Ix Ophiuchi: a High-Velocity Star Near a Molecular Cloud G

Total Page:16

File Type:pdf, Size:1020Kb

Ix Ophiuchi: a High-Velocity Star Near a Molecular Cloud G The Astronomical Journal, 130:815–824, 2005 August # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. IX OPHIUCHI: A HIGH-VELOCITY STAR NEAR A MOLECULAR CLOUD G. H. Herbig Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 Received 2005 March 24; accepted 2005 April 26 ABSTRACT The molecular cloud Barnard 59 is probably an outlier of the Upper Sco/ Oph complex. B59 contains several T Tauri stars (TTSs), but outside its northwestern edge are three other H -emission objects whose nature has been unclear: IX, KK, and V359 Oph. This paper is a discussion of all three and of a nearby Be star (HD 154851), based largely on Keck HIRES spectrograms obtained in 2004. KK Oph is a close (1B6) double. The brighter component is an HAeBe star, and the fainter is a K-type TTS. The complex BVR variations of the unresolved pair require both components to be variable. V359 Oph is a conventional TTS. Thus, these pre-main-sequence stars continue to be recognizable as such well outside the boundary of their parent cloud. IX Oph is quite different. Its absorption spec- trum is about type G, with many peculiarities: all lines are narrow but abnormally weak, with structures that depend on ion and excitation level and that vary in detail from month to month. It could be a spectroscopic binary of small amplitude. H and H are the only prominent emission lines. They are broad, with variable central reversals. How- ever, the most unusual characteristic of IX Oph is the very high (heliocentric) radial velocity: about À310 km sÀ1, common to all spectrograms, and very different from the radial velocity of B59, about À7kmsÀ1. There is no detectable Li i k6707 line. There is reason to believe that IX Oph is actually a background object, only aligned with B59. Several conceivable interpretations are discussed: (1) It is unlikely that it is a high-velocity ejectee from the Upper Sco or Upper Cen-Lup associations (the lack of detectable k6707 shows that it is not the product of a very recent event, and the proper motion points in the wrong direction) or that it was born in or ejected from one of the distant high-velocity CO clouds at this longitude (l ¼ 357). (2) A stronger possibility is that it is simply a metal- poor high-velocity G- or K-type giant (but such stars are not irregularly variable in light and do not have such strong Balmer emission lines). More likely, (3) IX Oph is a member of the high-velocity, low-metallicity SRd class of semiregular variables found in the field and in some globular clusters. At some phases, those stars show H emission like that found in IX Oph and, in one example, emission lines of neutral metals and double absorption lines as in IX Oph. Key words: ISM: individual (Barnard 59) — stars: emission-line, Be — stars: formation — stars: individual (IX Ophiuchi, KK Ophiuchi, V359 Ophiuchi, HD 154851) 1. INTRODUCTION find pre-main-sequence (PMS) stars. As seen below, IX Oph is The molecular cloud Barnard 59 is an irregular mass of clumps a most unusual high-velocity object, and little is known about the others; so, in what follows, the spectra and circumstances of and streamers, largely enclosed within an area of about 300 ; 150 all three, and of a nearby Be star (HD 154851), are described in (Fig. 1). It is located between the Upper Sco association and the Galactic plane and is the northwestern extremity of the ‘‘fila- some detail. Of the four, only KK Oph is an IRAS point source, and it is the only one that lies in the IR excess region in the mentary massive dark cloud’’ called the Pipe Nebula by Onishi (J H, H K ) plane; the others fall within the conventional et al. (1999). Unlike the active star-forming region around Oph À À reddening band. about 12 to the northwest, B59 contains no bright stars. For the present purpose, the distance of B59 is assumed to be 140 pc, a 2. IX OPHIUCHI compromise between that of the Upper Sco association (about 0 145 pc; see Preibisch & Zinnecker 1999) and that of the star- IX Oph is located in a relatively unobscured area about 6 from the edge of B59. Possibly for that reason, and the fact of its forming region behind Oph (about 130 pc; Bertout et al. 1999). 8 Several faint variable stars were found in and around B59 by relatively weak H emission (W ¼ 1:3 , according to Cohen Swope (1928). Swope’s HV 4410 is now IX Oph (range 11.8– & Kuhi 1979), it has received relatively little attention from 12.7 pg) and HV 4413 is KK Oph (11.9–12.7 pg), both noted as PMS investigators. Several low-resolution Lick spectrograms of IX Oph were obtained in the 1970s and 1980s, but this paper ‘‘very near edge of dark nebulous cloud.’’ Years later, Merrill & 1 rests largely on three Keck HIRES spectrograms, two obtained Burwell (1950) found H emission in KK Oph (and called it 8 AS 220); in the 1950s and 1960s, these and several other H emit- on 2004 June 13 and July 24 that cover the 4350–6740 region (with interorder gaps) at a resolution of about 44,000 and a third ters were found in the area at Lick Observatory and by Stephenson 8 & Sanduleak (1977) and The (1964), and, more recently, another on 2004 September 24 covering 4400–8800 (also with gaps) (KW 002) was found by Kohoutek & Wehmeyer (2003). These at slightly higher resolution. H and H were in emission on all objects are identified in Figure 1, reproduced from the Digitized Sky Survey red image, and are listed in Table 1, which gives 1 The W. M. Keck Observatory is operated as a scientific partnership among the additional information. California Institute of Technology, the University of California, and NASA. The Three of these objects (KK, IX, and V359 Oph) lie in a clear Observatory was made possible by the generous financial support of the W. M. area well off the edge of B59, where one would not expect to Keck Foundation. 815 816 HERBIG Vol. 130 Fig. 1.—Barnard 59 region, from the red exposures of the Digitized Sky Survey. The stars discussed in this paper are indicated. The coordinates are for equinox J2000.0, but the coordinate marks along the margins are only approximate. occasions. Herbig (1962) at very low photographic dispersion overlaps IS D2. Note that there are two additional sets of much classified the absorption spectrum as type Fpe, while Cohen & weaker IS Na i lines at about À40 (itself with a weaker, blended Kuhi (1979) at somewhat higher scanner resolution called it component slightly longward) and À97 km sÀ1. The splitting of type G, but at high resolution the spectrum now appears to be stellar D2 (at 5883 8) is discussed in x 2.1. (The synthetic very peculiar. In particular, all lines are quite narrow, are weaker telluric absorption spectrum in this region by Lundstro¨m et al. than in normal G-type dwarfs, and show a variety of structures [1991] was appropriately scaled and used to remove the many depending on ion and excitation level, the details of which atmospheric H2O lines.) change between the HIRES exposures. All the HIRES spectrograms confirm this same large nega- The most striking feature of the spectrum, however, is the tive velocity of IX Oph. The only other relevant information large negative radial velocity; all lines agree that the average (known to the writer) comes from a low-resolution (R about velocity2 is near À310 km sÀ1. Figure 2 (from the HIRES spec- 4700) CCD spectrogram of IX Oph obtained with the coude´ trogram of 2004 June 13) shows this very well. The strong pair spectrograph of the 120 inch (3 m) telescope at the Lick Ob- of Na i lines at 5889 (D2) and 5895 (D1) 8 are interstellar (IS) servatory on 1987 June 7. It covered only the 6400–6800 8 at a (heliocentric) velocity of about À3kmÀ1, but the stellar region, so contained only six unblended absorption lines, from À1 Na i lines are shifted shortward by 5 8, so that the stellar D1 which the mean velocity is À326 Æ 6kms .Thesamesix lines measured on the HIRES spectrogram of 2004 June 13 give À1 2 All velocities in this paper are heliocentric. At the position of IX Oph, the À310 Æ 3kms . The difference is only about 2 ,hardly correction to LSR is +10.4 km sÀ1. enough to demonstrate that the velocity was different in 1987, TABLE 1 H -Emission Stars In and Near B59 Star Other (J2000.0) (J2000.0) V V359 Oph .................................... TH 27-1a 17 08 54.29 À27 12 32.1 12.2 var HD 154851 .................................. ... 17 09 00.93 À27 25 02.6 10.4 IX Oph ......................................... ... 17 09 48.16 À27 16 59.3 10.9–11.5 KK Oph AB................................. AS 220 17 10 08.04 À27 15 18.9 9.4–12.9 LkH 345 Oph ............................ ... 17 10 48.06 À27 40 51.1 13.0 var LkH 346 Oph AB ..................... TH 27-4 17 11 04.01 À27 22 57.5 (14.7–15.4 pg) KW 002........................................ ... 17 11 16.29 À27 25 14.3 ... TH 27-5 ..................................... ... 17 11 41.80 À27 25 48.0 13.6 LkH 347 Oph ............................ TH 27-6 17 12 00.20 À27 20 17.8 (15.8 to <16.5 pg) Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arc- minutes, and arcseconds.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • On the Metallicity of Open Clusters II. Spectroscopy
