GNSS in Space Part 1 Formation Flying Radio Frequency Missions, Techniques, and Technology

Total Page:16

File Type:pdf, Size:1020Kb

GNSS in Space Part 1 Formation Flying Radio Frequency Missions, Techniques, and Technology WORKING PAPERS GNSS in Space Part 1 Formation Flying Radio Frequency Missions, Techniques, and Technology FIGURE 1 PRISMA satellites (SSC image) Using two or more small satellites can sometimes be better than one, especially when trying to create a large spaceborne instrument for scientific research or experiments.B ut coordinating the alignment of the components of such instruments on separate space vehicles requires highly accurate orientation and positioning. Carrier phase GNSS can provide such precision for spacecraft operating below the altitude of GPS satellites, and GNSS-like techniques can be employed for spacecraft operating in higher orbits. THOMAS GRELIER ormation flying (FF) creates large easiest way because most LEO satellites CENTRE NAtional d’ETUDES SPATIALES (CNES) spaceborne instruments by using are already provided with a GPS or ALBERTO GARCIA several smaller satellites in close GLONASS receiver for orbit and time EUROPEAN SPACE AGENCY (ESA) Fformation. The concept requires determination. very accurate relative positioning and Thanks to GNSS constellations, for- ERIC PÉRAGIN, LAURENT LEstARQUIT, JON HARR, orientation of the spacecrafts, the com- mation flying can be made at higher alti- DOMINIQUE SEGUELA , JEAN-LuC ISSLER plexity of which is largely outweighed tudes with a perigee of up to 25,000 kilo- CNES by the enormous benefit of the extended meters, if GNSS receivers equipped with instrument size compared to traditional low acquisition and tracking thresholds JEAN-BAPTIstE THEVENET, NICOLAS PERRIAULT, one-satellite configurations. are selected. Such receivers have tight CHRIstIAN MEHLEN, CHRIstOPHE ENSENAT, The easiest way to perform forma- coupling between the signal processing NICOLAS WILHELM, ANA-MARIA BADIOLA tion flying with relative attitude and and the onboard orbital Kalman filter MARTINEZ positioning in space is to use signals delivering pseudovelocity and pseudo- THALES ALENIA SPACE broadcast by GNSS satellites. Yet this range aiding to the open or closed delay PABLO COLMENAREJO ideal configuration, which could enable locked loops and phase locked loops. GMV a relative positioning of better than one Even in this case, however, the relative centimeter in certain cases, is limited to positioning accuracies can be degraded formation flying mission in low earth by up to a few meters, or even more orbit (LEO). sometimes, at a high-altitude orbital Such low-altitude operations can apogee. exploit the full visibility of the GNSS As a result of these GNSS accuracy constellations, which is needed to per- limitations, a dedicated formation fly- form the integer carrier phase ambiguity ing radio frequency (RF) technique is resolution required to achieve centime- needed that is accurate and equipped ter-level accuracies. Use of GNSS is the with omnidirectional features emerged 40 InsideGNSS NOVEMBER/DECEMBER 2008 www.insidegnss.com WORKING PAPERS for high and very high altitude orbital mission, and around 2012 it will be used Space Corporation (SSC) via the Kiruna missions. But the use of GNSS-like for PROBA-3, an ESA mission demon- ground station. signals and techniques appears to still strating FF capabilities and making The mission will consist of two be advantageous, because they allow scientific observations. In 2013, it will spacecraft, shown inFigure 1: the Main cost effective accurate measurements, be onboard Simbol-X, a multilateral spacecraft of 140 kilograms with full thanks to the widespread use of GNSS CNES mission implementing an X-ray three-axis reaction wheel–based atti- techniques, even for spacecraft naviga- telescope of two satellites. tude control and three-axis delta-V tion and synchronization. capability, and a second simplified The first part of this two-part column The PRISMA Mission Target spacecraft of 40 kilograms with will describe the PRISMA, PROBA-3, To validate FFRF in flight, CNES will coarse three-axis attitude control, and Simbol-X missions and provide an participate in the experimental PRISMA based on magnetometers, sun sensors, overview of other future FF missions. mission, a technology test bed for forma- and magnetic torquers. Various sen- Part 2 will discuss those missions’ posi- tion flying and rendezvous (RdV) of two sors, depending on the experiment and tioning, orientation, and metrological LEO microsatellites undertaken by the the satellite distance, will measure the requirements, focusing on the forma- Swedish National Space Board (SNSB). relative positions of the space