Protected Natural Areas and the Conservation of Amphibians in a Highly Transformed Mountainous Region in Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Protected Natural Areas and the Conservation of Amphibians in a Highly Transformed Mountainous Region in Mexico Herpetological Conservation and Biology 11(1):19–28. Submitted: 12 February 2015; Accepted: 24 November 2015; Published: 30 April 2016. PROTECTED NATURAL AREAS AND THE CONSERVATION OF AMPHIBIANS IN A HIGHLY TRANSFORMED MOUNTAINOUS REGION IN MEXICO 1 2 2,3 MARÍA CHANEL JUÁREZ-RAMÍREZ , JOSÉ L. AGUILAR-LÓPEZ , AND EDUARDO PINEDA 1Laboratorio de Herpetología, Escuela de Biología, Benemérita Universidad Autónoma de Puebla 72570, Puebla, México 2Red de Biología y Conservación de Vertebrados, Instituto de Ecología, A.C. Carretera Antigua a Coatepec 351, Col. El Haya, Xalapa 91070, Veracruz, México 3Corresponding author, e-mail: [email protected]. Abstract.—Protected natural areas (PNAs) help protect biological diversity in the face of different threats. The efficacy of each PNA at protecting and maintaining varies as a function of the current characteristics of each reserve, the environment in which it is located, and the taxonomic group to be protected. In this study we evaluated the role of three PNAs (two state-run, and one private) in the conservation of the amphibians in the mountains of central Veracruz, Mexico, a region of high species diversity and turnover. During field work carried out from July to December 2012, we recorded 1262 amphibians belonging to 15 species (10 salamanders and five frogs), with 53% in a high risk conservation category. We found significant differences among the three PNAs in species richness, abundance, assemblage structure, and species composition. This is the first report of the presence of the endangered salamanders Pseudoeurycea gigantea, Thorius munificus, and Chiropterotriton lavae in a PNA. Each of the three reserves differs in its contribution to amphibian conservation in central Veracruz and, collectively, the three reserves function in a complementary manner to conserve the regional amphibian fauna, including endangered species, some of which are in imminent danger of extinction. Key Words.—complementarity; endangered species; frogs; salamanders; species diversity; Veracruz INTRODUCTION community, and private natural areas. Together, these areas represent approximately 80% of the PNAs in The protection of natural areas is one of the most Mexico (Bezaury-Creel et al. 2007; CONANP, widespread strategies to protect biodiversity, threatened Comisión Nacional de Áreas Naturales Protegidas. 2014. by human activities (Margules and Pressey 2000). The Áreas Protegidas Decretadas. Available from term Protected Natural Area (PNA) was defined at the http://www.conanp.gob.mx [Accessed 1 October 2014]). IVth World Congress on National Parks and Protected The role of non-federally protected areas could be of Areas (Caracas, Venezuela, 1992) as “An area of land great importance for the conservation of biodiversity, and/or sea especially dedicated to the protection and especially in regions where the degree of species maintenance of biological diversity, and of natural and turnover (beta diversity) is high and the federal protected associated cultural resources, and managed through legal areas are insufficient to protect all of the species or other effective means” (cited in Rodrigues et al. (Halffter 2007). Thus, it is necessary to assess the role 2003). The efficacy of each PNA at protecting and of these PNAs to protect the biodiversity, especially in maintaining biodiversity may vary as a function of the regions where the original habitat has been or is being local characteristics of the reserve including reserve size, transformed dramatically. shape, and management strategy, land use history, and The mountainous region in central Veracruz, Mexico the environment in which it is located. is known for its high degree of biodiversity, specifically In Mexico, PNAs are currently managed by different that of amphibians. Central Veracruz is home to 72 levels of government. These include federal PNAs amphibian species, representing 19% of the including Ramsar sites (wetlands of international approximately 380 species recorded for all of Mexico. importance), state and municipal PNAs, and more Of the 72 amphibian species of the region (see Wake et recently PNAs run as community or private initiatives al. 1992; Parra-Olea et al. 2001; Pineda and Halffter (Ochoa-Ochoa et al. 2009). Evaluating the role and 2004; Meza-Parral and Pineda 2015), 27 are endemic to conservation success of PNAs has focused mainly on the Mexico and limited to this region (Frost D.R. 2014. federal reserve system (Figueroa and Sánchez-Cordero Amphibian Species of the World: an Online Reference. 2008; Urbina-Cardona and Flores-Villela 2010), with Version 6.0. Available from http://research.amnh.org/ little evaluation of regional or local, and state, municipal, herpetology/amphibia/ index.html. [Accessed 1 October Copyright © 2016. María Chanel Juárez-Ramírez 19 All Rights Reserved. Juárez-Ramírez et al.—Amphibians and protected areas in Mexico. 