Micrornas Link the Germinal Center Reaction and B Cell Lymphomagenesis

Total Page:16

File Type:pdf, Size:1020Kb

Micrornas Link the Germinal Center Reaction and B Cell Lymphomagenesis Universidad Autónoma de Madrid Departamento de Bioquímica microRNAs link the Germinal Center reaction and B cell lymphomagenesis PhD Thesis Nahikari Bartolomé Izquierdo Madrid, 2016 Departamento de Bioquímica Facultad de Medicina Universidad Autónoma de Madrid microRNAs link the Germinal Center reaction and B cell lymphomagenesis Memoria presentada por la licenciada en Bioquímica Nahikari Bartolomé Izquierdo para optar al título de Doctor por la Universidad Autónoma de Madrid Directores de tesis: Dra. Almudena R. Ramiro Dra. Virginia García de Yébenes Este trabajo ha sido realizado en el laboratorio de Linfocitos B, en Centro Nacional de Investigaciones Cardiovasculares (CNIC) Madrid, 2016 ABSTRACT Germinal centers (GC) are microstructures where B cells that have been activated by antigen undergo a developmental program that involves the somatic diversification of their immunoglobulin genes and intense proliferative activity coupled to apoptotic selective events. As a result, from GCs emerge plasma cells and memory B cells that bear immunoglobulins with higher affinity for the initi- ating antigen and with more versatile effector functions. While ensuring a competent humoral im- mune response, GCs are also a site particularly prone to neoplastic transformation. Indeed, the vast majority of human lymphomas arise from GC-experienced B cells. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression post- transcriptionally. In the past years miRNAs have arisen as key regulators of the immune function, however little is known of their role in GC B cells. In this work, we have identified miR-217 and miR- 28 as GC microRNAs and have explored their functional impact in GC events and in B cell lym- phomagenesis. We observed that miR-217 is a positive modulator of the GC response that boosts immuno- globulin diversification, i.e. the generation of class-switched antibodies and the frequency of somatic hypermutation. We found that miR-217 dampens the expression of a DNA damage response and re- pair gene network and in turn stabilizes Bcl-6 expression in GC B cells. Importantly, miR-217 overex- pression also promotes mature B-cell lymphomagenesis; this is physiologically relevant as we find that miR-217 is overexpressed in aggressive human B-cell lymphomas. In contrast, miR-28 acts as a negative regulator of the GC response that impairs B cell prolifera- tion and survival through the regulation of a BCR signaling gene network. In addition, we found that miR-28 expression is lost in a wide range of GC-derived human malignancies. Further, miR-28 re- expression dramatically inhibits tumor growth in various lymphoma models, suggesting that miR-28 is a tumor suppressor for GC-derived neoplasias. Together, we have found that miR-217 and miR-28 provide antagonistic regulatory roles of the GC reaction that are intimately intertwined with pathways leading to B cell transformation. In addi- tion, our results open new perspectives for the development of a novel therapeutic strategy for the treatment of B cell tumors based on miR-28 replacement. 7 RESUMEN Los centros germinales (CG) son microestructuras donde las células B que han sido activadas por antígeno llevan a cabo un programa madurativo que implica la diversificación somática de los genes de inmunoglobulinas y una intensa actividad proliferativa asociada con procesos de selección apoptóticos. Como resultado, de los CG emergen células plasmáticas y células B memoria que portan inmunoglobulinas con mayor afinidad por el antigeno iniciador, y con mayor versatilidad funcional. Aunque aseguran la eficiencia de la respuesta inmune humoral, los CG son también un entorno parti- cularmente propenso a la transformación maligna. De hecho, la inmensa mayoría de los linfomas humanos tienen su origen en células B que han pasado por un CG. Los microRNAs (miRNAs) son moléculas de RNAs pequeñas y no codificantes que regulan la expresión génica post-transcripcionalmente. En los últimos años los miRNAs han surgido como regu- ladores clave de la función inmune, pero se sabe muy poco de su función en células B de CGs. En este trabajo hemos identificado a miR-217 y miR-28 como miRNAs de CG y hemos explorado su impacto funcional en los procesos asociados a CGs y a la linfomagénesis B. Observamos que miR-217 es un modulador positivo de la respuesta de CG que aumenta la di- versificación de anticuerpos, es decir, la generación de cambio de isotipo y la hipermutación somáti- ca. Encontramos que miR-217 amortigua la expresión de una red de genes implicados en la respuesta al daño y la reparación del DNA y a su vez estabiliza la expresión de Bcl-6 en células B de CG. Además, la sobreexpresión de miR-217 induce la generación de linfomas B; esta observación es relevante fisio- lógicamente porque encontramos que miR-217 está sobre-expresado en ciertos linfomas B humanos. Por el contrario, miR-28 actúa como un regulador negativo de la respuesta de CG, que dismi- nuye la proliferación y la supervivencia de las células B mediante la regulación de la señalización a través del BCR. También encontramos que la expresión de miR-28 se pierde en un amplio espectro de neoplasias derivadas de CGs. Finalmente, la re-expresión de miR-28 produce una inhibición dra- mática en el crecimiento tumoral en diversos modelos de linfoma, lo que sugiere que miR-28 es un supresor de tumores en neoplasias derivadas de CG. En conjunto, hemos encontrado que miR-217 y miR-28 tienen funciones antagónicas en la re- gulación del CG y que estas están íntimamente relacionadas con los mecanismos que dan lugar a la transformación de las células B . Además, nuestros resultados abren nuevas posibilidades para el desarrollo de estrategias terapéuticas para el tratamiento de linfomas B, basadas en la re-expresión de miR-28. 