vehicles, tion flying RF (FFRF) techniques and As the first European mission to dem- using the following: instrumentation. onstrate FF, PRISMA is an invaluable • Differential GPS. The DGPS system opportunity for CNES to acquire valu- provided by DLR (German Aero- Institutional Roles able FF experience as early as 2009. space Center) is the primary relative Mastery of formation flying is an area The French contribution to PRIS- positioning measurement system on of priority for the French Space Agency MA—Formation Flying In-Orbit Rang- PRISMA (made possible by the LEO (Centre National d’Etudes Spatiales or ing Demonstration (FFIORD) —consists nature of this mission). Experiments CNES) and the European Space Agency of implementing the FFRF subsystem on will mainly be carried out for inter- (ESA) and is driving the agencies’ long- the two PRISMA satellites as a passenger satellite distances greater than 30 term investment in the development of experiment. The FFRF procurement is a meters. The system is based on a fully associated technologies and skills in partnership between CNES and Spain’s redundant set of 12-channel, single- cooperation with other European part- Centre for the Development of Industrial frequency Phoenix GPS receivers ners. The goal of this continuous effort Technology (CDTI). developed by DLR and antennas on is to prepare for future FF missions of In addition to in-orbit validation of each spacecraft. which the CNES Simbol-X project and the sensor, FFIORD will include closed- • Visual-based sensor (VBS). Based on ESA’s PROBA-3, Darwin, and Xeus proj- loop operations with FFRF, thus allowing a star tracker used in many microsat- ects are representative examples. genuine autonomous formation flying ellite missions, this sensor provided Mainly within this European frame- scenarios and associated guidance, navi- by the Technical University of Den- work, CNES and ESA have collaborated gation and control (GNC) algorithms to mark (DTU) will be used to identify and contributed through R&D activities be tested in real-life conditions. the Target spacecraft as a nonstellar to the preliminary design and imple- The PRISMA satellites have arrived object at distances up to 500 kilo- mentation of a new sensor for coarse from Sweden to the test facilities in Tou- meters and to track Target down to metrology—the (FFRF) metrology sub- louse, France. Testing in the vaccuum- very close range, typically 10 meters system. This RF-based sensor, for which solar chamber took breadboard development was initiated place in late Novem- by ESA in 2001, is based partly on exist- ber 2008. Launch of ing spaceborne GPS technology. PRISMA is expected Proposed by CNES in an early ver- during the summer sion in 1991 for the Hermes space plane 2009 as a secondary project, the FFRF equipment was initial- payload into a sun- ly designed and developed by a private synchronous LEO manufacturer. ESA and CNES officially orbit of about 700 selected the FFRF equipment as a coarse kilometers. metrology sensor, FFRF being manda- Expected dura- tory for first-stage formation acquisition tion of the mission on all future European non-LEO forma- is approximately tion flying missions. eight months. All This FFRF generic technology devel- f light operations oped by ESA, CNES and CDTI will be will be controlled FIGURE 2 Main motion around target validated onboard the PRISMA Swedish by t he Swedish www.insidegnss.com NOVEMBER/DECEMBER 2008 InsideGNSS 41 WORKING PAPERS FIGURE 3 Illustration of PROBA-3 formation flying during a sequence of autonomously testing of new technologies appropriate dent, three-axis stabilized spacecrafts scheduled approach maneuvers. for future small-satellite missions. These flying close to each other with the abil- • The RF metrology subsystem. include 1) in-flight testing of high per- ity to accurately control the attitude Designed to handle first stage omni- formance green propellant (HPGP) and and separation of the two spacecraft in directional RF metrology, the FFRF cold gas microthruster propulsion sys- a closed loop. The spacecrafts will fly in a provided by CNES will mainly func- tems, 2) onboard software development high earth orbit (HEO) divided between tion at intersatellite distances from 3 with MATLAB/Simulink and autocode periods of accurate formation flying, meters to 30 kilometers. generation, and 3) validation of new when payload observations will be pos- ground support equipment with multi- sible, and periods of free flight. PRISMA Goals satellite support capability. The length of the formation control The primary goals for PRISMA are tech- period will result from a trade-off analy- nology demonstrations and maneuver PROBA-3: The Next Step sis involving the amount of fuel needed experiments (see Figure 2) examining The ESA PROBA-3 mission is foremost to maintain the orbits when in forma- GNC and sensor technology for a fam- an FF demonstration mission and sec- tion. The formation control part (around ily of future missions that will use RdV ondly am FF scientific mission. The first