2014]). Although the region is characterized by its high San Juan del Monte Reserve (SJM).—This reserve is amphibian beta diversity (Pineda and Halffter 2004; located in the municipality of Las Vigas de Ramírez, Meza-Parral and Pineda 2015), 39 species (54% of the Veracruz (19°39'00'' and 19°35'00''N, and 97°05'00'' and regional pool) are assigned to an IUCN high 97°07'30''W) and was established by decree in 1980 as a endangerment risk category (IUCN. 2014. The IUCN Green Area Reserved for Ecological Education (Área Red List of Threatened Species. Version 2014-2. Verde Reservada para la Educación Ecológica). The Available from http://www.iucnredlist.org [Accessed 15 SJM PNA covers an area of 609 ha at an elevational October 2014]), and 34 species (47 % of the regional gradient of 2,327–2,600 m a.s.l. The climate is cool, pool) are at risk of extinction according to the Mexican with a mean annual temperature (± SD) of 11.7 ± 1.4° C; government (SEMARNAT 2010). Because of the dire the mean annual precipitation is 1,170 mm (calculations conservation status of so many species, the region is of made with data from 1981 to 2010; CONAGUA, high amphibian conservation priority (Ricketts et al. Comisión Nacional del Agua-Servicio Meteorológico 2005; Alliance for Zero Extinction. 2010. Available Nacional. 2012. Normales Climatológicas por Estación, from http://www.zeroextinction.org [Accessed 20 Estadística Descriptiva. Available from February 2012]; EDGE, Evolutionarily Distinct & http://smn.cna.gob.mx [Accessed 10 December 2014]). Globally Endangered. 2014. Focal Species. Available Approximately 90% of the reserve is covered with from mixed pine-oak forests of different ages, and 10% of the http://www.edgeofexistence.org/amphibians/top_100.ph area is covered with small pastures. Agricultural land, p [Accessed 10 July 2014]). Conservation of pastures, and residential areas surround the protected amphibians in this region is complicated because much area of the PNA. Furthermore, a highway runs through of the original forests of this region have been converted part of it. The SJM is used primarily for ecological to agriculture land and urban areas (Arriaga et al. 2000), education, and access to the reserve is limited to students federally run PNAs are scarce, and those that do exist are from educational institutions. The only study previously generally located above 3,000 m a.s.l. (CONANP, conducted in SJM was a preliminary inventory compiled Comisión Nacional de Áreas Naturales Protegidas. 2014. by Bello-Sánchez (2008), who also analyzed some of the op. cit.) where there are few amphibian species. In this ecological attributes of the herpetofauna of the reserve. study, we examined the role of three protected natural areas (two state-run and one private) in the conservation Pancho Poza Ecological Reserve (PPR).—This of amphibians in the mountainous central region of the reserve is located in the municipality of Altotonga, state of Veracruz, Mexico, a region with high species Veracruz (19°43'33'' and 19°46'66''N, 97°14'57'' and diversity and turnover and a high degree of forest 97°15'71''W) and was established by decree in 1992 as transformation. Specifically, we evaluated species the Ecological Reserve of the Pancho Poza River. The richness, abundance, assemblage structure, species PPR covers an area of 57 ha at an elevational gradient of composition, and the conservation status of the species 1,984–2,095 m a.s.l. The climate is temperate semi-dry that inhabit these reserves. and temperate subhumid with year-round rains. Mean annual temperature (± SD) is 14.3 ± 1.1° C, and mean MATERIALS AND METHODS annual precipitation is 1,495 mm (calculations made with data from 1981 to 2010; CONAGUA, Comisión Study site.—The study region is located in central- Nacional del Agua-Servicio Meteorológico Nacional. eastern Veracruz, Mexico, within an elevation band from 2012. op. cit.). Approximately 60% of the reserve is roughly 1,950 to 3,300 m a.s.l. (Fig. 1). Pine and mixed covered by pine-oak forest with differing degrees of pine-oak were the original forest covers of the region. disturbance. The remaining 40% of the reserve is After decades of deforestation, the region is now covered with pastures, orchards, and residential areas dominated by a matrix of cattle pastures, agricultural (SEDEMA 2001). Tours of the reserve are given by crops (e.g., potato, corn, tree plantations), open pit local people and because of its proximity to an urban mines, and human settlements (Castillo-Campos et al. area and used by many people as a right-of-way, the land 2011). Two of the study PNAs (San Juan del Monte is crossed by footpaths. Agricultural fields, highways, Reserve and the Pancho Poza Ecological Reserve) are and an urban zone surround this protected area. regulated by the state of Veracruz, and the third (Ocelotl Previous studies conducted in this PNA include an Ecological Park) is regulated by a private owner. The inventory of the herpetofauna by Lambert-Izquierdo distances separating the three PNAs are relatively small, (2000) and a management plan with lists of potential ranging from approximately 12 to 23 km straight-line species by SEDEMA (2001).