9 INDEX ABSTRACT/RESUMEN ....................................................................................................... 7-9 ABBREVIATIONS ................................................................................................................ 15 INTRODUCTION ................................................................................................................. 19 1. B cell differentiation and function .............................................................................. 19 1.1. Immune system: innate immunity and adaptive immunity ......................................... 19 1.2. B cell differentiation and antibody diversification ....................................................... 19 1.2.1- Early B cell differentiation and primary antibody diversification .......................... 20 1.2.2- The Germinal Center reaction and secondary antibody diversification ................ 20 1.3. The Germinal Center transcriptional program ............................................................. 22 1.4. B cell lymphomas ......................................................................................................... 24 1.4.1- Classification and etiology .................................................................................... 24 1.4.2- Oncogenic signaling .............................................................................................. 25 1.4.3- Transcriptional regulators and lymphomagenesis ................................................ 27 1.4.4- B cell lymphoma treatment ................................................................................... 28 2. miRNA control of B cell physiology ............................................................................. 29 2.1. Bases of miRNA biology ................................................................................................ 29 2.2. miRNA control of B cell function .................................................................................. 30 2.3. miRNAs in B cell lymphomagenesis ............................................................................. 32 2.4. miRNA mediated therapeutics ..................................................................................... 33 OBJECTIVES ....................................................................................................................... 37 MATERIALS AND METHODS ............................................................................................... 41 RESULTS ............................................................................................................................ 57 1. Role of miR-217 in Germinal Center reaction and in B cell lymphomagenesis ............... 59 1.1. miR-217 expression is upregulated in activated B cells ............................................... 59 1.2. Generation of B cell specific mouse models ................................................................ 59 1.3. miR-217 expression enhances the Germinal Center reaction ..................................... 61 1.4. Inhibition of endogenous miR-217 impairs the Germinal Center reaction in vivo ...... 64 1.5. miR-217 regulates a DNA damage response and repair gene network and stabilizes Bcl-6 expression in Germinal Center B cells ........................................................................ 66 1.5.1- Analysis of gene expression profile changes induced by miR-217 in Germinal Center B cells .............................................................................................................................. 66 1.5.2- Analysis of the DNA damage response and Bcl-6 expression in miR-217 over- expressing B cells upon genotoxic stress ........................................................................
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Identification of Transcriptional Mechanisms Downstream of Nf1 Gene Defeciency in Malignant Peripheral Nerve Sheath Tumors Daochun Sun Wayne State University
    Wayne State University DigitalCommons@WayneState Wayne State University Dissertations 1-1-2012 Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors Daochun Sun Wayne State University, Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations Recommended Citation Sun, Daochun, "Identification of transcriptional mechanisms downstream of nf1 gene defeciency in malignant peripheral nerve sheath tumors" (2012). Wayne State University Dissertations. Paper 558. This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState. IDENTIFICATION OF TRANSCRIPTIONAL MECHANISMS DOWNSTREAM OF NF1 GENE DEFECIENCY IN MALIGNANT PERIPHERAL NERVE SHEATH TUMORS by DAOCHUN SUN DISSERTATION Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY 2012 MAJOR: MOLECULAR BIOLOGY AND GENETICS Approved by: _______________________________________ Advisor Date _______________________________________ _______________________________________ _______________________________________ © COPYRIGHT BY DAOCHUN SUN 2012 All Rights Reserved DEDICATION This work is dedicated to my parents and my wife Ze Zheng for their continuous support and understanding during the years of my education. I could not achieve my goal without them. ii ACKNOWLEDGMENTS I would like to express tremendous appreciation to my mentor, Dr. Michael Tainsky. His guidance and encouragement throughout this project made this dissertation come true. I would also like to thank my committee members, Dr. Raymond Mattingly and Dr. John Reiners Jr. for their sustained attention to this project during the monthly NF1 group meetings and committee meetings, Dr.