Recommended publications
  • Low Thrust Manoeuvres to Perform Large Changes of RAAN Or Inclination in LEO
    Facoltà di Ingegneria Corso di Laurea Magistrale in Ingegneria Aerospaziale Master Thesis Low Thrust Manoeuvres To Perform Large Changes of RAAN or Inclination in LEO Academic Tutor: Prof. Lorenzo CASALINO Candidate: Filippo GRISOT July 2018 “It is possible for ordinary people to choose to be extraordinary” E. Musk ii Filippo Grisot – Master Thesis iii Filippo Grisot – Master Thesis Acknowledgments I would like to address my sincere acknowledgments to my professor Lorenzo Casalino, for your huge help in these moths, for your willingness, for your professionalism and for your kindness. It was very stimulating, as well as fun, working with you. I would like to thank all my course-mates, for the time spent together inside and outside the “Poli”, for the help in passing the exams, for the fun and the desperation we shared throughout these years. I would like to especially express my gratitude to Emanuele, Gianluca, Giulia, Lorenzo and Fabio who, more than everyone, had to bear with me. I would like to also thank all my extra-Poli friends, especially Alberto, for your support and the long talks throughout these years, Zach, for being so close although the great distance between us, Bea’s family, for all the Sundays and summers spent together, and my soccer team Belfiga FC, for being the crazy lovable people you are. A huge acknowledgment needs to be address to my family: to my grandfather Luciano, for being a great friend; to my grandmother Bianca, for teaching me what “fighting” means; to my grandparents Beppe and Etta, for protecting me
    [Show full text]
  • Observing from Space Orbits, Constraints, Planning, Coordination
    Observing from Space Orbits, constraints, planning, coordination Integral XMM-Newton Jan-Uwe Ness European Space Astronomy Centre (ESAC) Villafranca del Castillo, Spain On behalf of the Integral and XMM-Newton Science Operations Centres Slide 1 Observing from Space - Orbits http://sci.esa.int/integral/59688-integral-fifteen-years-in-orbit/ Slide 2 Observing from Space - Orbits Highly elliptical Earth orbit: XMM-Newton, Integral, Chandra Slide 3 Observing from Space - Orbits Low-Earth orbit: ~1.5 hour, examples: Hubble Space Telescope Swift NuSTAR Fermi Earth blocking, especially low declination objects Only short snapshots of a few 100s possible No long uninterrupted observations Only partial overlap with Integral/XMM possible Slide 4 Observing from Space - Orbits Orbit around Lagrange point L2 past: future: Herschel James Webb Planck Athena present: Gaia Slide 5 Observing from Space – Constraints Motivations for constraints: • Safety of space-craft and instruments • Contamination by bright optical/X-ray sources or straylight from them • Functionality of star Tracker • Power supply (solar panels) • Thermal stability (avoid heat from the sun) • Ground contact for remote commanding and downlink of data Space-specific constraints in bold orange Slide 6 Observing from Space – Constraints Examples for constraints: • No observations while passing through radiation belts • Orientation of space craft to sun • Large avoidance angles around Sun and anti-Sun, Moon, Earth, Bright planets • No slewing over Moon and Earth (planets ok) • Availability
    [Show full text]
  • The EXOD Search for Faint Transients in XMM-Newton Observations
    UvA-DARE (Digital Academic Repository) The EXOD search for faint transients in XMM-Newton observations Method and discovery of four extragalactic Type I X-ray bursters Pastor-Marazuela, I.; Webb, N.A.; Wojtowicz, D.T.; van Leeuwen, J. DOI 10.1051/0004-6361/201936869 Publication date 2020 Document Version Final published version Published in Astronomy & Astrophysics Link to publication Citation for published version (APA): Pastor-Marazuela, I., Webb, N. A., Wojtowicz, D. T., & van Leeuwen, J. (2020). The EXOD search for faint transients in XMM-Newton observations: Method and discovery of four extragalactic Type I X-ray bursters. Astronomy & Astrophysics, 640, [A124]. https://doi.org/10.1051/0004-6361/201936869 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 A&A 640, A124 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936869 & c ESO 2020 Astrophysics The EXOD search for faint transients in XMM-Newton observations: Method and discovery of four extragalactic Type I X-ray bursters I.