Recommended publications
  • Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
    Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF.
    [Show full text]
  • Multi-National Conservation of Alligator Lizards
    MULTI-NATIONAL CONSERVATION OF ALLIGATOR LIZARDS: APPLIED SOCIOECOLOGICAL LESSONS FROM A FLAGSHIP GROUP by ADAM G. CLAUSE (Under the Direction of John Maerz) ABSTRACT The Anthropocene is defined by unprecedented human influence on the biosphere. Integrative conservation recognizes this inextricable coupling of human and natural systems, and mobilizes multiple epistemologies to seek equitable, enduring solutions to complex socioecological issues. Although a central motivation of global conservation practice is to protect at-risk species, such organisms may be the subject of competing social perspectives that can impede robust interventions. Furthermore, imperiled species are often chronically understudied, which prevents the immediate application of data-driven quantitative modeling approaches in conservation decision making. Instead, real-world management goals are regularly prioritized on the basis of expert opinion. Here, I explore how an organismal natural history perspective, when grounded in a critique of established human judgements, can help resolve socioecological conflicts and contextualize perceived threats related to threatened species conservation and policy development. To achieve this, I leverage a multi-national system anchored by a diverse, enigmatic, and often endangered New World clade: alligator lizards. Using a threat analysis and status assessment, I show that one recent petition to list a California alligator lizard, Elgaria panamintina, under the US Endangered Species Act often contradicts the best available science.
    [Show full text]
  • Comparative Osteology and Evolution of the Lungless Salamanders, Family Plethodontidae David B
    COMPARATIVE OSTEOLOGY AND EVOLUTION OF THE LUNGLESS SALAMANDERS, FAMILY PLETHODONTIDAE DAVID B. WAKE1 ABSTRACT: Lungless salamanders of the family Plethodontidae comprise the largest and most diverse group of tailed amphibians. An evolutionary morphological approach has been employed to elucidate evolutionary rela­ tionships, patterns and trends within the family. Comparative osteology has been emphasized and skeletons of all twenty-three genera and three-fourths of the one hundred eighty-three species have been studied. A detailed osteological analysis includes consideration of the evolution of each element as well as the functional unit of which it is a part. Functional and developmental aspects are stressed. A new classification is suggested, based on osteological and other char­ acters. The subfamily Desmognathinae includes the genera Desmognathus, Leurognathus, and Phaeognathus. Members of the subfamily Plethodontinae are placed in three tribes. The tribe Hemidactyliini includes the genera Gyri­ nophilus, Pseudotriton, Stereochilus, Eurycea, Typhlomolge, and Hemidac­ tylium. The genera Plethodon, Aneides, and Ensatina comprise the tribe Pleth­ odontini. The highly diversified tribe Bolitoglossini includes three super­ genera. The supergenera Hydromantes and Batrachoseps include the nominal genera only. The supergenus Bolitoglossa includes Bolitoglossa, Oedipina, Pseudoeurycea, Chiropterotriton, Parvimolge, Lineatriton, and Thorius. Manculus is considered to be congeneric with Eurycea, and Magnadig­ ita is congeneric with Bolitoglossa. Two species are assigned to Typhlomolge, which is recognized as a genus distinct from Eurycea. No. new information is available concerning Haptoglossa. Recognition of a family Desmognathidae is rejected. All genera are defined and suprageneric groupings are defined and char­ acterized. Range maps are presented for all genera. Relationships of all genera are discussed.
