Development in Sidewall Reinforced Run-Flat Tire

Total Page:16

File Type:pdf, Size:1020Kb

Development in Sidewall Reinforced Run-Flat Tire Seoul 2000 FISITA World Automotive Congress F2000G427 June 12-15, 2000, Seoul, Korea Development in Sidewall Reinforced Run-Flat Tire Jin Kook Kim*, Yang Nam Lim, Nam-Jeon Kim Kumho Tire R&D Center , Kumho Industrial Co., Ltd. 555,Sochon-dong, Kwangsan-gu, Kwangju, 506-040, Korea Despite the disadvantages in aspects of ride comfort due to the thick sidewall, sidewall reinforced run-flat tires, compared to other types of run-flat tires, have more advantages in use of commercially available rim, easy assembly of tire and rim and manufacturing processibility. In this paper, the design concepts and problems encountered in the development of sidewall reinforced run-flat tires are studied. The condition of no internal air pressure under the vertical load induces the severe bending force on the sidewalls of the tire. To develop the sidewall reinforcing rubber compound and the sidewall construction to support this bending force efficiently are the core concerns for designing the sidewall reinforced run-flat tire. The bending force also causes a problem of bead unseating from the rim. In addition to that, another problem is how to solve the manufacturing process problems which come from thicker sidewall compared to the standard tires. Finite element method was widely used to understand the basic mechanism and to design the construction of the run-flat tire. Keywords: run-flat, tire, sidewall, tire which has reinforced sidewall to support vehicle INTRODUCTION weight Despite the disadvantages in aspects of ride comfort due Pneumatic tires appeared about 100 years ago. Only a to the thick sidewall, sidewall reinforced run-flat tires, few years were taken for pneumatic tires to replace the compared to other types of run-flat tires, have more wheel of a horse-drawn wagon which had been used in advantage in use of commercially available rim, easy many thousand years. Since then, the tires have allowed assembly of tire and rim and manufacturing processibility. dramatic improvements in ride comfort, handling, high In this paper, the design concepts and problems speed driving performance and fuel economy of the encountered in the development of sidewall reinforced vehicles. Pneumatic tires, however, have one decisive run-flat tires are studied. If it is not otherwise mentioned, shortcoming. That is, the vehicles can not move with no run-flat tire in this paper means a sidewall reinforced tire. internal air pressure. Through the review of literature and Finite element method was widely used to understand the patents published, we can easily recognize that a lot of basic mechanism and to design the construction of the run- efforts has been made to solve this shortcoming since flat tires. pneumatic tires have been used. Those efforts have resulted in the development of pneumatic tires that are able DESIGN CONCEPTS to function for a limited time and distance at zero or near- zero inflation pressure, or commonly referred to as “ run- Tread area of the tire is the contacting area to the road flat tires”. surface. Bead area of the tire is fitting area to the rim. And Run-flat tires have certain advantages over standard tires sidewall area of the tire is the middle area between tread not designed to allow the vehicle to continue running with and bead which flexes when the tire is rotating. The a loss of inflation pressure. It enhances the handling of the comparison of cut section layout between standard radial vehicle with sudden loss of inflation pressure, allows the tire and sidewall reinforced run-flat tire are shown in driver the opportunity to find a more convenient time and figure 1. location to change the flat tire, allows the driver the ability In the development of run-flat tires, there are certainly to avoid hazardous roadside situations and allows to several difficulties. Figure 2 shows the deformed shape of eliminate the spare tires. run-flat tires with zero internal pressure under the vertical Run-flat tires that have been proposed until now can be load. This condition induces the severe bending force on broadly categorized into the following five types: 1)solid the sidewalls of the tire. The core concerns for designing tire which has no space inside of the tire; 2)dual tire which the sidewall reinforced run-flat tire are to develop the has another chamber inside of the tire; 3)sealant tire which sidewall reinforcing rubber compound and sidewall has self-sealing fluid inside of tires ; 4)supporting ring tire construction to support this bending force efficiently. The bending force also causes a problem of bead unseating from the rim. In addition to that, another problem is how to * Corresponding author. e-mail : solve the manufacturing process problems which result [email protected] from thicker sidewall compared to the standard radial tires which has a supporting ring so that it can provide support to the tire under excessive air loss; 