Proquest Dissertations

Total Page:16

File Type:pdf, Size:1020Kb

Proquest Dissertations Characterizing the Endoribonuclease Activity of APE1 Wan Cheol Kim BSc, Simon Fraser University, 2007 Thesis Submitted in Partial Fulfillment of The Requirements for the Degree of Master of Science In Mathematical, Computer, and Physical Sciences (Chemistry) The University of Northern British Columbia June 2009 © Wan Cheol Kim, 2009 Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-60814-2 Our file Notre reference ISBN: 978-0-494-60814-2 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation. without the author's permission. In compliance with the Canadian Conformement a la loi canadienne sur la Privacy Act some supporting forms protection de la vie privee, quelques may have been removed from this formulaires secondaires ont ete enleves de thesis. cette these. While these forms may be included Bien que ces formulaires aient inclus dans in the document page count, their la pagination, il n'y aura aucun contenu removal does not represent any loss manquant. of content from the thesis. 1+1 Canada Abstract Recent evidence shows that mRNA degradation is a major control point in the regulation of gene expression. APE1, apurinic/apyrimidinic DNA endonuclease 1, has recently been discovered to possess an endoribonuclease activity against c-myc messenger RNA (mRNA) in vitro. We showed that APE1 shares catalytic residues to cleave both RNA and AP-DNA. Our results also suggested that the roles of active site residues in each reaction are not entirely identical. A consensus RNA secondary structures and sequences that are preferentially cleaved by APE1 were determined. Our results revealed that APE1 has a preference for cleaving the single stranded regions or weakly base paired regions of the RNA. Also, preferred sequences of cleavage were determined to be UA, UG, and CA. When APE1 was knocked down in HeLa cells, an increased level of c-myc mRNA and half-life was detected. This demonstrated that APE1 is involved in the regulation of c-myc mRNA turnover. TABLE OF CONTENTS Abstract i Table of Contents iii List of Tables vi List of Figures viii Acknowledgements xi Candidate's Publications Relevant to this Thesis xii Reference List xiii CHAPTER 1 - Introduction 1.1 Mechanism of messenger RNA (mRNA) degradation 1 1.2 Role of trans-acting factors in mRNA stability and turnover 4 1.2.1 Non-coding RNA (miRNA) 4 1.2.2 RNA-binding proteins (RBPs) 5 1.2.3 Ribonucleases (RNases) 7 1.3 Ribonucleases (RNases) associated with cancer 7 1.3.1 RNases from conventional mRNA decay pathway: CCR4b, PARN, XRN1 9 1.3.2 RNases from specific contexts: RNase L, IRE1, and PMR1 11 1.3.3 RNases from miRNA pathway: Drosha, DICER, Argonaute 2 18 1.3.4 RNases of the nucleus/cytoplasm: Angiogenin, G3BP, and FEN1 22 1.4 Apurinic/apyrimidinic endonuclease 1 (APE1) as an endoribonuclease 27 1.4.1 Possible role of APE1 in cancer 27 1.4.2 AbasicDNA incision activity of APE1 30 1.4.3 Variants of APE1 identified in human populations 34 1.4.4 3'-5'Exonuclease activity of APE 1 35 1.5 Research objectives 37 iii CHAPTER 2 - Identifying the critical amino acid residues for endoribonuclease activity of APE1 and characterizing its biochemical properties 2.1 Methodology 40 2.1.1 Reagents and buffer preparation 40 2.1.2 PCR generation of linear templates 40 2.1.3 Standard phenol/chloroform extraction and ethanol precipitation 42 2.1.4 Generation of unlabeled RNA substrates 42 2.1.5 Generation of 5'-radiolabeled RNA substrates 44 2.1.6 Generation of 5'-radiolabeled abasic DNA substrate 45 2.1.7 SDS-PAGE analysis on recombinant human APE1 47 2.1.8 Endoribonuclease assays using 5'-radiolabeled RNA 49 2.1.9 Abasic DNA endonuclease assays using 5'-radiolabeled abasic DNA 50 2.1.10 Dialysis of APE1 50 2.1.11 Determination of the nature of 3'-end of the RNA cleavage product 51 2.1.12 Electrophoretic mobility shit assay (EMSA) 52 2.2 Results and discussion 55 2.2.1 Generation of unlabeled and 5'-radiolabeled RNA 55 2.2.2 Identification of essential residues for RNA incision activity of APE1 56 2.2.3 Assessing the RNA-binding