    [Show full text]
  • Pseudoeurycea Naucampatepetl. the Cofre De Perote Salamander Is Endemic to the Sierra Madre Oriental of Eastern Mexico. This
    Pseudoeurycea naucampatepetl. The Cofre de Perote salamander is endemic to the Sierra Madre Oriental of eastern Mexico. This relatively large salamander (reported to attain a total length of 150 mm) is recorded only from, “a narrow ridge extending east from Cofre de Perote and terminating [on] a small peak (Cerro Volcancillo) at the type locality,” in central Veracruz, at elevations from 2,500 to 3,000 m (Amphibian Species of the World website). Pseudoeurycea naucampatepetl has been assigned to the P. bellii complex of the P. bellii group (Raffaëlli 2007) and is considered most closely related to P. gigantea, a species endemic to the La specimens and has not been seen for 20 years, despite thorough surveys in 2003 and 2004 (EDGE; www.edgeofexistence.org), and thus it might be extinct. The habitat at the type locality (pine-oak forest with abundant bunch grass) lies within Lower Montane Wet Forest (Wilson and Johnson 2010; IUCN Red List website [accessed 21 April 2013]). The known specimens were “found beneath the surface of roadside banks” (www.edgeofexistence.org) along the road to Las Lajas Microwave Station, 15 kilometers (by road) south of Highway 140 from Las Vigas, Veracruz (Amphibian Species of the World website). This species is terrestrial and presumed to reproduce by direct development. Pseudoeurycea naucampatepetl is placed as number 89 in the top 100 Evolutionarily Distinct and Globally Endangered amphib- ians (EDGE; www.edgeofexistence.org). We calculated this animal’s EVS as 17, which is in the middle of the high vulnerability category (see text for explanation), and its IUCN status has been assessed as Critically Endangered.
    [Show full text]
  • USO DE HABITAT DE Rana Catesbeiana EN EL MUNICIPIO
    USO DE HABITAT DE Rana catesbeiana EN EL MUNICIPIO DE PEREIRA, RISARALDA DIANA STELLA ARDILA VARGAS Andrés Rymel Acosta Galvis Director TRABAJO DE GRADO Presentado como requisito parcial Para optar al título de Bióloga PONTIFICIA UNIVERSIDAD JAVERIANA FACULTAD DE CIENCIAS CARRERA DE BIOLOGÍA Bogotá, D. C. 1 NOTA DE ADVERTENCIA Artículo 23 de la Resolución Nº 13 de Julio de 1946 “La Universidad no se hace responsable por los conceptos emitidos por sus alumnos en sus trabajos de tesis. Solo velará por que no se publique nada contrario al dogma y a la moral católica y por que las tesis no contengan ataques personales contra persona alguna, antes bien se vea en ellas el anhelo de buscar la verdad y la justicia”. 2 USO DE HABITAT DE Rana catesbeiana EN EL MUNICIPIO DE PEREIRA, RISARALDA DIANA STELLA ARDILA VARGAS APROBADO _________________________ Andrés Acosta Galvis, Biólogo Director _________________________ _________________________ Angélica Pérez, Ecóloga Juan Ricardo Gómez, Biólogo Jurado Jurado 3 USO DE HABITAT DE Rana catesbeiana EN EL MUNICIPIO DE PEREIRA, RISARALDA DIANA STELLA ARDILA VARGAS APROBADO ____________________________ ____________________________ Angela Umaña, M. Phil. Bióloga Luz Mercedes Santamaría, Bióloga Decana Académica Directora de Carrera 4 Quiero dedicar este trabajo a mis padres, a quienes amo inmensamente y agradezco su amor y su esfuerzo durante toda la carrera. A Diego y Amparo por compartir conmigo este tiempo de sueños, cansancios y alegrías. A mis amigos, en especial a Yohanna, Monica, Adriana, Johanna, Ana Carolina, Ronald y Alejandro, porque juntos caminamos desde el principio y hoy estamos aquí culminando el camino que empezó hace cinco años.