    [Show full text]
  • Sentinel-2 and Sentinel-3 Mission Overview and Status
    Sentinel-2 and Sentinel-3 Mission Overview and Status Craig Donlon – Sentinel-3 Mission Scientist and Ferran Gascon – Sentinel-2 QC manager and others @ESA IOCCG-21, Santa Monica, USA 1-3rd March 2016 Overview – What is Copernicus? – Sentinel-2 mission and status – Sentinel-3 mission and status Sentinel-3A OLCI first light Svalbard: 29 Feb 14:07:45-14:09:45 UTC Bands 4, 6 and 7 (of 21) at 490, 560, 620 nm Spain and Gibraltar 1 March 10:32:48-10:34:48 UTC California USA 29 Feb 17:44:54-17:46:54 UTC What is Copernicus? Space Component In-Situ Services A European Data Component response to global needs 6 What is Copernicus? – Space in Action for You! • A source of information for policymakers, industry, scientists, business and the public • A European response to global issues: • manage the environment; • understand and to mitigate the effects of climate change; • ensure civil security • A user-driven programme of services for environment and security • An integrated Earth Observation system (combining space-based and in-situ data with Earth System Models) Components & Competences Coordinators: Partners: Private Space Industries companies Component National Space Agencies Overall Programme EMCWF EMSA Mercator snd Ocean Coordination FRONTEX Service Services operators Component EUSC EEA JRC In-situ data are supporting the Space and Services Components Copernicus Funding Funding for Development Funding for Operational Phase until 2013 (c.e.c.): Phase as from 2014 (c.e.c.): ~€ 3.7 B (from ESA and € 4.3 B for the EU) whole programme (from EU)
    [Show full text]
  • NASA Process for Limiting Orbital Debris
    NASA-HANDBOOK NASA HANDBOOK 8719.14 National Aeronautics and Space Administration Approved: 2008-07-30 Washington, DC 20546 Expiration Date: 2013-07-30 HANDBOOK FOR LIMITING ORBITAL DEBRIS Measurement System Identification: Metric APPROVED FOR PUBLIC RELEASE – DISTRIBUTION IS UNLIMITED NASA-Handbook 8719.14 This page intentionally left blank. Page 2 of 174 NASA-Handbook 8719.14 DOCUMENT HISTORY LOG Status Document Approval Date Description Revision Baseline 2008-07-30 Initial Release Page 3 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 4 of 174 NASA-Handbook 8719.14 This page intentionally left blank. Page 6 of 174 NASA-Handbook 8719.14 TABLE OF CONTENTS 1 SCOPE...........................................................................................................................13 1.1 Purpose................................................................................................................................ 13 1.2 Applicability ....................................................................................................................... 13 2 APPLICABLE AND REFERENCE DOCUMENTS................................................14 3 ACRONYMS AND DEFINITIONS ...........................................................................15 3.1 Acronyms............................................................................................................................ 15 3.2 Definitions .........................................................................................................................
