the same condition study; therefore, it may produce the different final values. 3.1 Comparison of Introductory Test The value of drag coefficient is dimensionless. Fig. 3 shows the values of drag coefficient of various positions using various Table 1. Percentage Error between Published Experimental turbulence models. Data and Numerical Simulation Data Percentage of Error (%) standard realizable standard SST Positions k-ϵ k-ϵ k-ω k-ω Standing 3.3 0.008 11.1 3.3 Sitting 5.1 2.5 3.8 0.05 Supine 44.4 40 66.7 40 Squatting 48.9 40 35.6 37.8 5. Conclusion and Recommendations In conclusion, the standing position gives the highest value of drag coefficient while supine gives the lowest drag coefficient. To improve the accuracy, the modeling of the human body cannot be too simplified as the sometimes the real body do not generate the same projected frontal area as the simplified model. The input method and meshing may affect the accuracy too. Further study on these options need to be carried out more critically. However, although the accuracy of the wind tunnel and CFD are not totally the same, CFD still can be used to study in high speed application sports like running, swimming, etc. to optimize the body configuration as it gives detailed flow for every single study. In the other hand, the results presented in the current study are part of the ongoing study. Investigation on apply velocities are considered such as average of Fig. 3 Drag coefficient of Various Positions with Turbulence Models. walking speed, running, skiing and etc. Angle of attack is also one of 4. Discussion the parametric to be considered in the overall studies. Figure 3 shows that the supine position gives the lowest drag Acknowledgment coefficient while the standing position gives the highest. The drag Appreciation to Taylor’s University School of Engineering for the coefficient of various positions from lowest to highest value in funding and equipment support of this project. ascending: supine, squatting, sitting and standing. It also shows that the lesser projected frontal area can greatly reduce the drag References coefficient. Since the input boundaries of velocity inlet, air viscosity, 1. Defraeye, T., Blocken, B., Koninckx, E., Hespel, P., and air density and flow direction are the same for 4 positions; the only Carmeliet, J. (2010). Aerodynamic study of different cyclist factor to affect the changes in drag coefficient is the frontal area. In positions: CFD analysis and full-scale wind-tunnel tests. Journal others words, a less frontal area means the body expose lesser of Biomechanics, 43(7), 1262-1268. external flow to the wind. As the standing position has the highest 2. Anderson, John D. Jr. (2000). Introduction to Flight. Fourth projected frontal area, it exerts more forces due to the pressure and Edition, McGraw Hill Higher Education, Boston, Massachusetts, skin friction drag on the frontal area on the human opposite the wind USA. direction. While the supine position has the lowest projected frontal 3. Schmitt, T. J. (1954). Wind Tunnel Investigation of Air Loads on area because the exposed area in this position is less and thus the skin Human Being.Virginia, USA. friction drag is less as well. 4. Hoerner, S. F. (1965). Fluid Dynamic Drag. Midland Park, New In other hand, the research also carries out using different Hersey, USA. turbulence models. For squatting and supine positions, the values between the four turbulence models are very close. However, it has 5. Cengel, Y.; Cimbala, J.; Turner, R. (2012). Fundamentals of huge differences between the experimental data and numerical Thermal Fluid Sciences. simulation data. This may due to the simplified human body model 6. Chowdhury, H.; Alam, F. and Subic, A. (2010). An Experimental as the projected frontal area is not the same as the real human sample Methodology for a Full Scale Bicycle Aerodynamics Study. carry out by Schmitt [3]. The geometry of the upper body of the Inter-national Conference on Mechanical, Industrial and Energy, simplified human body is too wide and therefore it has higher drag Khulna, Bangladesh. coefficient. The difference of percentage errors for supine and 7. Defraeye, T., Blocken, B., Koninckx, E., Hespel, P., and squatting is relatively high, from 35% to 67%. For standing and Carmeliet, J. (2010). Computational fluid dynamics analysis of sitting positions, the values between the experimental data and cyclist aerodynamics: Performance of different turbulence- numerical simulation data are very close, the maximum error modeling and boundary layer modeling approaches. Journal of differences is only approximately 11%, which is still in the accepted Biomechanics, 43(12), 2281-2287.