5)sidewall reinforced 1 Higher section height makes higher bending deformation which is the main challenges to be solved. Therefore the higher the tire series, the more difficult the run-flat tire development. In this paper, main focus is on the development of 60 series run-flat tires which have comparatively high section height. Usually for the 60 series run-flat tires, 80km running distance at 80km/h is required. SIDEWALL CONSTRUCTION As mentioned earlier, for a run-flat tire to support the Figure 1 Comparison between standard and run-flat tire vehicle weight without air pressure, severe bending forces occur in the sidewalls. A little bit special sidewall layout is required to efficiently deal with this bending force. The main design concept of sidewall layout is to minimize the bending deformation within a given material. That is, as shown in figure 3(a), the sidewall construction, which is composed of fabric cord rubber composite layers at the outside of sidewall which are capable of resisting tensile force and rubber layers at the inside of sidewall which are capable of resisting compressive force. This kind of design concept is well known with numerous patents. Comparison tests are performed for the three sidewall constructions as shown in figure 4. All three cases of tires A,B,C were passed the regulation test for the indoor inflation durability (ECE R-30) which is on the normal usage condition. Zero pressure durability tests were conducted on a 67-inch drum loaded with a vehicle which Figure 2 Deformed shape of a run-flat tire at zero pressure of the weight was adjusted. The test results showed that sidewall construction design could make 2 times difference in zero pressure durability performance. The sidewall bending deformation creates the compressive force in tread area. The force makes the tread buckling. Inversely speaking, the higher compressive stiffness in the tread area, the less deformation in sidewall as shown in figure 3(b). A long run with zero pressure causes damage in the sidewall, especially the inside sidewall. During tire rotation, a region under highly concentrated compressive stress can be easily damaged. Therefore, an efficient design of sidewall construction is needed. One more point which should be considered is that the major flexible point in sidewall is changed along with different vehicle weight. (a) (b) So it is difficult to decide on a more reinforced region in the sidewall. Figure 3 Sidewall & tread design concept Figure 5 Comparison of deflection Figure 4 Three cases of sidewall construction 2 SIDEWALL MATERIAL One of the main factors to be considered for the run-flat tires is the tire weight. With a sufficient mount of rubber commonly used, any run-flat tire can support the vehicle weight at zero pressure condition. This tire, however, will be useless in real world due to the undesirable weight. 60 series run-flat tires known today are usually 30-50% heavier than common radial tires. Since tire weight is directly related to the fuel efficiency of vehicle, the weight must be kept as light as possible. Modulus of a sidewall reinforced rubber has an effect on the tire deflection. Effect of modulus is shown in figure 5. The deflection causes compressive deformation in the inner sidewall area. The compressive strain change during rotation is shown in figure. 6. Continuous running causes a cyclic loading resulting in hysterisis loss and a temperature rise. A typical S-N curve is shown in figure 7. As shown in this figure, strain amplitude and temperature rise affects the number of cycles hence tire life. In order to increase the number of cycles, strain amplitude and Figure 6 Compressive strain variation per a rotation temperature must be reduced. In other word, high modulus on sidewall inside element and low hysterisis rubber compound is needed. The normalized zero pressure durability test results of run-flat tires at zero pressure are shown in figure 8 and figure 9. Low vehicle weight and low speed give a dramatic increase in zero pressure running distance. High Modulus rubber usually shows an inferior flexing capability compared to conventional modulus rubber used in tires. At inflation condition, the cyclic strain amplitude per rotation of a run-flat tire is larger than that of a conventional tire's. Consequently a superior capability of flexing is required for relatively high strain amplitude. During most life of their lives, tires are run at inflation condition. So an effort to satisfy an inflation durability rather than zero pressure durability may be more difficult. A tire internal pressure monitoring sensor is needed to indicate low air pressure which will cause high compressive strain amplitude in the sidewall. Figure 7 S-N curve BEAD UNSEATING Figure 9 Normalized running distance at zero pressure Figure 8 Normalized running distance at zero pressure at given speed at given load 3 The design parameters of the tire bead are tire bead toe diameter, bead base angle, bead wire diameter, tire bead flange shape, as shown in Figure 10.