abilities of APE1 structural mutants 65 2.2.4 RNA incision activity of the population variants of APE1 66 2.2.5 Assessing the RNA-binding abilities of APE1 population variants 72 2.2.6 Possible mechanism of RNA incision by APE1 74 2.2.7 The effect of divalent metal ions in APE1 RNA catalysis 77 2.2.8 The effect of RNase inhibitors on APE1 activity 79 CHAPTER 3 - Establishing the RNA structure and sequence cleaved by APE1 3.1 Methodology 82 3.1.1 Plasmid linearization and PCR generation of linear templates 82 3.1.2 Utilization of enzyme probes for RNA secondary structure determination 84 3.1.3 In vitro effects of APE1 RNase activity on DICER product formation 86 3.2 Results and discussion 88 3.2.1 Generation of unlabeled and 5'-radiolabeled RNA 88 3.2.2 APE1 cleaves RNA components of SARS-corona virus at specific sites.. .89 3.2.3 APE1 cleaves pri-miR-21 and pri-miR-lOb at specific sites 94 3.2.4 Pre-treatment with APE1 interferes with processing of pre-miR-lOb and pre-miR-21 by DICER 98 IV CHAPTER 4 - Assessing the endoribonuclease activity of APE1 in biological systems 4.1 Methodology 103 4.1.1 Assessing the steady-state c-myc mRNA level in APE1 knocked down cells 103 4.1.2 Assessing c-myc mRNA half-life in APE1 knocked down cells 110 4.1.3 Preparation of LB-antibiotic plates for Origami cells 110 4.1.4 Preparation of Origami competent cells 110 4.1.5 Transformation and induction of protein expression by IPTG Ill 4.2 Results and discussion 112 4.2.1 APE1 knock down in HeLa cells up-regulates c-myc mRNA expression 112 4.2.2 Optimization of monitoring c-myc mRNA stability in HeLa cells 116 4.2.3 Knock down of APE1 in HeLa cells stabilizes c-myc mRNA 118 4.2.4 Origami cell transformation with pGEX4T3-Thioredoxin A andRNaseA 119 4.2.5 Induction of pET15b-WT-APEl in Origami cells is toxic 121 CHAPTER 5 - General discussion 5.1 Role of post-transcriptional control in cancer 125 5.2 Significance of identifying and studying RNases 127 5.3 Benefits of studying RNases in health and therapeutics 128 5.4 Identification of active site residues critical for RNA-cleaving activity of APE 1 129 5.5 Role of metal ions in APE1 RNA-cleaving activity 135 5.6 Role of N-terminus in APE1 136 5.7 RNA secondary structure and sequences preferentially cleaved by APE 1 139 5.8 Assessment of biological significance of RNA-cleaving activity of APE1 141 5.9 Concluding remarks 144 v List of Tables Table 1: Summary of abasic DNA incision activities of active site mutants (or structural mutants) 32 Table 2: Summary of dissociation constants and abasic DNA incision activities of APE1 population variants (Hadi et al. 2000) 35 Table 3: Composition of Reagents used in this chapter 40 Table 4: List of RNA substrates used in assessing the RNA-cleaving activity of APE1 and its mutants 41 Table 5: PCR primers and their sequences used in the generation of linear DNA template for c-myc (1705-1792) CRD RNA by in-vitro RNA transcription 41 Table 6: Composition of reagents for SDS-PAGE 48 Table 7: SDS-PAGE gel staining & destaining reagents 49 Table 8: The composition of reagents used in EMSA experiments 54 Table 9: Summary of fold reduction in WT APE 1 and structural mutants 59 Table 10: Summary of RNA incision activity of human population variants of APE 1 on c-myc-1705 -1792 CRD RNA and Oligo IB 68 Table 11: List of RNA substrates generated and their cDNA sequences 83 Table 12: List of primers and their sequences used in the generation of cDNA templates for in-vitro RNA transcription 84 Table 13: Sequences of Scrambled-Negative DICER substrate double stranded RNAi (dsRNAi) and dsRNAi against APE 1 mRNA 104 Table 14: Composition of the reagents used in Western blot 107 Table 15: Primer sequences used in qRT-PCR 109 Table 16: Sample table of CT values generated from qRT-PCR 116 vi Table 17: Summary of the results of Origami cell transformations using pET15b based plasmids coding for APE1 mutants and their RNA cleaving activities in vitro 123 vn List of Figures Figure 1: A schematic view of mRNA decay 3 Figure 2: A schematic representation on the modes of action for trans-acting factors..