    [Show full text]
  • Table SII. Significantly Differentially Expressed Mrnas of GSE23558 Data Series with the Criteria of Adjusted P<0.05 And
    Table SII. Significantly differentially expressed mRNAs of GSE23558 data series with the criteria of adjusted P<0.05 and logFC>1.5. Probe ID Adjusted P-value logFC Gene symbol Gene title A_23_P157793 1.52x10-5 6.91 CA9 carbonic anhydrase 9 A_23_P161698 1.14x10-4 5.86 MMP3 matrix metallopeptidase 3 A_23_P25150 1.49x10-9 5.67 HOXC9 homeobox C9 A_23_P13094 3.26x10-4 5.56 MMP10 matrix metallopeptidase 10 A_23_P48570 2.36x10-5 5.48 DHRS2 dehydrogenase A_23_P125278 3.03x10-3 5.40 CXCL11 C-X-C motif chemokine ligand 11 A_23_P321501 1.63x10-5 5.38 DHRS2 dehydrogenase A_23_P431388 2.27x10-6 5.33 SPOCD1 SPOC domain containing 1 A_24_P20607 5.13x10-4 5.32 CXCL11 C-X-C motif chemokine ligand 11 A_24_P11061 3.70x10-3 5.30 CSAG1 chondrosarcoma associated gene 1 A_23_P87700 1.03x10-4 5.25 MFAP5 microfibrillar associated protein 5 A_23_P150979 1.81x10-2 5.25 MUCL1 mucin like 1 A_23_P1691 2.71x10-8 5.12 MMP1 matrix metallopeptidase 1 A_23_P350005 2.53x10-4 5.12 TRIML2 tripartite motif family like 2 A_24_P303091 1.23x10-3 4.99 CXCL10 C-X-C motif chemokine ligand 10 A_24_P923612 1.60x10-5 4.95 PTHLH parathyroid hormone like hormone A_23_P7313 6.03x10-5 4.94 SPP1 secreted phosphoprotein 1 A_23_P122924 2.45x10-8 4.93 INHBA inhibin A subunit A_32_P155460 6.56x10-3 4.91 PICSAR P38 inhibited cutaneous squamous cell carcinoma associated lincRNA A_24_P686965 8.75x10-7 4.82 SH2D5 SH2 domain containing 5 A_23_P105475 7.74x10-3 4.70 SLCO1B3 solute carrier organic anion transporter family member 1B3 A_24_P85099 4.82x10-5 4.67 HMGA2 high mobility group AT-hook 2 A_24_P101651
    [Show full text]
  • Egfr Activates a Taz-Driven Oncogenic Program in Glioblastoma
    EGFR ACTIVATES A TAZ-DRIVEN ONCOGENIC PROGRAM IN GLIOBLASTOMA by Minling Gao A thesis submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March 2020 ©2020 Minling Gao All rights reserved Abstract Hyperactivated EGFR signaling is associated with about 45% of Glioblastoma (GBM), the most aggressive and lethal primary brain tumor in humans. However, the oncogenic transcriptional events driven by EGFR are still incompletely understood. We studied the role of the transcription factor TAZ to better understand master transcriptional regulators in mediating the EGFR signaling pathway in GBM. The transcriptional coactivator with PDZ- binding motif (TAZ) and its paralog gene, the Yes-associated protein (YAP) are two transcriptional co-activators that play important roles in multiple cancer types and are regulated in a context-dependent manner by various upstream signaling pathways, e.g. the Hippo, WNT and GPCR signaling. In GBM cells, TAZ functions as an oncogene that drives mesenchymal transition and radioresistance. This thesis intends to broaden our understanding of EGFR signaling and TAZ regulation in GBM. In patient-derived GBM cell models, EGF induced TAZ and its known gene targets through EGFR and downstream tyrosine kinases (ERK1/2 and STAT3). In GBM cells with EGFRvIII, an EGF-independent and constitutively active mutation, TAZ showed EGF- independent hyperactivation when compared to EGFRvIII-negative cells. These results revealed a novel EGFR-TAZ signaling axis in GBM cells. The second contribution of this thesis is that we performed next-generation sequencing to establish the first genome-wide map of EGF-induced TAZ target genes.