    [Show full text]
  • Update on PROBA-2 TDM and ALPHASAT TDP8 Flight Data
    Update on PROBA-2 TDM and ALPHASAT TDP8 Flight Data Christian POIVEY, Gerard PLANES CONANGLA, Marco d’ALESSIO, Reno HARBOE-SORENSEN ESA ESTEC CNES ESA Radiation Effects Final Presentations Days March 9&10, 2015 OUTLINE 1. PROBA-2 TDM 2. Summary of PROBA-2 TDM SEE flight data on memories 3. ALPHASAT TDP8 4. Summary of ALPHASAT TDP8 SEE flight data on memories CNES ESA Radiation Effects Final Presentations Days March 9&10, 2015 PROBA-2 Launched on November 2, 2009 LEO orbit: 713-733 km, 98 degrees inclination PROBA-2 - TDM 1. TDM : Memories on board TDM/Proba II a. TID (RADFETs) Atmel AT68166 (4*AT60142) 2M x 8 b. Reference SEU monitor Alliance AS7C34096A-12TI 512K x 8 c. SEL experiment Semi. – SEL Samsung K6R4008V1D 512K x 8 – SEU ISSI IS61LV5128AL-12 512K x 8 d. Flash memory experiment. 2. Period analyzed ISSI IS62WV20488BLL 2M x8 a. March 2010-January 2015 Samsung K9FG08U0M 1G x 8 – (1769 days) CNES ESA Radiation Effects Final Presentations Days March 9&10, 2015 PROBA-2 TDM CNES ESA Radiation Effects Final Presentations Days March 9&10, 2015 SEL experiment, SEL Data SEL experiment in TDM/Proba-2 Tot SAA Alliance Semi. AS7C34096A-12TI 512K x 8 3 2 Samsung K6R4008V1D-TI10 512K x 8 8 4 ISSI IS61LV5128AL-12 512K x 8 357 293 ISSI IS62WV20488BLL 2M x8 12 5 CNES ESA Radiation Effects Final Presentations Days March 9&10, 2015 SEL experiment, SEL Data IS61LV5128AL Differential latchup rate (smoothed in blue) CNES ESA Radiation Effects Final Presentations Days March 9&10, 2015 SEL experiment, SEL Data Comparison with Calculated Rates SEL rate prediction was performed for the 4 SRAMs using OMERE under solar maximum conditions, a sensitive volume thickness of 1 micron and 10 mm of Aluminum shielding.
    [Show full text]
  • Lagrange Remote Sensing Instruments: the Extreme Ultraviolet Imager (Euvi)
    LAGRANGE REMOTE SENSING INSTRUMENTS: THE EXTREME ULTRAVIOLET IMAGER (EUVI) C. Kintziger (CSL) - Presenter S. Habraken (CSL) P. Bouchez (CSL) Matthew West (ROB) David Berghmans (ROB) Manfred Gyo (PMOD/WRC) Margit Haberreiter (PMOD/WRC) Jackie Davies (RAL Space) Martin Caldwell (RAL Space) Ian Tosh (RAL Space) Stefan Kraft (ESA) 1 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Mission overview 4 remote-sensing instruments See Poster 23 by J. Davies 2 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Mission overview 5 in-situ instruments 3 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Mission overview • Overall Remote Sensing Instruments leader: RAL Space (UK) • EUVI study led by three institutes: – CSL (BE) – ROB (BE) – PMOD/WRC (CH) • CSL activities • ROB activities • PMOD activities – EUVI Instrument manager: – instrument – electrical engineering • Overall management requirements – mechanisms • System study – instrument operation – mechanical engineering • Optical engineering – ground segments • Thermal engineering • AIT engineering • Roles & Responsibilities – BPI: Pr. Dr. Serge Habraken (CSL) – Bco-I: Dr. Matthew J West (ROB) – CSL work funded by Belspo via Prodex Programme 4 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Mission overview • EUV Imager – SSA programme (SWE) – Location: L5 – Goal: image the full solar disc – Waveband: EUV wavelength (e.g. 193 Å) – Heritage: PROBA-2 SWAP ESIO (GSTP) Solar Orbiter EUI Parameter Requirement Spectral resolution < 1.5 푛푚 퐹푊퐻푀 Spatial resolution < 5 푎푟푐푠푒푐 Field of view 42.6′ 푥 42.6′ Mass < 8 푘푔 Size < 600 푥 150 푥 150 푚푚 Power < 10 푊 5 ESWW 2018, 9 Nov. 2018 LGRRS-EUVI | Instrument overview • Selected wavelengths 131 nm 19.5 nm 30.4 nm Semi-Static Structures Dynamic structures Regions Filaments/Prominences Flares Chromosphere Active Regions Eruptions Million Degree Corona Coronal Holes EUV Waves Dimmings 6 ESWW 2018, 9 Nov.