    [Show full text]
  • Promoting Conservation of Amphibians at El Pedregal in Mexico City, Mexico
    Conservation Leadership Programme: Final Report Project ID 02244015 Promoting Conservation of Amphibians at El Pedregal in Mexico City, Mexico. Mexico, August 2015–February 2016 Institutions involved: Centro de Educación Ambiental Ecoguardas (Secretaría de Medio Ambiente de la Ciudad de México), Centro de Educación Ambiental del Ajusco Medio (PRONATURA México A.C.) and Reserva Ecológica del Pedregal de San Ángel (UNAM) Overall aim: To generate baseline information about local amphibian species in urban areas of Mexico City. Authors: José M. Serrano, Gloria Tapia, Flor G. Vázquez-Corzas & Adriana Sandoval-Comte. Contact address: [email protected] Webpage: https://www.facebook.com/anfibiospedregal/ Date: May 30th 2017 1 Table of Contents Project Partners & Collaborators ........................................................................................................................ 4 Section 1: ............................................................................................................................................................ 5 1.1 Summary .................................................................................................................................................. 5 1.2 Introduction ............................................................................................................................................... 5 1.3 Project members ...................................................................................................................................... 7 Section
    [Show full text]
  • Crotalus Tancitarensis. the Tancítaro Cross-Banded Mountain Rattlesnake
    Crotalus tancitarensis. The Tancítaro cross-banded mountain rattlesnake is a small species (maximum recorded total length = 434 mm) known only from the upper elevations (3,220–3,225 m) of Cerro Tancítaro, the highest mountain in Michoacán, Mexico, where it inhabits pine-fir forest (Alvarado and Campbell 2004; Alvarado et al. 2007). Cerro Tancítaro lies in the western portion of the Transverse Volcanic Axis, which extends across Mexico from Jalisco to central Veracruz near the 20°N latitude. Its entire range is located within Parque Nacional Pico de Tancítaro (Campbell 2007), an area under threat from manmade fires, logging, avocado culture, and cattle raising. This attractive rattlesnake was described in 2004 by the senior author and Jonathan A. Campbell, and placed in the Crotalus intermedius group of Mexican montane rattlesnakes by Bryson et al. (2011). We calculated its EVS as 19, which is near the upper end of the high vulnerability category (see text for explanation), its IUCN status has been reported as Data Deficient (Campbell 2007), and this species is not listed by SEMARNAT. More information on the natural history and distribution of this species is available, however, which affects its conservation status (especially its IUCN status; Alvarado-Díaz et al. 2007). We consider C. tancitarensis one of the pre-eminent flagship reptile species for the state of Michoacán, and for Mexico in general. Photo by Javier Alvarado-Díaz. Amphib. Reptile Conserv. | http://amphibian-reptile-conservation.org 128 September 2013 | Volume 7 | Number 1 | e71 Copyright: © 2013 Alvarado-Díaz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for Amphibian & Reptile Conservation 7(1): 128–170.
    [Show full text]
  • Microsatellite Markers for Pseudoeurycea Leprosa, a Plethodontid Salamander Endemic to the Transmexican Neovolcanic Belt
    Conservation Genet Resour (2009) 1:5–7 DOI 10.1007/s12686-009-9001-3 TECHNICAL NOTE Microsatellite markers for Pseudoeurycea leprosa, a plethodontid salamander endemic to the Transmexican Neovolcanic Belt G. Velo-Anto´n Æ J. C. Windfield Æ K. Zamudio Æ G. Parra-Olea Received: 2 April 2009 / Accepted: 7 April 2009 / Published online: 9 May 2009 Ó Springer Science+Business Media B.V. 2009 Abstract We isolated and characterized 11 polymorphic Amphibian species are declining worldwide (Stuart et al. microsatellite markers for the plethodontid salamander 2004) and one of the primary causes is the continued Pseudoeurycea leprosa to obtain population genetic data anthropogenic habitat modification (Dodd and Smith necessary for the proper management of this threatened 2003). Especially affected are species that are habitat species endemic to Central Me´xico. We tested polymor- specialists and thus more vulnerable to habitat loss and phism of these loci among 50 individuals from two popu- discontinuity. Recently, surveys of historical populations lations (Texcalyacac and Calpan) in the states of Me´xico showed that densities of plethodontid salamanders in and Puebla, across the Transmexican Neovolcanic Belt. Central America and Me´xico have also declined (Rovito The number of alleles per locus ranged from three to 33 et al. 2009). Pseudoeurycea leprosa is endemic to pine and (mean; Na = 14.5). Observed and expected heterozygosi- pine-oak forests at high elevations (2,500–3,200 m asl.) ties ranged from 0.20 to 0.88 and 0.22 to 0.93, respectively. along the Transmexican Neovolcanic Belt (TNB). The We found deviations from Hardy–Weinberg equilibrium species is listed as ‘vulnerable’ by the World Conservation expectations for both populations at two loci (Plt028 and Union (IUCN 2008) due to decreasing population sizes.
