Agate Recrystallisation: Evidence from Samples Found in Archaean and Proterozoic Host Rocks, Western Australia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding the Art of Quartz
AIA & IDCEC Continuing Education Program UNDERSTANDING THE ART OF QUARTZ PRESENTED BY: AND 1 Hanwha L&C | Surfaces is a Registered Provider with The American Institute of Architects Continuing Education Systems (AIA/CES) and Interior Designers Continuing Education Council (IDCEC). Credit(s) earned on completion of this program will be reported to AIA/CES for AIA members or to IDCEC for IIDA, ASID or IDC members. Certificates of Completion for both members and non- members are available upon request. This program is registered with AIA/CES and IDCEC for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA or the IDCEC of any material of construction or any method or manner of handling, using, distributing or dealing in any material or product. Questions related to specific materials, methods and services will be addressed at the conclusion of this presentation. This presentation is protected by US and International copyrights laws. Reproduction, distribu- tion, display and use of the presentation without written permission of the speaker is prohibited. Hanwha L&C | Surfaces 2016. 2 AIA & IDCEC Continuing Education Program ∆ Format: Presented f2f in real-time ∆ Course Credit: ◊ AIA: 1 Learning Unit (LU) ◊ Course #: 004QS ◊ IDCEC: .1 Health & Safety ◊ Course #: 40276 ◊ RAIC: 1 Self-Reporting Hour Δ Completion Certificate: ◊ A copy will be provided to you by email, fax, or mail upon request. 3 Learning Objectives ∆ Gain knowledge about natural quartz surfacing: ◊ Composition and Uses ◊ Product Characteristics ◊ Manufacturing and Fabrication ◊ Application and Design Options 4 INTRODUCTION TO QUARTZ Quartz Facts ∆ Quartz is the 4th hardest crystalline mineral on Earth, and it is found abundantly all over the world in a variety of forms. -
Fall 2015 Gems & Gemology
FALL 2015 VOLUME LI THE UARTERLY JOURNAL OF THE GEMOLOGICAL INSTITUTE OF AMERICA Colombian Trapiche Emeralds Large Colorless HPHT-Grown Synthetic Diamonds Diamonds from the Letšeng Mine Fall 2015 VOLUME 51, No. 3 EDITORIAL 221 Trapiche and More... Duncan Pay FEATURE ARTICLES 222 Colombian Trapiche Emeralds: Recent Advances in Understanding Their Formation Isabella Pignatelli, Gaston Giuliani, Daniel Ohnenstetter, Giovanna Agrosì, pg. 254 Sandrine Mathieu, Christophe Morlot, and Yannick Branquet Proposes a model for trapiche emerald formation based on petrographic, spectroscopic, and chemical examination. 260 Large Colorless HPHT-Grown Synthetic Gem Diamonds from New Diamond Technology, Russia Ulrika F.S. D’Haenens-Johansson, Andrey Katrusha, Kyaw Soe Moe, Paul Johnson, and Wuyi Wang pg. 270 Examines a new source of colorless and near-colorless gem-quality HPHT synthetic diamonds using spectroscopic and gemological analysis. 280 Letšeng’s Unique Diamond Proposition Russell Shor, Robert Weldon, A.J.A. (Bram) Janse, Christopher M. Breeding, and Steven B. Shirey Explores the history, geology, and current production of this unique source of large diamonds. NOTES AND NEW TECHNIQUES 300 Origin Determination of Dolomite-Related White Nephrite through Iterative-Binary Linear Discriminant Analysis Zemin Luo, Mingxing Yang, and Andy H Shen A technique for origin identification based on statistical analysis and LA-ICP-MS spectrometry. pg. 293 REGULAR FEATURES 312 Lab Notes Unusual graining structure in pink diamond • Yellow HPHT-treated rough diamond -
Symposium on Agate and Cryptocrystalline Quartz
Symposium on Agate and Cryptocrystalline Quartz September 10 – 13, 2005 Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter; Colorado School of Mines Geology Museum; and U.S. Geological Survey 2 Cover Photos {top left} Fortification agate, Hinsdale County, Colorado, collection of the Geology Museum, Colorado School of Mines. Coloration of alternating concentric bands is due to infiltration of Fe with groundwater into the porous chalcedony layers, leaving the impermeable chalcedony bands uncolored (white): ground water was introduced via the symmetric fractures, evidenced by darker brown hues along the orthogonal lines. Specimen about 4 inches across; photo Dan Kile. {lower left} Photomicrograph showing, in crossed-polarized light, a rhyolite thunder egg shell (lower left) a fibrous phase of silica, opal-CTLS (appearing as a layer of tan fibers bordering the rhyolite cavity wall), and spherulitic and radiating fibrous forms of chalcedony. Field of view approximately 4.8 mm high; photo Dan Kile. {center right} Photomicrograph of the same field of view, but with a 1 λ (first-order red) waveplate inserted to illustrate the length-fast nature of the chalcedony (yellow-orange) and the length-slow character of the opal CTLS (blue). Field of view about 4.8 mm high; photo Dan Kile. Copyright of articles and photographs is retained by authors and Friends of Mineralogy, Colorado Chapter; reproduction by electronic or other means without permission is prohibited 3 Symposium on Agate and Cryptocrystalline Quartz Program and Abstracts September 10 – 13, 2005 Editors Daniel Kile Thomas Michalski Peter Modreski Held at Green Center, Colorado School of Mines Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter Colorado School of Mines Geology Museum U.S. -