    [Show full text]
  • Demography-Adjusted Tests of Neutrality Based on Genome-Wide SNP Data
    Demography-adjusted tests of neutrality based on genome-wide SNP data M. Rafajlovic´a,d, A. Klassmannb,d, A. Erikssonc, T. Wieheb, and B. Mehliga aDepartment of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden bInstitut f¨ur Genetik, Universitat¨ zu Koln,¨ 50674 Koln,¨ Germany cDepartment of Zoology, University of Cambridge, CB2 3EJ Cambridge, UK dThese authors have equally contributed to this work Tests of the neutral evolution hypothesis are usually built on the standard null model which assumes that mutations are neutral and population size remains constant over time. However, it is unclear how such tests are affected if the last assumption is dropped. Here, we extend the unifying framework for tests based on the site frequency spectrum, introduced by Achaz and Ferretti, to populations of varying size. A key ingredient is to specify the first two moments of the frequency spectrum. We show that these moments can be determined analytically if a population has experienced two instantaneous size changes in the past. We apply our method to data from ten human populations gathered in the 1000 genomes project, estimate their demographies and define demography-adjusted versions of Tajima’s D, Fay & Wu’s H, and Zeng’s E. The adjusted test statistics facilitate the direct comparison between populations and they show that most of the differences among populations seen in the original tests can be explained by demography. We carried out whole genome screens for deviation from neutrality and identified candidate regions of recent positive selec- tion. We provide track files with values of the adjusted and original tests for upload to the UCSC genome browser.
    [Show full text]
  • Mechanism of Ant1-Induced Human Diseases and Stress Signaling
    MECHANISM OF ANT1-INDUCED HUMAN DISEASES AND STRESS SIGNALING Item Type Dissertation Authors Liu, Yaxin Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 09/10/2021 19:50:21 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/20.500.12648/1772 MECHANISM OF ANT1-INDUCED HUMAN DISEASES AND STRESS SIGNALING Yaxin Liu A Dissertation in Department of Biochemistry and Molecular Biology Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Graduate Studies of State University of New York, Upstate Medical University. Approved Date Abstract Mechanism of Ant1-induced Human Diseases and Stress Signaling Yaxin Liu Xin Jie Chen Adenine nucleotide translocase (Ant) is a mitochondrial inner membrane protein, the primary function of which is to mediate the ADP/ATP exchange across the inner membrane. Missense mutations in Ant1, the skeletal muscle- and heart-specific isoform, induce human disorders including autosomal dominant Progressive External Opthalmoplegia (adPEO), cardiomyopathy and myopathy. Several models were proposed to interpret the pathogenesis of mutant Ant1-induced diseases, but no consensus has been reached. Our lab has previously found that mutant Aac2, the homolog of Ant1 in yeast, causes cell death due to the mitochondrial biogenesis defect. In the present study, we provided biochemical evidence supporting the idea that the mutant Aac2 proteins are misfolded, which derails the proteostasis on the inner membrane. We found that the assembly and stability of multiple protein complexes on the inner membrane are affected, including those involved in mitochondrial respiration and protein transport.
    [Show full text]
  • 1 Cell-Type Specific Eqtl of Primary Melanocytes Facilitates Identification
    bioRxiv preprint doi: https://doi.org/10.1101/231423; this version posted December 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cell-type specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes Tongwu Zhang1,7, Jiyeon Choi1,7, Michael A. Kovacs1, Jianxin Shi2, Mai Xu1, NISC Comparative Sequencing Program9, Melanoma Meta-Analysis Consortium10, Alisa M. Goldstein3, Mark M. Iles4, Stuart MacGregor5, Laufey T. Amundadottir1, Matthew H. Law5, Stacie K. Loftus6, William J. Pavan6,8, Kevin M. Brown1,8 1 Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National institutes of Health, Bethesda, Maryland 20892, USA; 2 Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National institutes of Health, Bethesda, Maryland 20892, USA; 3 Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National institutes of Health, Bethesda, Maryland 20892, USA; 4 Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK. 5 Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; 6 Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA 7 These authors contributed equally to this work 8 These authors co-supervised this work 9,10 A complete list of consortium authors appears at the end of this paper Corresponding authors: [email protected], [email protected] RUNNING TITLE: Cell-type specific melanocyte eQTL dataset KEY WORDS: eQTL, Melanocyte, Melanoma, cell-type specific 1 bioRxiv preprint doi: https://doi.org/10.1101/231423; this version posted December 8, 2017.