    [Show full text]
  • Productos De La Investigación
    PRODUCTOS DE LA INVESTIGACIÓN Artículos en revistas indizadas (SCI) FI. Factor de impacto 1. Aguilar-Aguilar, R., G. Salgado-Maldonado, R. Contreras-Medina y A. Martínez-Aquino. 2008. Richness and endemism of helminth parasites of freshwater fishes in Mexico.Biological Journal of the Linnean Society 94(2): 435-444. FI 2.368 2. Aguilar-Setién, A., M. L. Romero-Almaraz, C. Sánchez-Hernández, R. Figueroa, L. P. Juárez-Palma, M. M. García-Flores, C. Vázquez-Salinas, M. Salas-Rojas, A. C. Hidalgo-Martínez, S. Aguilar-Pierlé, C. García-Estrada y C. Ramos. 2008. Dengue virus in Mexican bats. Epidemiology and Infection 136(12): 1678-1683. FI 1.9 3. Agustín-Jiménez, F., V. León-Règagnon y E. Pérez-Ramos. 2008. Two new species of Parapharyngodon (Oxyuroidea: Pharyngodonidae) from the enigmatic Bipes canaliculatus and Bipes tridactylus (Squamata: Bipedidae). Revista Mexicana de Biodiversidad 79(2): 113S-120S. FI .327 4. Alvarado-Cárdenas, L. O. y A. García-Mendoza. 2008. Una especie nueva de Habranthus (Amaryllidaceae, Hippeastreae) para la Flora del Valle de Tehuacán-Cuicatlán. Novon 18(3): 283-286. FI .155 5. Álvarez, F. y J. L. Villalobos. 2008. A new species of freshwater cave dwelling Speocirolana (Isopoda, Cirolanidae) from San Luis Potosi, Mexico. Crustaceana 81(6): 653-662. FI .39 6. Arciniegas, A., A. L. Pérez-Castorena, J. Maldonado, G. Ávila, J. L. Villaseñor y A. Romo de Vivar. 2008. Chemical constituents of Roldana lineolata. Fitoterapia 79(1): 47-52. FI 1.106 7. Arias, S. y T. Terrazas. 2008. x Pachebergia (Cactaceae), a nothogenus from western Mexico. Revista Mexicana de Biodiversidad 79(1): 23-28.
    [Show full text]
  • Pseudoeurycea Robertsi[I]
    Natural history of the critically endangered salamander Pseudoeurycea robertsi. Armando Sunny Corresp., Equal first author, 1 , Carmen Caballero-Viñas 2 , Luis Duarte-deJesus 1 , Fabiola Ramírez-Corona 3 , Javier Manjarrez 4 , Giovanny González-Desales 1 , Xareni P. Pacheco 1 , Octavio Monroy-Vilchis 1 , Andrea González- Fernández Corresp. Equal first author, 4 1 Centro de Investigación en Ciencias Biológicas Aplicadas, Universidad Autónoma del Estado de México, Toluca, Estado de México, México 2 Laboratorio de Sistemas Biosustentables, Universidad Autónoma del Estado de México, Toluca, Estado de México, México 3 Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, México 4 Laboratorio de Biología Evolutiva, Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, Estado de México, México Corresponding Authors: Armando Sunny, Andrea González-Fernández Email address: [email protected], [email protected] Mexico is one of the most diverse countries that is losing a large amount of forest due to land use change, these data put Mexico in fourth place for global deforestation rate, therefore, Mexico occupies the first place in number of endangered species in the world with 665 endangered species. It is important to study amphibians because they are among the most threatened vertebrates on Earth and their populations are rapidly declining worldwide due primarily to the loss and degradation of their natural habitats. Pseudoeurycea robertsi is a micro-endemic and critically endangered Plethodontid salamander from the Nevado de Toluca Volcano and to date almost nothing is known about its natural history therefore, we survey fourteen sites of the Nevado de Toluca Volcano a mountain that is part of the Trans-Mexican Volcanic Belt, Mexico.