Compilation of Reported Sapphire Occurrences in Montana
Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area .................................... -
Long Suspected Theory About the Moon Holds Water 14 June 2018
Long suspected theory about the moon holds water 14 June 2018 Moganite was found in only one of those 13 samples, confirming the team's theory that it could not have formed in the African desert. "If terrestrial weathering had produced moganite in the lunar meteorite, there should be moganite present in all the samples that fell to Earth around the same time. But this was not the case," says Kayama. Photograph of lunar meteorite NWA 2727. Credit: Masahiro Kayama, Tohoku University A team of Japanese scientists led by Masahiro Kayama of Tohoku University's Frontier Research Institute for Interdisciplinary Sciences, has discovered a mineral known as moganite in a lunar Sectional photograph of lunar meteorite NWA 2727. meteorite found in a hot desert in northwest Africa. Credit: Masahiro Kayama, Tohoku University This is significant because moganite is a mineral that requires water to form, reinforcing the belief that water exists on the Moon. He adds that part of the moganite had changed into the high-pressure SiO2 minerals stishovite and "Moganite is a crystal of silicon dioxide and is coesite, which he believes was most likely formed similar to quartz. It forms on Earth as a precipitate through heavy impact collisions on the Moon when alkaline water including SiO2 is evaporated under high pressure conditions," says Kayama. This is the first time that moganite has been "The existence of moganite strongly implies that detected in lunar rocks. The researchers say the there is water activity on the Moon." meteorites probably came from an area of the Moon called Procellarum Terrane, and that the Kayama and his team analyzed 13 of the lunar moganite was formed through the process of water meteorites using sophisticated methods to evaporation in strong sunlight. -
Origin of Fibrosity and Banding in Agates from Flood Basalts: American Journal of Science, V
Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Senior Integrative Exercise March 9, 2005 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota. 2 Table of Contents AGATES: A LITERATURE REVEW………………………………………...……..3 Introduction………………....………………………………………………….4 Structural and compositional description of agates………………..………..6 Some problems concerning agate genesis………………………..…………..11 Silica Sources…………………………………………..………………11 Method of Deposition………………………………………………….13 Temperature of Formation…………………………………………….16 Age of Agates…………………………………………………………..17 LAKE SUPERIOR AGATES: AN ELECTRON BACKSCATTER DIFFRACTION (EBSD) ANALYSIS …………………………………………………………………..19 Abstract………………………………………………………………………...19 Introduction……………………………………………………………………19 Geologic setting………………………………………………………………...20 Methods……………………………………………………...…………………20 Results………………………………………………………….………………22 Discussion………………………………………………………………………26 Conclusions………………………………………………….…………………26 Acknowledgments……………………………………………………..………………28 References………………………………………………………………..……………28 3 Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Carleton College Senior Integrative Exercise March 9, 2005 Advisor: Cam Davidson 4 AGATES: A LITERATURE REVEW Introduction Agates, valued as semiprecious gemstones for their colorful, intricate banding, (Fig.1) are microcrystalline quartz nodules found in veins and cavities -
September 2018 Bulletin of the New York Mineralogical Club, Inc
The BULLETIN OF THE NEW YORK MINERALOGICAL CLUB, INC Volume 132 No. 9 September 2018 PETER KELEMEN HAWAIIAN GEMSTONE RAIN Art of Orra White Hitchcock MOON MOGANITE See page 11! BLUE DIAMOND SOURCES SPHALERITE BANQUET RESERVATION FORM America’s Oldest Gem & Mineral Club Founded 1886 Incorporated 1937 Bulletin of the New York Mineralogical Club Founded 1886 Ë New York City, New York Ë Incorporated 1937 Volume 132, No. 9 America’s Oldest Mineral & Gem Club September 2018 September 5th Meeting: Dr. Peter B. Kelemen: “Carbon Carnelian (& Halloween) Theme Mineralization in Peridotite” Featured at 2018 Annual Banquet The rocks in Oman are special, says Dr. Peter B. Kelemen. They remove planet- By Mitch Portnoy Banquet Gifts warming carbon dioxide from the air and This year’s banquet, which is taking Banquet Games & Prizes turn it to stone. In theory, these rocks could place