    [Show full text]
  • Identification of Biomarkers, Pathways and Potential Therapeutic Targets for Heart Failure Using Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455244; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of biomarkers, pathways and potential therapeutic targets for heart failure using bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.08.05.455244; this version posted August 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Heart failure (HF) is a complex cardiovascular diseases associated with high mortality. To discover key molecular changes in HF, we analyzed next-generation sequencing (NGS) data of HF. In this investigation, differentially expressed genes (DEGs) were analyzed using limma in R package from GSE161472 of the Gene Expression Omnibus (GEO). Then, gene enrichment analysis, protein-protein interaction (PPI) network, miRNA-hub gene regulatory network and TF-hub gene regulatory network construction, and topological analysis were performed on the DEGs by the Gene Ontology (GO), REACTOME pathway, STRING, HiPPIE, miRNet, NetworkAnalyst and Cytoscape. Finally, we performed receiver operating characteristic curve (ROC) analysis of hub genes. A total of 930 DEGs 9464 up regulated genes and 466 down regulated genes) were identified in HF.
    [Show full text]
  • A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression
    Supplementary Materials A Meta-Analysis of the Effects of High-LET Ionizing Radiations in Human Gene Expression Table S1. Statistically significant DEGs (Adj. p-value < 0.01) derived from meta-analysis for samples irradiated with high doses of HZE particles, collected 6-24 h post-IR not common with any other meta- analysis group. This meta-analysis group consists of 3 DEG lists obtained from DGEA, using a total of 11 control and 11 irradiated samples [Data Series: E-MTAB-5761 and E-MTAB-5754]. Ensembl ID Gene Symbol Gene Description Up-Regulated Genes ↑ (2425) ENSG00000000938 FGR FGR proto-oncogene, Src family tyrosine kinase ENSG00000001036 FUCA2 alpha-L-fucosidase 2 ENSG00000001084 GCLC glutamate-cysteine ligase catalytic subunit ENSG00000001631 KRIT1 KRIT1 ankyrin repeat containing ENSG00000002079 MYH16 myosin heavy chain 16 pseudogene ENSG00000002587 HS3ST1 heparan sulfate-glucosamine 3-sulfotransferase 1 ENSG00000003056 M6PR mannose-6-phosphate receptor, cation dependent ENSG00000004059 ARF5 ADP ribosylation factor 5 ENSG00000004777 ARHGAP33 Rho GTPase activating protein 33 ENSG00000004799 PDK4 pyruvate dehydrogenase kinase 4 ENSG00000004848 ARX aristaless related homeobox ENSG00000005022 SLC25A5 solute carrier family 25 member 5 ENSG00000005108 THSD7A thrombospondin type 1 domain containing 7A ENSG00000005194 CIAPIN1 cytokine induced apoptosis inhibitor 1 ENSG00000005381 MPO myeloperoxidase ENSG00000005486 RHBDD2 rhomboid domain containing 2 ENSG00000005884 ITGA3 integrin subunit alpha 3 ENSG00000006016 CRLF1 cytokine receptor like
    [Show full text]
  • Us 2018 / 0305689 A1