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • Airfoil Drag by Wake Survey Using Ldv
    AIRFOIL DRAG BY WAKE SURVEY USING LDV 1 Purpose This experiment introduces the student to the use of Laser Doppler Velocimetry (LDV) as a means of measuring air flow velocities. The section drag of a NACA 0012 airfoil is determined from velocity measurements obtained in the airfoil wake. 2 Apparatus (1) .5 m x .7 m wind tunnel (max velocity 20 m/s) (2) NACA 0015 airfoil (0.2 m chord, 0.7 m span) (3) Betz manometer (4) Pitot tube (5) DISA LDV optics (6) Spectra Physics 124B 15 mW laser (632.8 nm) (7) DISA 55N20 LDV frequency tracker (8) TSI atomizer using 50cs silicone oil (9) XYZ LDV traversing system (10) Computer data reduction program 1 3 Notation A wing area (m2) b initial laser beam radius (m) bo minimum laser beam radius at lens focus (m) c airfoil chord length (m) Cd drag coefficient da elemental area in wake survey plane (m2) d drag force per unit span f focal length of primary lens (m) fo Doppler frequency (Hz) I detected signal amplitude (V) l distance across survey plane (m) r seed particle radius (m) s airfoil span (m) v seed particle velocity (instantaneous flow velocity) (m/s) U wake velocity (m/s) Uo upstream flow velocity (m/s) α Mie scatter size parameter/angle of attack (degs) δy fringe separation (m) θ intersection angle of laser beams λ laser wavelength (632.8 nm for He Ne laser) ρ air density at NTP (1.225 kg/m3) τ Doppler period (s) 4 Theory 4.1 Introduction The profile drag of a two-dimensional airfoil is the sum of the form drag due to boundary layer sep- aration (pressure drag), and the skin friction drag.
    [Show full text]
  • Drag Force Calculation
    DRAG FORCE CALCULATION “Drag is the component of force on a body acting parallel to the direction of relative motion.” [1] This can occur between two differing fluids or between a fluid and a solid. In this lab, the drag force will be explored between a fluid, air, and a solid shape. Drag force is a function of shape geometry, velocity of the moving fluid over a stationary shape, and the fluid properties density and viscosity. It can be calculated using the following equation, ퟏ 푭 = 흆푨푪 푽ퟐ 푫 ퟐ 푫 Equation 1: Drag force equation using total profile where ρ is density determined from Table A.9 or A.10 in your textbook A is the frontal area of the submerged object CD is the drag coefficient determined from Table 1 V is the free-stream velocity measured during the lab Table 1: Known drag coefficients for various shapes Body Status Shape CD Square Rod Sharp Corner 2.2 Circular Rod 0.3 Concave Face 1.2 Semicircular Rod Flat Face 1.7 The drag force of an object can also be calculated by applying the conservation of momentum equation for your stationary object. 휕 퐹⃗ = ∫ 푉⃗⃗ 휌푑∀ + ∫ 푉⃗⃗휌푉⃗⃗ ∙ 푑퐴⃗ 휕푡 퐶푉 퐶푆 Assuming steady flow, the equation reduces to 퐹⃗ = ∫ 푉⃗⃗휌푉⃗⃗ ∙ 푑퐴⃗ 퐶푆 The following frontal view of the duct is shown below. Integrating the velocity profile after the shape will allow calculation of drag force per unit span. Figure 1: Velocity profile after an inserted shape. Combining the previous equation with Figure 1, the following equation is obtained: 푊 퐷푓 = ∫ 휌푈푖(푈∞ − 푈푖)퐿푑푦 0 Simplifying the equation, you get: 20 퐷푓 = 휌퐿 ∑ 푈푖(푈∞ − 푈푖)훥푦 푖=1 Equation 2: Drag force equation using wake profile The pressure measurements can be converted into velocity using the Bernoulli’s equation as follows: 2Δ푃푖 푈푖 = √ 휌퐴푖푟 Be sure to remember that the manometers used are in W.C.
    [Show full text]
  • Chapter 4: Immersed Body Flow [Pp
    MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively.