    [Show full text]
  • INNER WORKINGS Inner Workings: Hubble’S Quarter Century in Orbit Has Opened a Universe of Possibilities David J
    INNER WORKINGS Inner Workings: Hubble’s quarter century in orbit has opened a universe of possibilities David J. Harris Science Writer advocates, including astronomers John Bahcall and Lyman Spitzer, in 1974 obtained a letter from the National Research Council’s decadal survey of astronomy committee saying that When the Hubble Space Telescope was beyond the present orbiting astronomical ob- an updated 1970 survey would rank the proj- deployed from Space Shuttle Discovery on servatories program” (1). This new breed of ect higher. That gave them the leverage they April 25, 1990, few knew just how far-reach- telescope would have a much larger aperture needed to convince Congress. ing its impact would be on astronomy, cos- than existing orbiting astronomical observa- The initial proposed launch date was 1983. mology, and public appreciation of the tories and be capable of “stellar and nebular But technical delays, budget problems, and universe. “It has given us views of the uni- studies through the entire spectral range from the 1986 Space Shuttle Challenger disaster verse that we have never seen before and soft X rays to infrared.” However, the budgets pushed the launch to 1990. Then came a se- provided a wealth of data for astronomers and the technological capabilities of the ries of difficult servicing missions beginning around the world to ponder,” says Ken time presented challenges for a large-aper- in 1993 to install corrective optics for the in- Sembach, head of the Hubble Mission Office ture space telescope. correctly ground main mirror and upgrade at the Space Telescope Science Institute. Hub- Recommendations at the Academy’s1965 various components.
    [Show full text]
  • Launch of the PROBA-2 Satellite: Another Success for NGC Aerospace
    PRESS RELEASE November 2, 2009 Launch of the PROBA-2 satellite: another success for NGC Aerospace On November 2 nd , 2009 at 1:50 am Greenwich mean time (7:50 pm on November 1st in Sherbrooke), the PROBA-2 satellite began its two-year space journey to accomplish its dual mission of scientific discovery and technology demonstration. Launched from the Plesetsk Cosmodrome in Russia, the 130 kg satellite was successfully placed on its sun- synchronous orbit at an altitude of 700 km. PROBA-2, which is the size of a large television and consumes the energy equivalent to a 60 Watt bulb, has four scientific experiments on board (two in the field of space weather and two for sun observation) as well as 17 technological innovations that will be validated in orbit. Involved in the project since 2004, Sherbrooke-based NGC Aerospace participated in the design and implementation of PROBA-2 by providing the software that controls the attitude and orbit of the satellite in accordance with the requirements of the scientific mission. Thus, it is the computer software designed by NGC which orients the spacecraft so its cameras and scientific instruments can acquire their data with the accuracy and the stability required by the mission scientists. In addition, thanks to its participation in the project, NGC will have the opportunity to validate in orbit, in the context of a real space mission, up to six different technological innovations, ranging from the measurement of the satellite temperature to determine its position above the ground to using the Earth's magnetic field to orient the spacecraft in the desired direction.