Recommended publications
  • What You Need to Know About Mounting Radial Tires on Classic Vehicle Rims
    What You Need to Know About Mounting Radial Tires on Classic Vehicle Rims Over the past 100 years, tires, and the wheels that support them, have gone through significant changes as a result of technical innovations in design, technology and materials. No single factor affects the handling and safety of a car’s ride more than the tire and the wheel it is mounted on and how the two work together as a unit. One nagging question that has been the subject of a lot of anecdotal evidence, speculation, and even more widespread rumor is whether rims designed for Bias ply tires can handle the stresses placed on them by Radial ply tires. And the answer is - it depends. It depends on how the rim was originally designed and built as well as whether the rim has few enough cycles on it, and how it has been driven. But most importantly it depends upon the construction of the tire and how it transmits the vehicle's load to where the rubber meets the road. In this paper, we want to educate you on the facts - not the wives tales or just plain bad information - about how Bias and Radial tires differ in working with the rim to provide a safe ride. Why is there a possible rim concern between Radial and Bias Tires? The fitting of radial tires, to wheels and rims originally designed for bias tires, is an application that may result in rim durability issues. Even same-sized bias and radial tires stress a rim differently, despite their nearly identical dimensions.
    [Show full text]
  • MICHELIN® X® TWEEL® TURF™ the Airless Radial Tire™ & Wheel Assembly
    MICHELIN® X® TWEEL® TURF™ The Airless Radial Tire™ & wheel assembly. Designed for use on zero turn radius mowers. ✓ NO MAINTENANCE ✓ NO COMPROMISE ✓ NO DOWNTIME MICHELIN® X® TWEEL® TURF™ No Maintenance – MICHELIN® X® TWEEL® TURF™ is one single unit, replacing the current tire/wheel/valve assembly. Once they are bolted on, there is no air pressure to maintain, and the common problem of unseated beads is completely eliminated. No Compromise – MICHELIN X TWEEL TURF has a consistent hub height which ensures the mower deck produces an even cut, while the full-width poly-resin spokes provide excellent lateral stability for outstanding side hill performance. The unique design of the spokes helps dampen the ride for enhanced operator comfort, even when navigating over curbs and other bumps. High performance compounds and an effi cient contact patch offer a long wear life that is two to three times that of a pneumatic tire at equal tread depth. No Downtime – MICHELIN X TWEEL TURF performs like a pneumatic tire, but without the risk and costly downtime associated with fl at tires and unseated beads. Zero degree belts and proprietary design provide great lateral stiffness, while resisting damage Multi-directional and absorbing impacts. tread pattern is optimized to provide excellent side hill stability and prevent turf High strength, damage. poly-resin spokes carry the load and absorb impacts, while damping the ride and providing a unique energy transfer that Michelin’s reduces “bounce.” proprietary Comp10 Cable™ forms a semi-rigid “shear beam”, Heavy gauge and allows the steel with 4 bolt load to hang hub pattern fi ts from the top.