    Astronomy & Astrophysics manuscript no. OCMetPaper2 c ESO 2013 November 12, 2013 On the metallicity of open clusters II. Spectroscopy U. Heiter1, C. Soubiran2, M. Netopil3, and E. Paunzen4 1 Institutionen för fysik och astronomi, Uppsala universitet, Box 516, 751 20 Uppsala, Sweden e-mail: [email protected] 2 Université Bordeaux 1, CNRS, Laboratoire d’Astrophysique de Bordeaux UMR 5804, BP 89, 33270 Floirac, France 3 Institut für Astrophysik der Universität Wien, Türkenschanzstrasse 17, 1180 Wien, Austria 4 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ267/2, 611 37 Brno, Czech Republic Received 29 August 2013 / Accepted 20 October 2013 ABSTRACT Context. Open clusters are an important tool for studying the chemical evolution of the Galactic disk. Metallicity estimates are available for about ten percent of the currently known open clusters. These metallicities are based on widely differing methods, however, which introduces unknown systematic effects. Aims. In a series of three papers, we investigate the current status of published metallicities for open clusters that were derived from a variety of photometric and spectroscopic methods. The current article focuses on spectroscopic methods. The aim is to compile a comprehensive set of clusters with the most reliable metallicities from high-resolution spectroscopic studies. This set of metallicities will be the basis for a calibration of metallicities from different methods. Methods. The literature was searched for [Fe/H] estimates of individual member stars of open clusters based on the analysis of high-resolution spectra. For comparison, we also compiled [Fe/H] estimates based on spectra with low and intermediate resolution.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Introduction to Cosmology Subir Sarkar
    Introduction to cosmology Subir Sarkar Summer training Programme, CERN, 25-28 July 2006 Seeing the edge of the Universe : from speculation to science Constructing the Universe: relativistic world models The history of the Universe: decoupling of the relic radiation and nucleosynthesis of the light elements The content of the Universe: dark matter & dark energy Making sense of the Universe: fundamental physics & cosmology http://www-thphys.physics.ox.ac.uk/user/SubirSarkar/cernlectures.html Lecture 1 If there is an edge to the universe, what happens when a spear is thrown across it? Archytas of Tarentum (5 th Century BC) Aristotlean Medieval Stoic Medieval cosmology “The Divine Comedy”, Dante Aligheri (1321) The Copernican Universe “The Revolutions of the Celestial Spheres”, Nicholas Copernicus (1543) … which had in fact been anticipated somewhat earlier! “But Aristarchus of Samos brought out a book consisting of certain hypotheses in which the premises lead to the conclusion that the universe is many times greater than that now so called. His hypotheses are that the stars and the Sun remain motionless, that the Earth revolves about the Sun in the circumference of a circle, the Sun lying in the middle of the orbit ...” “The Sand Reckoner”, Archimedes (287- 212 BC) But in Aristotlean cosmology, space was finite with an edge … Immanuel Kant ’s dilemma of ‘Antimony of space’: Space has to be finite in extent and homogeneous in composition, and to obey the laws of Euclidean geometry … But all three assumptions cannot be true at once! The infinite universe Thomas Digges (1576) “I could be bounded in a nutshell and count myself a king of infinite space” “Hamlet ”, William Shakespeare (1601) “If this is true and if they are suns having the same nature as our Sun, why do these suns not collectively outshine our Sun in brilliance? … you do not hesitate to declare that there are over 10,000 stars.
    [Show full text]
  • Stellar Evolution
    AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown.
    [Show full text]
  • Three Editions of the Star Catalogue of Tycho Brahe*
    A&A 516, A28 (2010) Astronomy DOI: 10.1051/0004-6361/201014002 & c ESO 2010 Astrophysics Three editions of the star catalogue of Tycho Brahe Machine-readable versions and comparison with the modern Hipparcos Catalogue F. Verbunt1 andR.H.vanGent2,3 1 Astronomical Institute, Utrecht University, PO Box 80 000, 3508 TA Utrecht, The Netherlands e-mail: [email protected] 2 URU-Explokart, Faculty of Geosciences, Utrecht University, PO Box 80 115, 3508 TC Utrecht, The Netherlands 3 Institute for the History and Foundations of Science, PO Box 80 000, 3508 TA Utrecht, The Netherlands Received 6 January 2010 / Accepted 3 February 2010 ABSTRACT Tycho Brahe completed his catalogue with the positions and magnitudes of 1004 fixed stars in 1598. This catalogue circulated in manuscript form. Brahe edited a shorter version with 777 stars, printed in 1602, and Kepler edited the full catalogue of 1004 stars, printed in 1627. We provide machine-readable versions of the three versions of the catalogue, describe the differences between them and briefly discuss their accuracy on the basis of comparison with modern data from the Hipparcos Catalogue. We also compare our results with earlier analyses by Dreyer (1916, Tychonis Brahe Dani Scripta Astronomica, Vol. II) and Rawlins (1993, DIO, 3, 1), finding good overall agreement. The magnitudes given by Brahe correlate well with modern values, his longitudes and latitudes have error distributions with widths of 2, with excess numbers of stars with larger errors (as compared to Gaussian distributions), in particular for the faintest stars. Errors in positions larger than 10, which comprise about 15% of the entries, are likely due to computing or copying errors.
