Mechanism of Ant1-Induced Human Diseases and Stress Signaling
Total Page:16
File Type:pdf, Size:1020Kb
MECHANISM OF ANT1-INDUCED HUMAN DISEASES AND STRESS SIGNALING Item Type Dissertation Authors Liu, Yaxin Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 09/10/2021 19:50:21 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/20.500.12648/1772 MECHANISM OF ANT1-INDUCED HUMAN DISEASES AND STRESS SIGNALING Yaxin Liu A Dissertation in Department of Biochemistry and Molecular Biology Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Graduate Studies of State University of New York, Upstate Medical University. Approved Date Abstract Mechanism of Ant1-induced Human Diseases and Stress Signaling Yaxin Liu Xin Jie Chen Adenine nucleotide translocase (Ant) is a mitochondrial inner membrane protein, the primary function of which is to mediate the ADP/ATP exchange across the inner membrane. Missense mutations in Ant1, the skeletal muscle- and heart-specific isoform, induce human disorders including autosomal dominant Progressive External Opthalmoplegia (adPEO), cardiomyopathy and myopathy. Several models were proposed to interpret the pathogenesis of mutant Ant1-induced diseases, but no consensus has been reached. Our lab has previously found that mutant Aac2, the homolog of Ant1 in yeast, causes cell death due to the mitochondrial biogenesis defect. In the present study, we provided biochemical evidence supporting the idea that the mutant Aac2 proteins are misfolded, which derails the proteostasis on the inner membrane. We found that the assembly and stability of multiple protein complexes on the inner membrane are affected, including those involved in mitochondrial respiration and protein transport. In human cells, the mutant Ant1 proteins have reduced steady-state levels and increased degradation, consistent with misfolding and increased susceptibility to protein quality control machineries. In the second part of the work, we sought to identify the cellular signaling pathways that respond to Ant1-induced proteostatic stress on the mitochondrial inner membrane. We generated ANT1 alleles that have enhanced toxicity and are able to induce i proteostatic stress on the inner membrane in human. Although these mutant Ant1 proteins only mildly affect mitochondrial respiration, they trigger robust transcriptional responses in the nucleus to remodel cellular signaling. The upregulation of the cytosolic chaperone/ubiquitin-proteasome systems, and the downregulation of mTOR signaling may serve as adaptive responses to mitigate mitochondrial Precursor Over-Accumulation Stress (mPOS), a novel pathway of cell death recently discovered in yeast. We also found that human cells respond to mitochondrial inner membrane stress by increasing Egr1 signaling and the alternative splicing of many genes important for cell survival/death control. In summary, the data suggested that protein misfolding causes Ant1-induced pathogenesis in human diseases. Our study provided support for mitochondria-induced proteostatic stress in the cytosol (or mPOS) in human cells. We also identified several novel mitochondria-to-nucleus signaling pathways, which may help in developing therapeutic interventions for the treatment of mitochondria-induced pathologies. ii Abbreviation ADP adenosine 5'-diphosphate °C degree Celsius µg microgram µL microliter µM micromolar A or Ala alanine AAA ATPase associated with diverse cellular activities Aac ADP/ATP carrier adPEO autosomal dominant progressive external opthalmoplegia ANOVA analysis of variance Ant adenine nucleotide translocase ATP adenosine 5'-triphosphate BN-PAGE blue native polyacrylamide gel electrophoresis bp base pair D or Asp aspartic acid DDM n-dodecyl β-D-maltoside DNA deoxyribonucleic acid EDTA ethylenediaminetetraacetic acid ER endoplasmic reticulum ETC electron transport chain FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone FDR false discovery rate iii g gram HA hemagglutinin HCl hydrochloric acid HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonate IMS intermembrane space kb kilobase pair KCl potassium chloride kDa kilo Dalton L or Leu leucine Li-Ac lithium acetate M molar M or Met methionine MDa mega Dalton MgCl2 magnesium chloride MIM mitochondrial inner membrane min minute mL milliliter mM millimolar mol mole MOM mitochondrial outer membrane mPOS mitochondrial precursor over-accumulation stress mRNA messenger RNA mtDNA mitochondrial DNA iv NaCl sodium chloride ng nanogram OCR oxygen consumption rate Oligo oligomycin OXPHOS oxidative phosphorylation P or Pro proline PBS phosphate buffer solution PCR polymerase chain reaction R or Arg arginine RIPA radioimmunoprecipitation assay RNA ribonucleic acid RNA-seq RNA sequencing ROS reactive oxygen species Rot/AA rotenone/antimycin A SDS sodium dodecyl sulfate SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis TIM translocase of the inner membrane TOM translocase of the outer membrane Tris tris(hydroxymethyl)aminomethane UPRmt mitochondrial unfolded protein response V volts V or Val valine w/v weight/volume ratio v WT wild-type YPD yeast extract/peptone/dextrose medium Δψ mitochondrial membrane potential vi Table of Contents Abstract ............................................................................................................................... i Abbreviation ..................................................................................................................... iii Chapter 1 General introduction .......................................................................................1 1.1 Structure of mitochondria ..............................................................................................1 1.1.1 Mitochondrial ultrastructure ....................................................................................2 1.1.2 Mitochondrial networks ..........................................................................................4 1.1.3 Mitochondrial genome ............................................................................................7 1.2 Biogenesis of mitochondrial proteins .........................................................................10 1.2.1 Mitochondrial proteome ........................................................................................10 1.2.2 Mitochondrial protein import ................................................................................12 1.3 Functions of mitochondria ...........................................................................................18 1.3.1 Mitochondria and oxidative phosphorylation .......................................................18 1.3.2 Mitochondria and thermogenesis ..........................................................................21 1.3.3 Mitochondria and Ca2+ homeostasis......................................................................22 1.3.4 Mitochondria and programmed cell death ............................................................24 1.4 Mitochondrial protein quality control and UPRmt........................................................26 1.4.1 Overview of mitochondrial protein quality control ...............................................26 1.4.2 Classification of human mitoproteases .................................................................27 1.4.3 Mitoproteases and protein quantity control ...........................................................29 1.4.4 Mitochondrial unfolded protein response (UPRmt) ...............................................33 1.5 Mitochondrial carrier proteins .....................................................................................38 1.5.1 Overview of SLC25 family proteins .....................................................................38 1.5.2 Adenine nucleotide translocase (Ant) ...................................................................39 Structure and function of Ant ................................................................................39 vii Altered Ant expression and human diseases .........................................................44 Dominant mutations in Ant1 and human diseases ................................................47 1.6 Research objectives ......................................................................................................53 Chapter 2 Misfolding of mutant adenine nucleotide translocase in yeast supports a novel mechanism of Ant1-induced muscle diseases ......................................................55 2.1 Abstract ........................................................................................................................56 2.2 Introduction ..................................................................................................................56 2.3 Results ..........................................................................................................................60 2.3.1 Mutant Aac2 proteins affect protein quality control on the mitochondrial inner membrane .......................................................................................................................60 2.3.2 Aac2 variants with the adPEO-type mutations are prone to aggregation .............62 2.3.3 The mutant Aac2 proteins affect the assembly and stability of multiple protein complexes on the inner membrane .................................................................................66 2.3.4 The i-AAA protease Yme1 plays a critical role in the quality control of misfolded Aac2 ...............................................................................................................................70