    [Show full text]
  • MICHELIN® X® TWEEL Warranty Overview
    MICHELIN® TWEEL® Airless radial tire Warranty Guide Contents MICHELIN® Tweel® Tire Warranty Overview ............................................................................. 3–4 Common Warranty Specifi cations ...............................................................................................5 Parts of a Tweel® Airless Radial Tire .............................................................................................5 Examination Tools .......................................................................................................................6 MICHELIN® X® TWEEL® SSL AIRLESS RADIAL TIRES Technical Specifi cations: MICHELIN® X® Tweel® SSL Tires .............................................................6 MICHELIN® X® Tweel® SSL Tire Torque Specs and Retreading .......................................................7 Tweel® SSL Tire Warranty vs. Wear Guide ..............................................................................8–12 MICHELIN® X® TWEEL® TURF AIRLESS RADIAL TIRES Technical Specifi cations: MICHELIN® X® Tweel® Turf Tires ...........................................................13 Tweel® Turf Tire Proper Installation Instructions ..........................................................................13 Tweel® Turf Tire Warranty vs. Wear Guide ........................................................................... 14–17 MICHELIN® X® TWEEL® CASTERS Technical Specifi cations: MICHELIN® X® Tweel® Casters..............................................................17 Tweel® Caster Warranty
    [Show full text]
  • The World's Most Beautiful And... Best Performing Custom Designed Tires
    WelcomeWelcome ToTo TheThe World’sWorld’s MostMost BeautifulBeautiful and...and... BestBest PerformingPerforming CustomCustom DesignedDesigned TiresTires Bill Chapman Founder Diamond Back Classics I know what you are thinking! The tires on Bill’s Corvette are not correct. It’s not a show car-it is for my enjoyment. That’s the beauty of Diamond Back-you can get what’s period correct or you can get what you like. Custom whitewalls are not a problem. I offer many correct styles for the 60’s and 70’s cars or if you want something special, just let us know. My 2009 catalog features 16 product lines from 13” to 22” and anything in between. That’s more product than all the competitor’s combined. I’m also introducing two new top end product lines-the Diamond Back MX and the Diamond Back III. Both are built in North America by Michelin, the world’s most recognized tire manufacturer. If you’re going to spend over $200 per tire why not get the very best? Prices on the rest of my products will have a small increase and some will remain unchanged. Check out my warranty. It is the most solid, easy to understand warranty in the industry. My new extended warranty for $4.75 per tire is a smart move to protect your investment. As the year of the Great Recession begins, my goal remains unchanged-build the best looking, best performing product at a fair price. Thanks for all of your support! Confused and concerned about using radial tires on older rims? Get the facts ..
    [Show full text]
  • Correct Tires for 1953-82 Corvettes
    FULL OF HOT AIR Correct tires for 1953-82 Corvettes he subject of correct tires for your vintage Corvette can sometimes be an overwhelming subject. Finding an original NOS (New Old Stock) tire or, T heaven forbid, a full set of four plus a spare for some early Corvettes can be next to impossible, even with the internet and the vast number of parts ads in many ma- jor magazines. There are still some original tires out there, with these tires usually be- ing found in old tire warehouses or stumbled upon when a large car parts collection is liq- uidated. In either case, the sometimes-long search can be quite frustrating. The fact of the matter is that the types and sizes of tires that were used on Corvettes from 1953 through 1982 are quite varied in BF Goodrich Wide Whitewall construction and size. In addition, the us- the originals. It should be mentioned here age was somewhat varied from year to year that the DOT (Department of Transportation) dependent on the options that could be or- markings that are required to be on all repro- dered on the car. It should be stated here duction tires were not in use when the origi- that most Corvettes driven today do not car- nal tires were manufactured for most early ry the original tires they were delivered with to Corvettes. This is one quick way to discern if the dealership. Tire technology has changed the tire you are about to buy from an individ- dramatically over the last 40+ years and ual or dealer is an original or a new reproduc- most Corvette owners who drive their car on tion.