    [Show full text]
  • Cadas Transit Magazine
    TRANSIT The June 2010 Newsletter of NEXT MEETING (last of the season) 11 June 2010, 7.15 pm for a 7.30 pm start Wynyard Woodland Park Planetarium Presidential address: Beginners' astronomy Jack Youdale FRAS Hon. President of CaDAS Contents p.2 Editorial p.2 Letters Ray Brown; Neil Haggath Observation reports & planning p.4 Skylights – June 2010 Rob Peeling p.6 Public observing at Wynyard Planetarium, 30 April 2010 Rob Peeling p.12 Some double stars in Boötes Dave Blenkinsop p.13 Some „en-darkened‟ planning at last Rob Peeling p.13 Sunspot group 1072 Rod Cuff p.14 Changes in Saturn‟s appearance Keith Johnson General articles p.15 Using a German equatorial mount, part 2: Experiences in setting up Alex Menarry p.18 The AstronomyQuest blog Andy Fleming p.19 A medieval crater on the Moon? Andy Fleming p.21 Why does Venus spin backwards? John McCue p.22 Astronomy uses the election to give misleading information John Crowther The Transit Quiz: p.23 Answers to May‟s quiz p.23 June‟s crossword 1 Editorial Rod Cuff This month‟s issue illustrates more than most the variety of astronomical activities and backgrounds that CaDAS members have. We have articles and letters relating to university research, astrophotography targeting Saturn and the Sun, observations of double stars and over the internet, astrotourism of different kinds in Cambridgeshire and the Canaries and Holland, the difficulties of setting up a telescope, and acid comments on the folly of astrology. That‟s in addition, of course, to Rob‟s regular and stimulating Sky Notes.
    [Show full text]
  • Nonradial P-Modes in the G9.5 Giant Ε Ophiuchi? Pulsation Model Fits to MOST Photometry
    A&A 478, 497–505 (2008) Astronomy DOI: 10.1051/0004-6361:20078171 & c ESO 2008 Astrophysics Nonradial p-modes in the G9.5 giant Ophiuchi? Pulsation model fits to MOST photometry T. Kallinger1, D. B. Guenther2,J.M.Matthews3,W.W.Weiss1, D. Huber1, R. Kuschnig3,A.F.J.Moffat4,S.M.Rucinski5, and D. Sasselov6 1 Institute for Astronomy (IfA), University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [email protected] 2 Institute for Computational Astrophysics, Department of Astronomy and Physics, Saint Marys University, Halifax, NS B3H 3C3, Canada 3 Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada 4 Observatoire Astronomique du Mont Mégantic, Département de Physique, Université de Montréal, C. P. 6128, Succursale: Centre-Ville, Montréal, QC H3C 3J7 and Observatoire du mont Mégantic, Canada 5 Department of Astronomy and Astrophysics, David Dunlap Observatory, University of Toronto, PO Box 360, Richmond Hill, ON L4C 4Y6, Canada 6 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Received 27 June 2007 / Accepted 31 October 2007 ABSTRACT The G9.5 giant Oph shows evidence of radial p-mode pulsations in both radial velocity and luminosity. We re-examine the observed frequencies in the photometry and radial velocities and find a best model fit to 18 of the 21 most significant photometric frequencies. The observed frequencies are matched to both radial and nonradial modes in the best model fit. The small scatter of the frequencies about the model predicted frequencies indicate that the average lifetimes of the modes could be as long as 10–20 d.