Recommended publications
  • (10) Patent No.: US 8119385 B2
    US008119385B2 (12) United States Patent (10) Patent No.: US 8,119,385 B2 Mathur et al. (45) Date of Patent: Feb. 21, 2012 (54) NUCLEICACIDS AND PROTEINS AND (52) U.S. Cl. ........................................ 435/212:530/350 METHODS FOR MAKING AND USING THEMI (58) Field of Classification Search ........................ None (75) Inventors: Eric J. Mathur, San Diego, CA (US); See application file for complete search history. Cathy Chang, San Diego, CA (US) (56) References Cited (73) Assignee: BP Corporation North America Inc., Houston, TX (US) OTHER PUBLICATIONS c Mount, Bioinformatics, Cold Spring Harbor Press, Cold Spring Har (*) Notice: Subject to any disclaimer, the term of this bor New York, 2001, pp. 382-393.* patent is extended or adjusted under 35 Spencer et al., “Whole-Genome Sequence Variation among Multiple U.S.C. 154(b) by 689 days. Isolates of Pseudomonas aeruginosa” J. Bacteriol. (2003) 185: 1316 1325. (21) Appl. No.: 11/817,403 Database Sequence GenBank Accession No. BZ569932 Dec. 17. 1-1. 2002. (22) PCT Fled: Mar. 3, 2006 Omiecinski et al., “Epoxide Hydrolase-Polymorphism and role in (86). PCT No.: PCT/US2OO6/OOT642 toxicology” Toxicol. Lett. (2000) 1.12: 365-370. S371 (c)(1), * cited by examiner (2), (4) Date: May 7, 2008 Primary Examiner — James Martinell (87) PCT Pub. No.: WO2006/096527 (74) Attorney, Agent, or Firm — Kalim S. Fuzail PCT Pub. Date: Sep. 14, 2006 (57) ABSTRACT (65) Prior Publication Data The invention provides polypeptides, including enzymes, structural proteins and binding proteins, polynucleotides US 201O/OO11456A1 Jan. 14, 2010 encoding these polypeptides, and methods of making and using these polynucleotides and polypeptides.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0058468 A1 Mickeown (43) Pub
    US 20120058468A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0058468 A1 MickeoWn (43) Pub. Date: Mar. 8, 2012 (54) ADAPTORS FOR NUCLECACID Related U.S. Application Data CONSTRUCTS IN TRANSMEMBRANE (60) Provisional application No. 61/148.737, filed on Jan. SEQUENCING 30, 2009. Publication Classification (75) Inventor: Brian Mckeown, Oxon (GB) (51) Int. Cl. CI2O I/68 (2006.01) (73) Assignee: OXFORD NANOPORE C7H 2L/00 (2006.01) TECHNOLGIES LIMITED, (52) U.S. Cl. ......................................... 435/6.1:536/23.1 Oxford (GB) (57) ABSTRACT (21) Appl. No.: 13/147,159 The invention relates to adaptors for sequencing nucleic acids. The adaptors may be used to generate single stranded constructs of nucleic acid for sequencing purposes. Such (22) PCT Fled: Jan. 29, 2010 constructs may contain both strands from a double stranded deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) (86) PCT NO.: PCT/GB1O/OO160 template. The invention also relates to the constructs gener ated using the adaptors, methods of making the adaptors and S371 (c)(1), constructs, as well as methods of sequencing double stranded (2), (4) Date: Nov. 15, 2011 nucleic acids. Patent Application Publication Mar. 8, 2012 Sheet 1 of 4 US 2012/0058468 A1 Figure 5' 3 Figure 2 Figare 3 Patent Application Publication Mar. 8, 2012 Sheet 2 of 4 US 2012/0058468 A1 Figure 4 End repair Acid adapters ligate adapters Patent Application Publication Mar. 8, 2012 Sheet 3 of 4 US 2012/0058468 A1 Figure 5 Wash away type ifype foducts irrirrosilise Type| capture WashRE products away unbcure Pace É: Wash away unbound rag terts Free told fasgirre?ts aid raiser to festible Figure 6 Beatre Patent Application Publication Mar.