on Wednesday, October 17, 2018 at Video Entertainments store hundreds of years of human emissions the Watson Hotel, will center on the theme Banquet Song Special Note Card Sets of CO2. of “Carnelian” (but also have a hint of Halloween). Silent Auction Offerings Other Surprises! The registration form for this year’s banquet can be found on page 12 in this Peter and other scientists say that if this issue. Get it to me as soon as possible – it natural process, called carbon helps enormously in the event planning. mineralization, could be harnessed, See you at the banquet! accelerated and applied inexpensively on a huge scale — admittedly some very big “ifs” — it could help fight climate change. Rocks could remove some of the In the past, the banquet’s gemstone billions of tons of heat-trapping carbon themes have included colored diamonds dioxide that humans have pumped into the (2011), tanzanite (2012), jade (2013), ruby air since the beginning of the Industrial (2014), garnet (2015), opal (2016) and most Age. -
On Palaeozoic–Mesozoic Brittle Normal Faults Along the SW Barents Sea Margin: Fault Processes and Implications for Basement Permeability and Margin Evolution
research-articleResearch ArticleXXX10.1144/jgs2014-018K. Indrevær et al.Brittle Faults on the SW Barents Sea Margin 2014 Downloaded from http://jgs.lyellcollection.org/ by guest on October 9, 2021 Journal of the Geological Society, London. http://dx.doi.org/10.1144/jgs2014-018 Published Online First © 2014 The Authors On Palaeozoic–Mesozoic brittle normal faults along the SW Barents Sea margin: fault processes and implications for basement permeability and margin evolution KJETIL INDREVÆR1,2*, HOLGER STUNITZ1 & STEFFEN G. BERGH1 1Department of Geology, University of Tromsø, N-9037 Tromsø, Norway 2DONG E&P Norge AS, Roald Amundsens Plass 1, N-9257 Tromsø, Norway *Corresponding author (e-mail: [email protected]) Abstract: Palaeozoic–Mesozoic brittle normal faults onshore along the SW Barents Sea passive margin off northern Norway give valuable insight into fault and fluid flow processes from the lower brittle crust. Micro- structural evidence suggests that Late Permian–Early Triassic faulting took place during multiple phases, with initial fault movement at minimum P–T conditions of c. 300 °C and c. 240 MPa (c. 10 km depth), followed by later fault movement at minimum P–T conditions of c. 275 °C and c. 220 MPa (c. 8.5 km depth). The study shows that pore pressures locally reached lithostatic levels (240 MPa) during faulting and that faulting came to a halt during early (deep) stages of rifting along the margin. Fault permeability has been controlled by heal- ing and precipitation processes through time, which have sealed off the core zone and eventually the damage zones after faulting. A minimum average exhumation rate of c. -
Thirty-Fourth List of New Mineral Names
MINERALOGICAL MAGAZINE, DECEMBER 1986, VOL. 50, PP. 741-61 Thirty-fourth list of new mineral names E. E. FEJER Department of Mineralogy, British Museum (Natural History), Cromwell Road, London SW7 5BD THE present list contains 181 entries. Of these 148 are Alacranite. V. I. Popova, V. A. Popov, A. Clark, valid species, most of which have been approved by the V. O. Polyakov, and S. E. Borisovskii, 1986. Zap. IMA Commission on New Minerals and Mineral Names, 115, 360. First found at Alacran, Pampa Larga, 17 are misspellings or erroneous transliterations, 9 are Chile by A. H. Clark in 1970 (rejected by IMA names published without IMA approval, 4 are variety because of insufficient data), then in 1980 at the names, 2 are spelling corrections, and one is a name applied to gem material. As in previous lists, contractions caldera of Uzon volcano, Kamchatka, USSR, as are used for the names of frequently cited journals and yellowish orange equant crystals up to 0.5 ram, other publications are abbreviated in italic. sometimes flattened on {100} with {100}, {111}, {ill}, and {110} faces, adamantine to greasy Abhurite. J. J. Matzko, H. T. Evans Jr., M. E. Mrose, lustre, poor {100} cleavage, brittle, H 1 Mono- and P. Aruscavage, 1985. C.M. 23, 233. At a clinic, P2/c, a 9.89(2), b 9.73(2), c 9.13(1) A, depth c.35 m, in an arm of the Red Sea, known as fl 101.84(5) ~ Z = 2; Dobs. 3.43(5), D~alr 3.43; Sharm Abhur, c.30 km north of Jiddah, Saudi reflectances and microhardness given. -
19, 2017 Namibia IGC 2017 N Amibia 35 TH IG C 2017 INTERNATIONAL GEMMOLOGICAL CONFERENCE NAMIBIA October 8 - 19, 2017 Namibia