    [Show full text]
  • Hydroplaning Analysis for Tire Rolling Over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme
    Copyright © 2009 Tech Science Press CMC, vol.11, no.1, pp.33-58, 2009 Hydroplaning Analysis for Tire Rolling over Water Film with Various Thicknesses Using the LS-DYNA Fluid-Structure Interactive Scheme Syh-Tsang Jenq1;2 and Yuen-Sheng Chiu2 Abstract: Current work studies the transient hydroplaning behavior of 200 kPa inflated pneumatic radial tires with various types of tread patterns. Tires were nu- merically loaded with a quarter car weight of 4 kN, and then accelerated from rest rolling over a water film with a thickness of 5, 10 and 15 mm on top of a flat pavement. Tire structure is composed of outer rubber tread and inner fiber rein- forcing composite layers. The Mooney-Rivlin constitutive law and the classical laminated theory (CLT) were, respectively, used to describe the mechanical be- havior of rubber material and composite reinforcing layers. The tire hydroplaning phenomenon was analyzed by the commercial finite element code - LS-DYNA. The Arbitrary Lagrangian & Eulerian (ALE) formulation was adopted to depict the fluid-structure interaction (FSI) behavior. Three different tire tread patterns, i.e. the smooth (blank) tread pattern and the 9 and 18 mm wide longitudinally-grooved tread patterns, were constructed to perform the current transient hydroplaning anal- ysis. Simulated dynamic normal contact force and hydroplaning velocity of tire with a prescribed smooth tread pattern were obtained. The computed results were in good agreement with the numerical and test results given by Okano, et al. (2001) for tire running over 10 mm thick water fluid film. In addition, dynamic contact force of a smooth tread pattern tire rolling on a dry flat pavement was also found to be close to the result reported by Nakajima, et al.
    [Show full text]
  • Aircraft Tire Data
    Aircraft tire Engineering Data Introduction Michelin manufactures a wide variety of sizes and types of tires to the exacting standards of the aircraft industry. The information included in this Data Book has been put together as an engineering and technical reference to support the users of Michelin tires. The data is, to the best of our knowledge, accurate and complete at the time of publication. To be as useful a reference tool as possible, we have chosen to include data on as many industry tire sizes as possible. Particular sizes may not be currently available from Michelin. It is advised that all critical data be verified with your Michelin representative prior to making final tire selections. The data contained herein should be used in conjunction with the various standards ; T&RA1, ETRTO2, MIL-PRF- 50413, AIR 8505 - A4 or with the airframer specifications or military design drawings. For those instances where a contradiction exists between T&RA and ETRTO, the T&RA standard has been referenced. In some cases, a tire is used for both civil and military applications. In most cases they follow the same standard. Where they do not, data for both tires are listed and identified. The aircraft application information provided in the tables is based on the most current information supplied by airframe manufacturers and/or contained in published documents. It is intended for use as general reference only. Your requirements may vary depending on the actual configuration of your aircraft. Accordingly, inquiries regarding specific models of aircraft should be directed to the applicable airframe manufacturer.
    [Show full text]
  • Analysis of Influencing Factors of Tire Hydroplaning
    International Journal of Engineering Innovation & Research Volume 10, Issue 2, ISSN: 2277 – 5668 Analysis of Influencing Factors of Tire Hydroplaning Chengwei Xu1, Qingzhi Ma2, Jing Wang2, Ruifeng Sun3, Mengyu Xie1 and Congzhen Liu1* 1 School of Transportation and Vehicle Engineering, Shandong University of Technology, Shandong, Zibo, Zhangdian, 255049, China. 2 Technology Center, Shandong Tangjun Ouling Automobile Manufacture Co., Ltd., Shandong, Zibo, Zichuan, 255000, China. 3 Forestry College, Shandong Agricultural University, Shandong, Taian, Taishan, 271018, China. Date of publication (dd/mm/yyyy): 05/04/2021 Abstract – In order to study the influencing factors of tire hydroplaning performance on wet roads, the 205/55 R16 radial tire is used as the research object, and the finite element method is used to simulate the hydroplaning process of the tire. First, the tire finite element model is established, and then the “tire-water-road” finite element model is established using the CEL method to study the influence of water film thickness, vehicle speed, vertical load and tire pressure on tire hydroplaning performance. The results show that the road contact force and road contact area decrease with the increase of water film thickness and speed, and increase with the increase of vertical load and tire pressure. Appropriately reducing the speed and increasing the inflating pressure are helpful to driving safely in rainy weather. Keywords – Tire Hydroplaning, Coupled Euler-Lagrange (CEL), Wet Road, Radial Tire. I. INTRODUCTION The performance of safe driving on wet roads is the basic requirement for tires. Studies have shown that [1- 3], about 20% of road accidents occur in wet weather conditions, and tire hydroplaning is the main cause of accidents.