    [Show full text]
  • Drag Coefficients of Inclined Hollow Cylinders
    Drag Coefficients of Inclined Hollow Cylinders: RANS versus LES A Major Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science In Chemical Engineering By Ben Franzluebbers _______________ Date: April 2013 Approved: ________________________ Dr. Anthony G. Dixon, Advisor Abstract The goal of this project was use LES and RANS (SST k-ω) CFD turbulence models to find the drag coefficient of a hollow cylinder at various inclinations and compare the results. The drag coefficients were evaluated for three angles relative to the flow (0⁰, 45⁰, and 90⁰) and three Reynolds numbers (1000, 5000, and 10000). The drag coefficients determined by LES and RANS agreed for the 0⁰ and 90⁰ inclined hollow cylinder. For the 45⁰ inclined hollow cylinder the RANS model predicted drag coefficients about 0.2 lower the drag coefficients predicted by LES. 2 Executive Summary The design of catalyst particles is an important topic in the chemical industry. Chemical products made using catalytic processes are worth $900 billion a year and about 75% of all chemical and petroleum products by value (U.S. Climate Change Technology Program, 2005). The catalyst particles used for fixed bed reactors are an important part of this. Knowing properties of the catalyst particle such as the drag coefficient is necessary to understand how fluid flow will be affected by the packed bed. The particles are inclined at different angles in the reactor and can come in a wide variety of shapes meaning that understanding the effect of particle shape on drag coefficient has practical importance.
    [Show full text]
  • On the Generation of a Reverse Von Kármán Street for the Controlled Cylinder Wake in the Laminar Regime
    On the generation of a reverse Von Kármán street for the controlled cylinder wake in the laminar regime Michel Bergmann,∗ Laurent Cordier, and Jean-Pierre Brancher LEMTA, UMR 7563 (CNRS - INPL - UHP) ENSEM - 2, avenue de la forêt de Haye BP 160 - 54504 Vandœuvre cedex, France (Dated: December 8, 2005) 1 Abstract In this Brief Communication we are interested in the maximum mean drag reduction that can be achieved under rotary sinusoidal control for the circular cylinder wake in the laminar regime. For a Reynolds number equal to 200, we give numerical evidence that partial control restricted to an upstream part of the cylinder surface may increase considerably the effectiveness of the control. Indeed, a maximum value of relative mean drag reduction equal to 30% is obtained when applying a specific sinusoidal control to the whole cylinder, where up to 75% of reduction can be obtained when the same control law is applied only to a well selected upstream part of the cylinder. This result suggests that a mean flow correction field with negative drag is observable for this controlled flow configuration. The significant thrust force that is locally generated in the near wake corresponds to a reverse Kármán vortex street as commonly observed in fish-like locomotion or flapping wing flight. Finally, the energetic efficiency of the control is quantified by examining the Power Saving Ratio: it is shown that our approach is energetically inefficient. However, it is also demonstrated that for this control scheme the improvement of the effectiveness goes generally with an improvement of the efficiency. Keywords: Partial rotary control ; Cylinder wake ; Drag minimization ; reverse Kármán vortex street.
    [Show full text]
  • Aerodynamics of High-Performance Wing Sails
    Aerodynamics of High-Performance Wing Sails J. otto Scherer^ Some of tfie primary requirements for tiie design of wing sails are discussed. In particular, ttie requirements for maximizing thrust when sailing to windward and tacking downwind are presented. The results of water channel tests on six sail section shapes are also presented. These test results Include the data for the double-slotted flapped wing sail designed by David Hubbard for A. F. Dl Mauro's lYRU "C" class catamaran Patient Lady II. Introduction The propulsion system is probably the single most neglect­ ed area of yacht design. The conventional triangular "soft" sails, while simple, practical, and traditional, are a long way from being aerodynamically desirable. The aerodynamic driving force of the sails is, of course, just as large and just as important as the hydrodynamic resistance of the hull. Yet, designers will go to great lengths to fair hull lines and tank test hull shapes, while simply drawing a triangle on the plans to define the sails. There is no question in my mind that the application of the wealth of available airfoil technology will yield enormous gains in yacht performance when applied to sail design. Re­ cent years have seen the application of some of this technolo­ gy in the form of wing sails on the lYRU "C" class catamar­ ans. In this paper, I will review some of the aerodynamic re­ quirements of yacht sails which have led to the development of the wing sails. For purposes of discussion, we can divide sail require­ ments into three points of sailing: • Upwind and close reaching.