35 TH IG C 2017 INTERNATIONAL GEMMOLOGICAL CONFERENCE NAMIBIA October 8 - 19, 2017 Namibia IGC 2017 N 35 TH IG C 2017 INTERNATIONAL GEMMOLOGICAL amibia CONFERENCE NAMIBIA October 8 - 19, 2017 Namibia www.igc-gemmology.org 35th IGC 2017 – Windhoek, Namibia Introduction 35th International Gemmological Conference IGC October 2017 Windhoek, Namibia Dear colleagues of IGC, It is our great pleasure to host the 35th International Gemmological Conference in Windhoek, Namibia. The spectacu- lar landscape, the species-richness of wildlife and the variety of cultures and traditions make Namibia a very popular country to visit. For gemmologists Namibia is of highest interest because of its unique geology, mineral resources and gemstone potential. IGC is an important platform for distinguished gemmologists from all over the world to present and discuss their latest research works but also to cultivate friendship within the gemmological family. It is our great desire to thank the local organizer Andreas Palfi for his extraordinary work to realize the IGC in Namibia. The organizers of 35th International Gemmological Conference wish you an exciting and memorable conference. Dr. Ulrich Henn, Prof. Dr. Henry A. Hänni, Andreas G. Palfi MSc The organizers of the 35th International Gemmological Confe- rence in Namibia. From the left: Andreas Palfi, Ruth Palfi, Ulrich Henn, Annamarie Peyer, Henry A. Hänni at Okapuka Ranch, Namibia in 2016. 1 35th IGC 2017 – Windhoek, Namibia Introduction Organization of the 35th International Gemmological Conference Organizing Committee Dr. Ulrich Henn (German Gemmological Association) Prof. Dr. Henry A. Hänni (Swiss Gemmological Institute SSEF) Andreas G. Palfi MSc (local organizer, Consulting Exploration Geologist, Palfi, Holman and Associates, Geo Tours Namibia and Namibia Minerals) Dr. -
MINERALOGY for PETROLOGISTS Comprising a Guidebook and a Full Color CD-ROM, This Reference Set Offers Illustrated Essentials to Study Mineralogy, Applied to Petrology
MINERALOGY for PETROLOGISTS for MINERALOGY Comprising a guidebook and a full color CD-ROM, this reference set offers illustrated essentials to study mineralogy, applied to petrology. While there are some excellent reference works available on this subject, this work is unique for its data richness and its visual character. MINERALOGY for PETROLOGISTS With a collection of images that excels both in detail and aesthetics, 151 minerals are presented in more than 400 plates. Different facies and paragenesis, both in natural polarized light, are shown for every mineral and optical data, sketches of the crystal habitus, chemical composition, occurrence and a brief description are Optics, Chemistry and Occurrences included. The accompanying user guide gives a general introduction to microscope mineral observation, systematic mineralogy, mineral chemistry, occurrence, of Rock-Forming Minerals stability, paragenesis, structural formula calculation and its use in petrology. This compact set will serve as a field manual to students, researchers and Michel Demange professionals in geology, geological, mining, and mineral resources engineering to observe and determine minerals in their studies or field work. Dr. Michel Demange has devoted his career to regional geology and tectonics of metamorphic and magmatic terranes and to ore deposits. Graduated from the École Nationale Supérieure des Mines de Paris and holding a Docteur-es-Sciences from the University Pierre et Marie Curie, Paris VI, he has been active in a rich variety of geological projects and investigations around the world. In combination with his teaching and research activities at the École des Mines in Paris, France, he headed various research studies. This book benefits from the great experience in field M. -
Non-Stoichiometric Magnesium Aluminate Spinel
NON-STOICHIOMETRIC MAGNESIUM ALUMINATE SPINEL: MICROSTRUCTURE EVOLUTION AND ITS EFFECT ON PROPERTIES by J. Aaron Miller A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Materials Science). Golden, Colorado Date _________________________ Signed: __________________________________ J. Aaron Miller Signed: __________________________________ Ivar E. Reimanis Thesis Advisor Golden, Colorado Date _________________________ Signed: _________________________ Dr. Angus Rockett Professor and Head Department of Metallurgical and Materials Engineering ii ABSTRACT Magnesium aluminate spinel is a material of interest for transparent armor applications. Owing to its unique combination of transparency to large portions of the electromagnetic spectrum and mechanical robustness, spinel is among the front runners for applications including transparent armor windows for military vehicles and space craft windows, missile radomes, and infrared windows. However, failure in such applications may lead to severe outcomes, creating motivation to further improve the mechanical reliability of the materials used. In this thesis, potential toughening mechanisms that utilize unique control over the evolution of second phase particles are explored. Al-rich spinel (MgO•nAl2O3) with a composition of n = 2 is investigated. First, it is demonstrated that precipitation of second phase Al2O3 from single phase spinel can be achieved by modifying the densification