    [Show full text]
  • Exploring the Solar Poles and the Heliosphere from High Helio-Latitude
    A white paper submitted to ESA for the Voyage 2050 long- term plan ? A journey to the polar regions of a star: Exploring the solar poles and the heliosphere from high helio-latitude Louise Harra ([email protected]) and the solar polar team PMOC/WRC, Dorfstrasse 33, CH-7260 Davos Dorf & ETH-Zürich, Switzerland [Image: Polar regions of major Solar System bodies. Top left, clockwise - Near-surface zonal flows around the solar north pole Bogart et al. (2015); Earth’s changing magnetic field from ESA’s Swarm constellation; Southern polar cap of Mars from ESA’s ExoMars; Jupiter’s poles from the NASA Juno mission; Saturn’s poles from the NASA Cassini mission.] Overview We aim to embark on one of humankind’s great journeys – to travel over the poles of our star, with a spacecraft unprecedented in its technology and instrumentation – to explore the polar regions of the Sun and their effect on the inner heliosphere in which we live. The polar vantage point provides a unique opportunity for major scientific advances in the field of heliophysics, and thus also provides the scientific underpinning for space weather applications. It has long been a scientific goal to study the poles of the Sun, illustrated by the NASA/ESA International Solar Polar Mission that was proposed over four decades ago, which led to the flight of ESA’s Ulysses spacecraft (1990 to 2009). Indeed, with regard to the Earth, we took the first tentative steps to explore the Earth’s polar regions only in the 1800s. Today, with the aid of space missions, key measurements relating to the nature and evolution of Earth’s polar regions are being made, providing vital input to climate-change models.
    [Show full text]
  • ASTRONOMY 18 Th-Century Math Sets Stage for Future Space Exploration Columbus Dispatch Tuesday, October 05, 2004 TOM BURNS
    ASTRONOMY 18 th-century math sets stage for future space exploration Columbus Dispatch Tuesday, October 05, 2004 TOM BURNS In the mid-18 th century, mathematicians and scientists such as J.L. Lagrange were obsessed with the three-body problem - mathematical rules behind the mutual attraction of three large bodies, such as two planets orbiting the sun or a moon orbiting a planet orbiting the sun. Almost 250 years later, Lagrange's elegant solution has implications that will determine the course of space exploration over the coming decades. It works like this: If one object orbits another, there are five places near the orbiting object where another object can lock into a stable and permanent orbit. Think of them as naturalgravity wells. To put a space station in a stable orbit near Earth, the No. 4 and No. 5 sun-Earth natural-gravity wells - known as Lagrange points - can't be beat. They are located along Earth's orbit 60 degrees on either side of Earth. One precedes Earth and the other trails it. Unfortunately, they are each 50 million miles from our planet, a bit distant for things such as supply shipments, rescues and maintenance missions. Much better is Lagrange point No. 3, about 1 million miles toward the sun. At that location, your space telescope is locked as a minor planet orbiting the sun. But because of its sunny location, Lagrange point No. 3 is not a great place to observe stars. However, the No. 3 Solar and Heliospheric Observatory, or SoHo, has for years produced beautiful images of our home star.
    [Show full text]
  • Mathematics for Physics I
    Mathematics for Physics I A set of lecture notes by Michael Stone PIMANDER-CASAUBON Alexandria Florence London • • ii Copyright c 2001,2002 M. Stone. All rights reserved. No part of this material can be reproduced, stored or transmitted without the written permission of the author. For information contact: Michael Stone, Loomis Laboratory of Physics, University of Illinois, 1110 West Green Street, Urbana, IL 61801, USA. Preface These notes were prepared for the first semester of a year-long mathematical methods course for begining graduate students in physics. The emphasis is on linear operators and stresses the analogy between such operators acting on function spaces and matrices acting on finite dimensional spaces. The op- erator language then provides a unified framework for investigating ordinary and partial differential equations, and integral equations. The mathematical prerequisites for the course are a sound grasp of un- dergraduate calculus (including the vector calculus needed for electricity and magnetism courses), linear algebra (the more the better), and competence at complex arithmetic. Fourier sums and integrals, as well as basic ordinary differential equation theory receive a quick review, but it would help if the reader had some prior experience to build on. Contour integration is not required. iii iv PREFACE Contents Preface iii 1 Calculus of Variations 1 1.1 What is it good for? . 1 1.2 Functionals . 2 1.2.1 The functional derivative . 2 1.2.2 The Euler-Lagrange equation . 3 1.2.3 Some applications . 4 1.2.4 First integral . 8 1.3 Lagrangian Mechanics . 9 1.3.1 One degree of freedom .
    [Show full text]