    [Show full text]
  • (5'-Uridylyl)Tyrosine Is the Bond Between the Genome-Linked Protein and the RNA of Poliovirus
    Proc. Natl. Acad. Sci. USA Vol. 75, No 10, pp. 4868-4872, October 1978 Biochemistry 04-(5'-Uridylyl)tyrosine is the bond between the genome-linked protein and the RNA of poliovirus* (iodination/acid and alkali hydrolysis/enzymatic degradation/paper electrophoresis and chromatography) PAUL G. ROTHBERG, TIMOTHY J. R. HARRISt, AKIO NOMOTOt, AND ECKARD WIMMER Department of Microbiology, School of Basic Health Sciences, State University of New York at Stony Brook, Stony Brook, Long Island, New York 11794 Communicated by Seymour S. Cohen, August 3, 1978 ABSTRACT Virion RNA of poliovirus type 1 has been an- MATERIALS AND METHODS alyzed for the linkage between genome-protein VPg and the polyribonucleotide chain. Hydrolysis of the linkage with acid Poliovirus was grown and labeled with phosphorus-32 in HeLa or alkali and enzymatic degradation lead to the conclusion that cell suspension cultures as previously described (9). VPg was the bond is neither a phosphodiester such as nucleotidyl-(P- labeled with [3H]tyrosine as follows: 2.5 X 109 HeLa cells were O-serine (or threonine) nor a phosphoramidate such as washed twice with Earle's saline, suspended in 200 ml of Earle's nucleotidyl4(P-N)amino acid. VPg-RNA can be iodinated by the saline containing 1 mg of actinomycin D, and infected with 50 Bolton and Hunter reagent liodinated 3(4-hydroxyphenyl)pro- plaque-forming units of PV1 per cell. After 25 min at, room pionic acid N-hydroxysuccinimide ester] but not by the chlo- temperature, 200 ml of medium containing 168 ml of Earle's ramine-T or lactoperoxidase procedures, an observation saline, 4 ml of an antibiotic solution (10,000 units of penicillin suggesting that VPg does not contain accessible tyrosine.
    [Show full text]
  • Manual D'estil Per a Les Ciències De Laboratori Clínic
    MANUAL D’ESTIL PER A LES CIÈNCIES DE LABORATORI CLÍNIC Segona edició Preparada per: XAVIER FUENTES I ARDERIU JAUME MIRÓ I BALAGUÉ JOAN NICOLAU I COSTA Barcelona, 14 d’octubre de 2011 1 Índex Pròleg Introducció 1 Criteris generals de redacció 1.1 Llenguatge no discriminatori per raó de sexe 1.2 Llenguatge no discriminatori per raó de titulació o d’àmbit professional 1.3 Llenguatge no discriminatori per raó d'ètnia 2 Criteris gramaticals 2.1 Criteris sintàctics 2.1.1 Les conjuncions 2.2 Criteris morfològics 2.2.1 Els articles 2.2.2 Els pronoms 2.2.3 Els noms comuns 2.2.4 Els noms propis 2.2.4.1 Els antropònims 2.2.4.2 Els noms de les espècies biològiques 2.2.4.3 Els topònims 2.2.4.4 Les marques registrades i els noms comercials 2.2.5 Els adjectius 2.2.6 El nombre 2.2.7 El gènere 2.2.8 Els verbs 2.2.8.1 Les formes perifràstiques 2.2.8.2 L’ús dels infinitius ser i ésser 2.2.8.3 Els verbs fer, realitzar i efectuar 2.2.8.4 Les formes i l’ús del gerundi 2.2.8.5 L'ús del verb haver 2.2.8.6 Els verbs haver i caldre 2.2.8.7 La forma es i se davant dels verbs 2.2.9 Els adverbis 2.2.10 Les locucions 2.2.11 Les preposicions 2.2.12 Els prefixos 2.2.13 Els sufixos 2.2.14 Els signes de puntuació i altres signes ortogràfics auxiliars 2.2.14.1 La coma 2.2.14.2 El punt i coma 2.2.14.3 El punt 2.2.14.4 Els dos punts 2.2.14.5 Els punts suspensius 2.2.14.6 El guionet 2.2.14.7 El guió 2.2.14.8 El punt i guió 2.2.14.9 L’apòstrof 2.2.14.10 L’interrogant 2 2.2.14.11 L’exclamació 2.2.14.12 Les cometes 2.2.14.13 Els parèntesis 2.2.14.14 Els claudàtors 2.2.14.15
    [Show full text]
  • Partial Purification, Properties and Glycoprotein Nature of Arylsulphatase B from Sheep Brain