    [Show full text]
  • Experience the Performance Experience the Performance
    WORLD CLASS TECHNOLOGY & QUALITY PRODUCT GUIDE EXPERIENCE THE PERFORMANCE EXPERIENCE THE PERFORMANCE EXPERIENCE THE PERFORMANCE 30 DAY TEST DRIVE . 4 SPORT CHAMPIRO SX2 | EXTREME PERFORMANCE SUMMER . 6 . CHAMPIRO HPY | MAX PERFORMANCE SUMMER . 8 AS CHAMPIRO UHP | ULTRA HIGH PERFORMANCE ALL-SEASON . 10. COMFORT MAXTOUR LX | GRAND TOURING & CUV ALL-SEASON . 12. MAXTOUR ALL SEASON | PASSENGER ALL-SEASON . 14 . SUV / PICKUP ADVENTURO HT | HIGHWAY ALL-SEASON . 16 . 3 ADVENTURO AT | ON / OFF ROAD ALL-TERRAIN . 18 . PRO MAXMILER PRO | COMMERCIAL VAN ALL-SEASON . 20 MAXMILER ST | TRAILER SERVICE . 22 . POSITIONING CHARTS . 24 DESIGNATIONS, LOAD INDEX & SPEED RATING . 25 WARRANTIES & ROADSIDE ASSISTANCE . 26 It’s your call. Test Drive EXPERIENCE THE PERFORMANCE 30 DAY TEST DRIVE UP TO 500 MILES OR 30 DAYS, WHICHEVER COMES FIRST. Buy a set of GT Radial tires and try them on your car or light truck. Experience the performance of GT Radial tires for yourself. If you’re not completely satisfied, just return them to the dealer where you bought them. Your GT Radial dealer will replace the tires or refund the purchase price—it’s your call. SATISFACTION Visit www.GTRadial-US.com/30daytestdrive for more information. GUARANTEED CHAMPIRO HPY CHAMPIRO UHPAS MAXTOUR LX MAXTOUR ALL SEASON ADVENTURO HT ADVENTURO AT3 EXTREME PERFORMANCE SUMMER 15 / 17 / 18 Inch Extreme Grip Dry Wet Handling Speed Rating: W 35 - 50 Series Champiro SX2 is for drivers who need higher levels of grip, traction, response and control in dry and wet conditions . With an extremely aggressive asymmetric tread design for increased cornering UTQG: 200 A A - 260 A A stability and high-grip silica compound that gives consistent performance, it is suitable for track days, spirited driving and normal street use .
    [Show full text]
  • Tire Tread Depth and Wet Traction – a Review
    A Crain Communications Event 1725 Merriman Road * Akron, Ohio 44313-9006 Phone: 330.836.9180 * Fax: 330.836.1005 * www.rubbernews.com ITEC 2014 Paper W-4 All papers owned and copyrighted by Crain Communications, Inc. Reprint only with permission Tire Tread Depth and Wet Traction – A Review W. Blythe William Blythe, Inc. Palo Alto, California Introduction The relationship of tire tread depth to wet traction has been a subject of technical research and discussion since at least the mid 1960s. Now, nearly 50 years on, these discussions continue, and disagreements regarding the importance of improving wet traction also continue. During this time, bias-ply tires have been replaced by radial construction and, in the USA, highway speeds have increased; miles driven have approximately tripled. This Paper reviews research that strongly suggests an increase in minimum tire tread depth requirements would significantly and positively affect highway safety. Historical Data Radial tire wet frictional performance is compared to bias-ply tire performance in Figure 1, taken from [1], a 1967 Paper. Since radial tires comprise almost all passenger car tires in use, any conclusions relating to tire performance based upon bias-ply tires probably no longer are valid. In these braking tests of fully-treaded tires, water depth was controlled at ¼ inch. As an example of increased highway speeds, posted speed limits of 70 mph on “Interstate System and non-interstate system routes” changed in the USA from zero miles so posted in 1994 to 40,897 miles in 2000. [2] 1 Figure 1 – Radial vs Bias Ply Tires Braking Coefficients, ¼ Inch Water Depth, 1967 Figure 2 shows the estimated total miles driven on all USA roads per year from 1971 through 2013.