    [Show full text]
  • Coincident Mass Extirpation of Neotropical Amphibians with the Emergence of the Infectious Fungal Pathogen Batrachochytrium Dendrobatidis
    Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis Tina L. Chenga, Sean M. Rovitob, David B. Wakeb,c,1, and Vance T. Vredenburga,b aDepartment of Biology, San Francisco State University, San Francisco, CA, 94132-1722; and bMuseum of Vertebrate Zoology and cDepartment of Integrative Biology, University of California, Berkeley, CA 94720-3160 Contributed by David B. Wake, April 8, 2011 (sent for review February 26, 2011) Amphibians highlight the global biodiversity crisis because ∼40% use noninvasive sampling and molecular techniques to detect Bd of all amphibian species are currently in decline. Species have dis- in formalin-preserved specimens to investigate the role of Bd in appeared even in protected habitats (e.g., the enigmatic extinction two well-studied cases of enigmatic amphibian decline in Mes- of the golden toad, Bufo periglenes, from Costa Rica). The emer- oamerica (i): the decline and disappearance of anurans from gence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), Costa Rica’s Monteverde Reserve in the late 1980s (13, 14), and has been implicated in a number of declines that have occurred in (ii) the decline and disappearance of plethodontid salamanders the last decade, but few studies have been able to test retroac- from the mountains of southern Mexico and western Guatemala tively whether Bd emergence was linked to earlier declines and in the 1970s and 1980s (15). extinctions. We describe a noninvasive PCR sampling technique The sudden extinction of the golden toad (Bufo periglenes) and that detects Bd in formalin-preserved museum specimens. We de- harlequin frog (Atelopus varius) from Costa Rica’s Monteverde tected Bd by PCR in 83–90% (n = 38) of samples that were identi- Reserve in the late 1980s (13, 14) are among the earliest and fied as positive by histology.
    [Show full text]
  • ©Copyright 2012 Elda Miriam Aldasoro Maya
    ©Copyright 2012 Elda Miriam Aldasoro Maya Documenting and Contextualizing Pjiekakjoo (Tlahuica) Knowledges though a Collaborative Research Project Elda Miriam Aldasoro Maya A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Eugene Hunn, Chair Stevan Harrell Aaron J. Pollack Program Authorized to Offer Degree: Anthropology University of Washington Abstract Documenting and Contextualizing Pjiekakjoo Knowledge through a Collaborative Research Project Elda Miriam Aldasoro Maya Chair of the Supervisory Committee Emeritus Professor Eugene Hunn University of Washington The Pjiekakjoo (Tlahuica) people and their culture have managed to adapt to the globalized world. They have developed a deep knowledge-practice-belief system (Traditional Environmental Knowledge (TEK) or Contemporary Indigenous Knowledges (CIK)) that is part of the biocultural diversity of the region in which they live. This dissertation describes the economic, social and political context of the Pjiekakjoo, to contextualize the Pjiekakjoo CIK, including information on their land tenure struggles, their fight against illegal logging and the policies governing the Zempoala Lagoons National Park that is part of their territory. The collaborative research on which this dissertation draws, based on a dialogue of knowledges and heavily influenced by the ideas of Paolo Freire, fully recognized Indigenous people as subjects. Through participant observation, interviews and workshops we documented the names, uses, myth, beliefs and stories that the Pjiekakjoo people give to an extensive variety of organisms: mushrooms, invertebrates, vertebrates and the most important useful plants. Basic knowledge about the milpa and corn was also documented. Through the analysis of the information gathered it is clear that the relation of the Pjiekakjoo with other living beings is far from solely utilitarian in nature.
    [Show full text]