    ./,Iu~~u~OJ \,~,~~lwm~!~ I. 1Y76 Voi 17. pp 4x5 402 Pergarnun Press Printed m Grrat Brltaln PARTIAL PURIFICATION, PROPERTIES AND GLYCOPROTEIN NATURE OF ARYLSULPHATASE B FROM SHEEP BRAIN K. A. BALASUBRAMANIAN' and B. K. BACHHAWAT Neurochemistry Laboratory. Department of Neurological Sciences. Christian Medical College Hospital, Vellore-632004. India Abstract A simple method has been developed for the partial purification of arylsulphatase B from sheep brain. This includes concanavalin A-Sepharose affinity chromatography and ionic strength-depen- dent binding and dissociation of the enzyme with Dextran Blue; by these methods the enzyme was purified 1344-fold with lo", recovery. The partially purified enzyme was shown to be a glycoprotein and its kinetic properties were compared with that of purified arylsulphatase A from the same source. AKYLSLJLPHATASEB is known to be a lysosomal STOW ~t (11. (1971) showed that most of the kidney en7ynie and it has been investigated over the last 30 lysosomal enzymes are glycoproteins and claimed years. It has been partially purified from liver as well that neurdminidase treatment converted arylsulpha- iis brain and some 01 its properties have been studied tase A to a B form. Later GRAHAM& ROY (1973) (AI.Lt:v & Rol. 196X: BLESZYNSKIc't d..1909; HAR- showed that neuraminidase treatment does not con- INATH & ROBINS. 1971: DOUGSON & WYNS. 1958). vert arylsulphatase A to B and there was no change Arylsulphatase B is known to exist in multiple forms in the physical or chemical properties of the enzyme. and the recent work of BLESZYNSKI& ROY (1973) Recently GOLDSTONE& KOENIG(1974) showed that have shown that ox brain enzyme has as many as neuraminidase treatment of the lysosomal enzymes seven isoenzymes.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Development of Liquid Chromatography-Mass Spectrometric
    DEVELOPMENT OF LIQUID CHROMATOGRAPHY-MASS SPECTROMETRIC ASSAYS AND SAMPLE PREPARATION METHODS FOR THE BIOLOGICAL SAMPLE ANALYSIS SUJATHA CHILAKALA Master of Science in Pharmaceutical Sciences University of Greenwich, UK July 2007 submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL-BIOANALYTICAL CHEMISTRY at CLEVELAND STATE UNIVERSITY November 2017 We hereby approve this dissertation for Sujatha Chilakala Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies _________________________________________________________________ Dissertation Chairperson, Dr. Yan Xu _____________________________________________ Department & Date ____________________________________________________________________ Dissertation Committee Member, Dr. Bin Su _____________________________________________ Department & Date ____________________________________________________________________ Dissertation Committee Member, Dr. Aimin Zhou _____________________________________________ Department & Date ____________________________________________________________________ Dissertation Committee Member, Dr. David Anderson _____________________________________________ Department & Date ____________________________________________________________________ Dissertation Committee Member, Dr. Petru Fodor _____________________________________________ Department & Date Student’s Date of Defense: November 27th, 2017
    [Show full text]
  • Purification and Characterization of Novel Nucleases from a Thermophilic Fungus Kyle S
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 2012 Purification and Characterization of Novel Nucleases from a Thermophilic Fungus Kyle S. Landry University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Agriculture Commons, Biochemistry Commons, Biotechnology Commons, Environmental Microbiology and Microbial Ecology Commons, Food Biotechnology Commons, Food Microbiology Commons, and the Other Plant Sciences Commons Landry, Kyle S., "Purification and Characterization of Novel Nucleases from a Thermophilic Fungus" (2012). Masters Theses 1911 - February 2014. 804. Retrieved from https://scholarworks.umass.edu/theses/804 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. PURIFICATION AND CHARACTERIZATION OF NOVEL NUCLEASES FROM A THERMOPHILIC FUNGUS A Thesis Presented By KYLE S. LANDRY Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2012 Food Science © Copyright by Kyle S. Landry 2012 All Rights Reserved PURIFICATION AND CHARACTERIZATION OF NOVEL NUCLEASES FROM A THERMOPHILIC FUNGUS A Thesis Presented By KYLE S. LANDRY Approved as to style and content by: _________________________________________________ Robert E Levin, Chair _________________________________________________ Ronald G Labbe, Member _________________________________________________ Robert Wick, Member _____________________________________________ Eric Decker, Department Head Department of Food Science ACKNOWLEDGMENTS I wish to express my appreciation to my advisor Dr. Robert E. Levin for his guidance and encouragement throughout the course of my studies.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Proteomics and Antivenomics of Echis Carinatus Carinatusvenom