    US 20180305689A1 ( 19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0305689 A1 Sætrom et al. ( 43 ) Pub . Date: Oct. 25 , 2018 ( 54 ) SARNA COMPOSITIONS AND METHODS OF plication No . 62 /150 , 895 , filed on Apr. 22 , 2015 , USE provisional application No . 62/ 150 ,904 , filed on Apr. 22 , 2015 , provisional application No. 62 / 150 , 908 , (71 ) Applicant: MINA THERAPEUTICS LIMITED , filed on Apr. 22 , 2015 , provisional application No. LONDON (GB ) 62 / 150 , 900 , filed on Apr. 22 , 2015 . (72 ) Inventors : Pål Sætrom , Trondheim (NO ) ; Endre Publication Classification Bakken Stovner , Trondheim (NO ) (51 ) Int . CI. C12N 15 / 113 (2006 .01 ) (21 ) Appl. No. : 15 /568 , 046 (52 ) U . S . CI. (22 ) PCT Filed : Apr. 21 , 2016 CPC .. .. .. C12N 15 / 113 ( 2013 .01 ) ; C12N 2310 / 34 ( 2013. 01 ) ; C12N 2310 /14 (2013 . 01 ) ; C12N ( 86 ) PCT No .: PCT/ GB2016 /051116 2310 / 11 (2013 .01 ) $ 371 ( c ) ( 1 ) , ( 2 ) Date : Oct . 20 , 2017 (57 ) ABSTRACT The invention relates to oligonucleotides , e . g . , saRNAS Related U . S . Application Data useful in upregulating the expression of a target gene and (60 ) Provisional application No . 62 / 150 ,892 , filed on Apr. therapeutic compositions comprising such oligonucleotides . 22 , 2015 , provisional application No . 62 / 150 ,893 , Methods of using the oligonucleotides and the therapeutic filed on Apr. 22 , 2015 , provisional application No . compositions are also provided . 62 / 150 ,897 , filed on Apr. 22 , 2015 , provisional ap Specification includes a Sequence Listing . SARNA sense strand (Fessenger 3 ' SARNA antisense strand (Guide ) Mathew, Si Target antisense RNA transcript, e . g . NAT Target Coding strand Gene Transcription start site ( T55 ) TY{ { ? ? Targeted Target transcript , e .
    [Show full text]
  • Exome Sequencing Enhanced Package Department of Pathology and Laboratory Medicine Feb 2012 UCLA Molecular Diagnostics Laboratories Page:1
    UCLA Health System Clinical Exome Sequencing Enhanced Package Department of Pathology and Laboratory Medicine Feb 2012 UCLA Molecular Diagnostics Laboratories Page:1 Gene_Symbol Total_coding_bp %_bp_>=10X Associated_Disease(OMIM) MARC1 1093 80% . MARCH1 1005 100% . MARC2 1797 92% . MARCH3 802 100% . MARCH4 1249 99% . MARCH5 861 96% . MARCH6 2907 100% . MARCH7 2161 100% . MARCH8 900 100% . MARCH9 1057 73% . MARCH10 2467 100% . MARCH11 1225 56% . SEPT1 1148 100% . SEPT2 1341 100% . SEPT3 1175 100% . SEPT4 1848 96% . SEPT5 1250 94% . SEPT6 1440 96% . SEPT7 1417 96% . SEPT8 1659 98% . SEPT9 2290 96% Hereditary Neuralgic Amyotrophy SEPT10 1605 98% . SEPT11 1334 98% . SEPT12 1113 100% . SEPT14 1335 100% . SEP15 518 100% . DEC1 229 100% . A1BG 1626 82% . A1CF 1956 100% . A2LD1 466 42% . A2M 4569 100% . A2ML1 4505 100% . UCLA Health System Clinical Exome Sequencing Enhanced Package Department of Pathology and Laboratory Medicine Feb 2012 UCLA Molecular Diagnostics Laboratories Page:2 Gene_Symbol Total_coding_bp %_bp_>=10X Associated_Disease(OMIM) A4GALT 1066 100% . A4GNT 1031 100% . AAAS 1705 100% Achalasia‐Addisonianism‐Alacrima Syndrome AACS 2091 94% . AADAC 1232 100% . AADACL2 1226 100% . AADACL3 1073 100% . AADACL4 1240 100% . AADAT 1342 97% . AAGAB 988 100% . AAK1 3095 100% . AAMP 1422 100% . AANAT 637 93% . AARS 3059 100% Charcot‐Marie‐Tooth Neuropathy Type 2 AARS 3059 100% Charcot‐Marie‐Tooth Neuropathy Type 2N AARS2 3050 100% . AARSD1 1902 98% . AASDH 3391 100% . AASDHPPT 954 100% . AASS 2873 100% Hyperlysinemia AATF 1731 99% . AATK 4181 78% . ABAT 1563 100% GABA‐Transaminase Deficiency ABCA1 6991 100% ABCA1‐Associated Familial High Density Lipoprotein Deficiency ABCA1 6991 100% Familial High Density Lipoprotein Deficiency ABCA1 6991 100% Tangier Disease ABCA10 4780 100% .
    [Show full text]