    [Show full text]
  • Michelin® X® Tweel® Airless Radial Tire Fitment Guide February 13, 2021
    Michelin® X® Tweel® Airless Radial Tire Fitment Guide February 13, 2021 Your Supplier of Choice gardnerinc.com ConteNts What is a Michelin ® X ® Tweel® Airless Radial Tire? MICHELIN® X® TWEEL TURF FOR ZERO-TURN RADIUS MOWERS No Maintenance GENERAL PRODUCT INFORMATION 2 The MICHELIN® X® TWEEL® airless radial tire is one single unit, replacing the current tire and wheel assembly. There is no need for complex mounting FITMENT DETAILS 3–20 equipment and once they are bolted on, there is no air pressure to maintain. No compromise MICHELIN® X® TWEEL UTV The unique energy transfer within the poly-resin spokes helps reduce the FOR ATVS AND UTVS “bounce” associated with pneumatic tires, while providing outstanding handling characteristics. GENERAL PRODUCT INFORMATION 21 No downtime (no flats!) ® FITMENT DETAILS 22–28 The TWEEL airless radial tire is designed to perform like a pneumatic tire, but without the inconvenience and downtime associated with fl at tires. MICHELIN® X® TWEEL SSL 2 FOR SKID STEER LOADERS GENERAL PRODUCT INFORMATION 29 FITMENT DETAILS 30–32 Use of incorrect mounting hardware can lead to separation of the TWEEL from the vehicle, loss of control, and serious injury or death Suggested fi tment information provided in this guide is based on available information at the time of publication. Manufacturer’s specifi cations are subject to change without notice. Page 1 Your Supplier of Choice gardnerinc.com MICHELIN® X® TWEEL® TURF (for zero-turn radius mowers) AVAILABLE IN SIZES TO FIT A WIDE RANGE OF MOWERS MOWERS MSPN CAI Description Size Center Color Max Load (lbs.) Wheel Offset (in.) Bolt Pattern Weight (lbs.) 01133 019985 X-Tweel Turf 18x8.5N10 Black 529 -0.4 4x4 in.
    [Show full text]
  • 2018 ST Radial Tires Product Guide Triangle Tire USA
    2018 ST Radial Tires Product Guide Triangle Tire USA Triangle Tire USA was established in January 2016 to provide high quality, innovative tire products at competitive prices to the American market. We offer a comprehensive product portfolio and a growing distribution network to service the needs of the market. We service the commercial industry with an extensive line of dependable and fuel efficient medium radial tire products for the trucking industry, as well as a full range of premium quality radial and bias Off the Road (OTR) products for construction, mining and aggregate operations. And for the consumer, we have a wide-ranging line up of passenger and light truck tires including ultra-high performance, winter tires and specialty trailer tires. At Triangle, our goal is to be the Premier Value Provider to the tire industry. We are currently partnering with exceptional distribution partners to help us build an extensive network that will make the Triangle brand easily accessible and widely available anytime and anywhere there is a need. Part of an Innovative and Growing Global Company Triangle Tire USA is part of Triangle Tyre Co. Ltd., a global company that manufactures more than 25 million tires annually in 5,200 different SKUs (tread patterns and sizes). Triangle tire products are now sold in more than 180 countries around the world. All Triangle tires are innovative, high-quality products due to the company’s unrelenting commitment to research and development, as well as utilization of highly advanced, cutting edge, manufacturing technologies. The Triangle Tyre company boasts more than 360 patents, with research centers in Weihai (China), Akron, OH, and Germany.
    [Show full text]