    [Show full text]
  • UNIT – 4 FORCES on IMMERSED BODIES Lecture-01
    1 UNIT – 4 FORCES ON IMMERSED BODIES Lecture-01 Forces on immersed bodies When a body is immersed in a real fluid, which is flowing at a uniform velocity U, the fluid will exert a force on the body. The total force (FR) can be resolved in two components: 1. Drag (FD): Component of the total force in the direction of motion of fluid. 2. Lift (FL): Component of the total force in the perpendicular direction of the motion of fluid. It occurs only when the axis of the body is inclined to the direction of fluid flow. If the axis of the body is parallel to the fluid flow, lift force will be zero. Expression for Drag & Lift Forces acting on the small elemental area dA are: i. Pressure force acting perpendicular to the surface i.e. p dA ii. Shear force acting along the tangential direction to the surface i.e. τ0dA (a) Drag force (FD) : Drag force on elemental area = p dAcosθ + τ0 dAcos(90 – θ = p dAosθ + τ0dAsinθ Hence Total drag (or profile drag) is given by, Where �� = ∫ � cos � �� + ∫�0 sin � �� = pressure drag or form drag, and ∫ � cos � �� = shear drag or friction drag or skin drag (b) Lift0 force (F ) : ∫ � sin � ��L Lift force on the elemental area = − p dAsinθ + τ0 dA sin(90 – θ = − p dAsiθ + τ0dAcosθ Hence, total lift is given by http://www.rgpvonline.com �� = ∫�0 cos � �� − ∫ p sin � �� 2 The drag & lift for a body moving in a fluid of density at a uniform velocity U are calculated mathematically as 2 � And �� = � � � 2 � Where A = projected area of the body or�� largest= � project� � area of the immersed body.
    [Show full text]
  • Chapter 4: Immersed Body Flow [Pp
    MECH 3492 Fluid Mechanics and Applications Univ. of Manitoba Fall Term, 2017 Chapter 4: Immersed Body Flow [pp. 445-459 (8e), or 374-386 (9e)] Dr. Bing-Chen Wang Dept. of Mechanical Engineering Univ. of Manitoba, Winnipeg, MB, R3T 5V6 When a viscous fluid flow passes a solid body (fully-immersed in the fluid), the body experiences a net force, F, which can be decomposed into two components: a drag force F , which is parallel to the flow direction, and • D a lift force F , which is perpendicular to the flow direction. • L The drag coefficient CD and lift coefficient CL are defined as follows: FD FL CD = 1 2 and CL = 1 2 , (112) 2 ρU A 2 ρU Ap respectively. Here, U is the free-stream velocity, A is the “wetted area” (total surface area in contact with fluid), and Ap is the “planform area” (maximum projected area of an object such as a wing). In the remainder of this section, we focus our attention on the drag forces. As discussed previously, there are two types of drag forces acting on a solid body immersed in a viscous flow: friction drag (also called “viscous drag”), due to the wall friction shear stress exerted on the • surface of a solid body; pressure drag (also called “form drag”), due to the difference in the pressure exerted on the front • and rear surfaces of a solid body. The friction drag and pressure drag on a finite immersed body are defined as FD,vis = τwdA and FD, pres = pdA , (113) ZA ZA Streamwise component respectively.