    www.nature.com/scientificreports OPEN Proteomics and antivenomics of Echis carinatus carinatus venom: Correlation with pharmacological Received: 13 February 2017 Accepted: 30 October 2017 properties and pathophysiology of Published: xx xx xxxx envenomation Aparup Patra, Bhargab Kalita, Abhishek Chanda & Ashis K. Mukherjee The proteome composition of Echis carinatus carinatus venom (ECV) from India was studied for the frst time by tandem mass spectrometry analysis. A total of 90, 47, and 22 distinct enzymatic and non- enzymatic proteins belonging to 15, 10, and 6 snake venom protein families were identifed in ECV by searching the ESI-LC-MS/MS data against non-redundant protein databases of Viperidae (taxid 8689), Echis (taxid 8699) and Echis carinatus (taxid 40353), respectively. However, analysis of MS/MS data against the Transcriptome Shotgun Assembly sequences (87 entries) of conger E. coloratus identifed only 14 proteins in ECV. Snake venom metalloproteases and snaclecs, the most abundant enzymatic and non-enzymatic proteins, respectively in ECV account for defbrinogenation and the strong in vitro pro-coagulant activity. Further, glutaminyl cyclase, aspartic protease, aminopeptidase, phospholipase B, vascular endothelial growth factor, and nerve growth factor were reported for the frst time in ECV. The proteome composition of ECV was well correlated with its biochemical and pharmacological properties and clinical manifestations observed in Echis envenomed patients. Neutralization of enzymes and pharmacological properties of ECV, and immuno-cross-reactivity studies unequivocally point to the poor recognition of <20 kDa ECV proteins, such as PLA2, subunits of snaclec, and disintegrin by commercial polyvalent antivenom. According to the World Health Organization, snakebite is a major health challenge in tropical and sub-tropical countries including India, and therefore, it is considered as a neglected tropical disease1.
    [Show full text]
  • Amfep Guidance on REACH Pre-Registration of Enzymes
    Amfep/08/44 30 May 2008 Amfep guidance on REACH pre-registration of enzymes 1. Purpose and timing During the period 1 June to 1 December 2008, European enzyme manufacturers and importers can pre-register the enzyme substances currently manufactured in EU and imported into the EU for technical applications. Manufacturers and importers inside the EU may appoint Third Party Representatives to remain anonymous and if based outside the EU, they may appoint Only Representatives. The pre-registration provision of REACH enables substances to remain on the market subject to later registration in 2010, 2013 or 2018, depending on tonnage. Pre-registration is made to the European Chemicals Agency (ECHA) and result in the formation of a Substance Information Exchange Forum (SIEF) per enzyme. ECHA will publish a list of pre- registered substances by 1 January 2009. Amfep has formed a pre-consortium of members and associated manufacturing companies to prepare enzyme (pre-) registrations and SIEF discussions. The Amfep secretariat can be contacted for further information and on questions related to enzyme pre-registrations. This document is intended to facilitate pre-registration of enzymes. References are given to detailed guidance on enzyme identification, pre-registration and other REACH requirements. However, it must be considered as guidance only. Each potential registrant remains fully responsible for selecting its enzymes and making individual pre-registrations. 2. Scope Enzymes listed on the European chemicals inventory EINECS are considered phase-in (‘existing’) substances and can be pre-registered. Enzymes manufactured in the EU at least once after 31 May 1992, without being placed on the EU market by the manufacturer or importer, are regarded as phase-in substances.
    [Show full text]