    [Show full text]
  • Cycle 20 Abstract Catalog (Based on Phase I Submissions)
    Cycle 20 Abstract Catalog (Based on Phase I Submissions) Proposal Category: AR Scientific Category: STAR FORMATION ID: 12814 Program Title: Signatures of turbulence in directly imaged protoplanetary disks Principal Investigator: Philip Armitage PI Institution: University of Colorado at Boulder HST imaging of the edge-on protoplanetary disk in the HH 30 system has shown that substantial changes to the morphology of the disk occur on time scales much shorter than the local dynamical time. This may be due to time- variable obscuration of starlight by the turbulent inner disk. More recently, mid-infrared variability of protoplanetary disks has been attributed to a similar physical origin. We propose a theoretical investigation that will establish whether the optical and infrared variability is due to turbulent variations in the scale height of dust in the inner disk, and determine what observations of that variability can tell us of the nature of disk turbulence. We will use a new generation of global magnetohydrodynamic simulations to directly model the turbulence in an annulus of the inner disk, extending from the dust destruction radius out to the radius where turbulence is quenched by poor coupling of the gas to magnetic fields. We will use the output of the MHD simulations as input to Monte Carlo radiative transfer calculations of stellar irradiation of the outer disk. We will use these calculations to produce light curves that show how time variable shadowing from the inner disk affects the outer disk observables: scattered light images and the infrared spectral energy distribution. Proposal Category: GO Scientific Category: COOL STARS ID: 12815 Program Title: Photometry of the Coldest Benchmark Brown Dwarf Principal Investigator: Kevin Luhman PI Institution: The Pennsylvania State University In 2011, we used images from the Spitzer Space Telescope to discover the coldest directly imaged companion to a nearby star (300-345 K).
    [Show full text]
  • Faint Objects in Motion: the New Frontier of High Precision Astrometry
    White paper for the Voyage 2050 long-term plan in the ESA Science Programme Faint objects in motion: the new frontier of high precision astrometry Contact Scientist: Fabien Malbet Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) Université Grenoble Alpes, CS 40700, F-38058 Grenoble cedex 9, France Email: [email protected], Phone: +33 476 63 58 33 version 20190805 Faint objects in motion : the new frontier of high precision astrometry Faint objects in motion: the new on the most critical questions of cosmology, astron- frontier of high precision astrometry omy and particle physics. Sky survey telescopes and powerful targeted telesco- 1.1 Dark matter pes play complementary roles in astronomy. In order to The current hypothesis of cold dark matter (CDM) ur- investigate the nature and characteristics of the mo- gently needs verification. Dark matter (DM) is essential tions of very faint objects, a flexibly-pointed instrument to the L + CDM cosmological model (LCDM), which suc- capable of high astrometric accuracy is an ideal comple- cessfully describes the large-scale distribution of galax- ment to current astrometric surveys and a unique tool for ies and the angular fluctuations of the Cosmic Microwave precision astrophysics. Such a space-based mission Background, as confirmed by the ESA / Planck mission. will push the frontier of precision astrometry from ev- Dark matter is the dominant form of matter (∼ 85%) in idence of earth-massed habitable worlds around the the Universe, and ensures the formation and stability of nearest starts, and also into distant Milky way objects enmeshed galaxies and clusters of galaxies.
    [Show full text]
  • Binocular Certificate Handbook
    Irish Federation of Astronomical Societies Binocular Certificate Handbook How to see 110 extraordinary celestial sights with an ordinary pair of binoculars © John Flannery, South Dublin Astronomical Society, August 2004 No ordinary binoculars! This photograph by the author is of the delightfully whimsical frontage of the Chiat/Day advertising agency building on Main Street, Venice, California. Binocular Certificate Handbook page 1 IFAS — www.irishastronomy.org Introduction HETHER NEW to the hobby or advanced am- Wateur astronomer you probably already own Binocular Certificate Handbook a pair of a binoculars, the ideal instrument to casu- ally explore the wonders of the Universe at any time. Name _____________________________ Address _____________________________ The handbook you hold in your hands is an intro- duction to the realm far beyond the Solar System — _____________________________ what amateur astronomers call the “deep sky”. This is the abode of galaxies, nebulae, and stars in many _____________________________ guises. It is here that we set sail from Earth and are Telephone _____________________________ transported across many light years of space to the wonderful and the exotic; dense glowing clouds of E-mail _____________________________ gas where new suns are being born, star-studded sec- tions of the Milky Way, and the ghostly light of far- Observing beginner/intermediate/advanced flung galaxies — all are within the grasp of an ordi- experience (please circle one of the above) nary pair of binoculars. Equipment __________________________________ True, the fixed magnification of (most) binocu- IFAS club __________________________________ lars will not allow you get the detail provided by telescopes but their wide field of view is perfect for NOTES: Details will be treated in strictest confidence.
    [Show full text]