    [Show full text]
  • Upwind Sail Aerodynamics : a RANS Numerical Investigation Validated with Wind Tunnel Pressure Measurements I.M Viola, Patrick Bot, M
    Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements I.M Viola, Patrick Bot, M. Riotte To cite this version: I.M Viola, Patrick Bot, M. Riotte. Upwind sail aerodynamics : A RANS numerical investigation validated with wind tunnel pressure measurements. International Journal of Heat and Fluid Flow, Elsevier, 2012, 39, pp.90-101. 10.1016/j.ijheatfluidflow.2012.10.004. hal-01071323 HAL Id: hal-01071323 https://hal.archives-ouvertes.fr/hal-01071323 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. I.M. Viola, P. Bot, M. Riotte Upwind Sail Aerodynamics: a RANS numerical investigation validated with wind tunnel pressure measurements International Journal of Heat and Fluid Flow 39 (2013) 90–101 http://dx.doi.org/10.1016/j.ijheatfluidflow.2012.10.004 Keywords: sail aerodynamics, CFD, RANS, yacht, laminar separation bubble, viscous drag. Abstract The aerodynamics of a sailing yacht with different sail trims are presented, derived from simulations performed using Computational Fluid Dynamics. A Reynolds-averaged Navier- Stokes approach was used to model sixteen sail trims first tested in a wind tunnel, where the pressure distributions on the sails were measured.
    [Show full text]
  • Hydraulics Manual Glossary G - 3
    Glossary G - 1 GLOSSARY OF HIGHWAY-RELATED DRAINAGE TERMS (Reprinted from the 1999 edition of the American Association of State Highway and Transportation Officials Model Drainage Manual) G.1 Introduction This Glossary is divided into three parts: · Introduction, · Glossary, and · References. It is not intended that all the terms in this Glossary be rigorously accurate or complete. Realistically, this is impossible. Depending on the circumstance, a particular term may have several meanings; this can never change. The primary purpose of this Glossary is to define the terms found in the Highway Drainage Guidelines and Model Drainage Manual in a manner that makes them easier to interpret and understand. A lesser purpose is to provide a compendium of terms that will be useful for both the novice as well as the more experienced hydraulics engineer. This Glossary may also help those who are unfamiliar with highway drainage design to become more understanding and appreciative of this complex science as well as facilitate communication between the highway hydraulics engineer and others. Where readily available, the source of a definition has been referenced. For clarity or format purposes, cited definitions may have some additional verbiage contained in double brackets [ ]. Conversely, three “dots” (...) are used to indicate where some parts of a cited definition were eliminated. Also, as might be expected, different sources were found to use different hyphenation and terminology practices for the same words. Insignificant changes in this regard were made to some cited references and elsewhere to gain uniformity for the terms contained in this Glossary: as an example, “groundwater” vice “ground-water” or “ground water,” and “cross section area” vice “cross-sectional area.” Cited definitions were taken primarily from two sources: W.B.
    [Show full text]
  • List of Symbols
    List of Symbols a atmosphere speed of sound a exponent in approximate thrust formula ac aerodynamic center a acceleration vector a0 airfoil angle of attack for zero lift A aspect ratio A system matrix A aerodynamic force vector b span b exponent in approximate SFC formula c chord cd airfoil drag coefficient cl airfoil lift coefficient clα airfoil lift curve slope cmac airfoil pitching moment about the aerodynamic center cr root chord ct tip chord c¯ mean aerodynamic chord C specfic fuel consumption Cc corrected specfic fuel consumption CD drag coefficient CDf friction drag coefficient CDi induced drag coefficient CDw wave drag coefficient CD0 zero-lift drag coefficient Cf skin friction coefficient CF compressibility factor CL lift coefficient CLα lift curve slope CLmax maximum lift coefficient Cmac pitching moment about the aerodynamic center CT nondimensional thrust T Cm nondimensional thrust moment CW nondimensional weight d diameter det determinant D drag e Oswald’s efficiency factor E origin of ground axes system E aerodynamic efficiency or lift to drag ratio EO position vector f flap f factor f equivalent parasite area F distance factor FS stick force F force vector F F form factor g acceleration of gravity g acceleration of gravity vector gs acceleration of gravity at sea level g1 function in Mach number for drag divergence g2 function in Mach number for drag divergence H elevator hinge moment G time factor G elevator gearing h altitude above sea level ht altitude of the tropopause hH height of HT ac above wingc ¯ h˙ rate of climb 2 i unit vector iH horizontal
    [Show full text]